Commit abd2755a authored by ThomasNing's avatar ThomasNing
Browse files

Merge branch 'develop' into moe_cross_reduce

parents b74918bc 888317e6
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Naive pipeline with lowest resource request per WGP
// GlobalPrefetchStages: 1
// LocalPreFillStages: 1
// LocalPreFetchStages: 0
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_v1_b_scale
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v1_b_scale<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::KRepeat;
using Base::xdlops_gemm;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 1;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
__host__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
ignore = num_loop;
return TailNumber::Full;
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
// BScale Thread Copy
typename BScaleGridBuffer,
typename BScaleGridDesc,
typename BScaleThreadDesc,
typename BScaleThreadTransfer,
typename BScaleThreadTransferStep>
__device__ void Run(
// ABlockCopy
const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
// BBlockCopy
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
// CThread
CThreadBuffer& c_thread_buf,
// BScaleThreadCopy
const BScaleGridDesc& b_scale_grid_desc,
const BScaleThreadDesc& b_scale_thread_desc,
BScaleThreadTransfer& b_scale_thread_copy,
const BScaleGridBuffer& b_scale_grid_buf,
const BScaleThreadTransferStep& b_scale_thread_copy_step,
// num_loop
index_t num_loop,
index_t num_loop_per_scale) const
{
// assume kperblock = scaleblockk
ignore = num_loop_per_scale;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
auto b_scale_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_scale_thread_desc.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Initialize C
c_thread_buf.Clear();
auto c_thread_buf_per_scale = remove_cvref_t<decltype(c_thread_buf)>();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
// -------------------------------------------------------------------------------------------
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
c_thread_buf_per_scale.Clear();
static_for<0, KRepeat, 1>{}([&](auto k0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
c_thread_buf(Number<c_offset>{}) +=
c_thread_buf_per_scale[Number<t>{}] *
type_convert<AccDataType>(b_scale_thread_buf[n0]);
});
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
});
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
c_thread_buf_per_scale.Clear();
static_for<0, KRepeat, 1>{}([&](auto k0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
c_thread_buf(Number<c_offset>{}) +=
c_thread_buf_per_scale[Number<t>{}] *
type_convert<AccDataType>(b_scale_thread_buf[n0]);
});
});
});
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
} // namespace ck
...@@ -36,6 +36,10 @@ struct DeviceGemmV2 : public BaseOperator ...@@ -36,6 +36,10 @@ struct DeviceGemmV2 : public BaseOperator
CElementwiseOperation c_element_op) = 0; CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual bool GetPermuteA() = 0;
virtual bool GetPermuteB() = 0;
virtual ck::index_t GetKPerBlock() = 0;
}; };
template <typename ALayout, template <typename ALayout,
...@@ -73,6 +77,43 @@ struct DeviceGemmV2R1 : public BaseOperator ...@@ -73,6 +77,43 @@ struct DeviceGemmV2R1 : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename BScaleType,
typename CDataType,
index_t ScaleBlockN,
index_t ScaleBlockK,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmV2BScale : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
ck::index_t StrideScaleB,
const void* p_b_scale,
ck::index_t KSplit,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual bool GetPermuteB() = 0;
virtual ck::index_t GetKPerBlock() = 0;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -469,7 +469,11 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout ...@@ -469,7 +469,11 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
{ {
return false; return false;
} }
if(!is_bf16_atomic_supported() && std::is_same_v<CDataType, ck::bhalf_t> &&
arg.Streamk_sel > 0)
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding || if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding || GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding || GemmSpec == GemmSpecialization::MNKPadding ||
......
...@@ -64,7 +64,9 @@ template <typename ALayout, ...@@ -64,7 +64,9 @@ template <typename ALayout,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1, BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType, typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA> typename ComputeTypeB = ComputeTypeA,
bool PermuteA = false,
bool PermuteB = false>
struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout, struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
BLayout, BLayout,
CLayout, CLayout,
...@@ -122,7 +124,9 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout, ...@@ -122,7 +124,9 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
BlkGemmPipeSched, BlkGemmPipeSched,
BlkGemmPipelineVer, BlkGemmPipelineVer,
ComputeTypeA, ComputeTypeA,
ComputeTypeB>; ComputeTypeB,
PermuteA,
PermuteB>;
using Argument = typename GridwiseGemm::Argument; using Argument = typename GridwiseGemm::Argument;
...@@ -633,6 +637,11 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout, ...@@ -633,6 +637,11 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg)); return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
} }
index_t GetKPerBlock() override { return KPerBlock; }
bool GetPermuteA() override { return PermuteA; }
bool GetPermuteB() override { return PermuteB; }
static auto MakeArgument(const ADataType* p_a, static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b, const BDataType* p_b,
CDataType* p_c, CDataType* p_c,
......
...@@ -127,7 +127,9 @@ template <typename ALayout, ...@@ -127,7 +127,9 @@ template <typename ALayout,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v4, BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v4,
typename ComputeTypeA = CDataType, typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA> typename ComputeTypeB = ComputeTypeA,
bool PermuteA = false,
bool PermuteB = false>
struct GridwiseGemm_xdl_cshuffle_v3 struct GridwiseGemm_xdl_cshuffle_v3
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -151,6 +153,20 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -151,6 +153,20 @@ struct GridwiseGemm_xdl_cshuffle_v3
using ThisThreadBlock = ThisThreadBlock<BlockSize>; using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t APackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<ADataType>, pk_i4_t>)
return 2;
else
return 1;
}();
static constexpr index_t BPackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<BDataType>, pk_i4_t>)
return 2;
else
return 1;
}();
__host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch) __host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch)
{ {
return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch); return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch);
...@@ -319,6 +335,10 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -319,6 +335,10 @@ struct GridwiseGemm_xdl_cshuffle_v3
using GemmSpecialization = tensor_operation::device::GemmSpecialization; using GemmSpecialization = tensor_operation::device::GemmSpecialization;
static_assert(!(is_same_v<remove_cvref_t<ADataType>, pk_i4_t> &&
GemmSpec != GemmSpecialization::Default),
"pk_i4_t does not support padding");
if constexpr(GemmSpec == GemmSpecialization::NKPadding || if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding) GemmSpec == GemmSpecialization::MNKPadding)
{ {
...@@ -372,6 +392,8 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -372,6 +392,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
return b_grid_desc_bk0_n_bk1; return b_grid_desc_bk0_n_bk1;
} }
else else
{
if constexpr(!PermuteB)
{ {
// not pad N or K // not pad N or K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor( const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
...@@ -383,6 +405,28 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -383,6 +405,28 @@ struct GridwiseGemm_xdl_cshuffle_v3
return b_grid_desc_bk0_n_bk1; return b_grid_desc_bk0_n_bk1;
} }
else
{
// Pre-shuffled Weight
// BGlobal[K / KPerBlock, N, KPerBlock / K1, K1] -> BTile[K / K1, N, K1]
constexpr index_t BK01 = KPerBlock / BK1Value;
const index_t BK0_ = StrideB / BK1Value;
const index_t BK00 = BK0_ / BK01;
const auto b_grid_desc_bk00_n_bk01_bk1_permute =
make_naive_tensor_descriptor_packed(make_tuple(BK00, N, BK01, BK1Value));
const auto b_grid_desc_bk0_n_bk1_permute = transform_tensor_descriptor(
b_grid_desc_bk00_n_bk01_bk1_permute,
make_tuple(make_merge_transform(make_tuple(BK00, BK01)),
make_pass_through_transform(make_tuple(N)),
make_pass_through_transform(BK1Value)),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_grid_desc_bk0_n_bk1_permute;
}
}
} }
template <typename ABlockDesc_AK0_M_AK1> template <typename ABlockDesc_AK0_M_AK1>
...@@ -572,7 +616,7 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -572,7 +616,7 @@ struct GridwiseGemm_xdl_cshuffle_v3
{ {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>) if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{ {
a_k_split_offset = blockIdx.z * karg.KRead; a_k_split_offset = blockIdx.z * karg.KRead / APackedSize;
} }
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>) else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{ {
...@@ -585,7 +629,15 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -585,7 +629,15 @@ struct GridwiseGemm_xdl_cshuffle_v3
} }
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>) else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{ {
b_k_split_offset = blockIdx.z * karg.KRead; if constexpr(!PermuteB)
{
b_k_split_offset = blockIdx.z * karg.KRead / BPackedSize;
}
else
{
const int k0_offset = karg.KRead * karg.N;
b_k_split_offset = blockIdx.z * k0_offset / BPackedSize;
}
} }
if(blockIdx.z < static_cast<uint32_t>(karg.KBatch - 1)) if(blockIdx.z < static_cast<uint32_t>(karg.KBatch - 1))
...@@ -625,9 +677,8 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -625,9 +677,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
// in some cases. // in some cases.
else if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value) else if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{ {
constexpr auto MLdsLayer = 32 * 4 / KPerBlock / sizeof(ADataType) < 1 constexpr index_t LdsSize = 32 * 4 / KPerBlock / sizeof(ADataType) / APackedSize;
? 1 constexpr auto MLdsLayer = LdsSize < 1 ? 1 : LdsSize;
: 32 * 4 / KPerBlock / sizeof(ADataType);
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor( constexpr auto a_lds_block_desc = make_naive_tensor_descriptor(
make_tuple( make_tuple(
AK0Number * Number<MLdsLayer>{}, Number<MPerBlock / MLdsLayer>{}, AK1Number), AK0Number * Number<MLdsLayer>{}, Number<MPerBlock / MLdsLayer>{}, AK1Number),
...@@ -761,10 +812,8 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -761,10 +812,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value) else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{ {
// NLdsLayer * K0 as logical Bank // NLdsLayer * K0 as logical Bank
constexpr auto NLdsLayer = 32 * 4 / KPerBlock / sizeof(BDataType) < 1 constexpr index_t LdsSize = 32 * 4 / KPerBlock / sizeof(BDataType) / BPackedSize;
? 1 constexpr index_t NLdsLayer = LdsSize < 1 ? 1 : LdsSize;
: 32 * 4 / KPerBlock / sizeof(BDataType);
;
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor( constexpr auto b_lds_block_desc = make_naive_tensor_descriptor(
make_tuple( make_tuple(
BK0Number * Number<NLdsLayer>{}, Number<NPerBlock / NLdsLayer>{}, BK1Number), BK0Number * Number<NLdsLayer>{}, Number<NPerBlock / NLdsLayer>{}, BK1Number),
...@@ -946,8 +995,8 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -946,8 +995,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
constexpr auto c_block_size = constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(); c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned * sizeof(ADataType) + return math::max((a_block_space_size_aligned * sizeof(ADataType) / APackedSize +
b_block_space_size_aligned * sizeof(BDataType)), b_block_space_size_aligned * sizeof(BDataType) / BPackedSize),
c_block_size * sizeof(CShuffleDataType)); c_block_size * sizeof(CShuffleDataType));
} }
...@@ -1312,8 +1361,9 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -1312,8 +1361,9 @@ struct GridwiseGemm_xdl_cshuffle_v3
static_cast<ADataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize()); static_cast<ADataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared) + reinterpret_cast<BDataType*>(static_cast<char*>(p_shared) + a_block_space_size_aligned *
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType), sizeof(ADataType) /
APackedSize),
b_block_desc_bk0_n_bk1.GetElementSpaceSize()); b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0); constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
...@@ -1706,16 +1756,16 @@ struct GridwiseGemm_xdl_cshuffle_v3 ...@@ -1706,16 +1756,16 @@ struct GridwiseGemm_xdl_cshuffle_v3
static_cast<ADataType*>(p_shared_0), a_block_desc_ak0_m_ak1.GetElementSpaceSize()); static_cast<ADataType*>(p_shared_0), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto b_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared_0) + bit_cast<BDataType*>(static_cast<char*>(p_shared_0) +
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType), a_block_space_size_aligned * sizeof(ADataType)),
b_block_desc_bk0_n_bk1.GetElementSpaceSize()); b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ADataType*>(p_shared_1), a_block_desc_ak0_m_ak1.GetElementSpaceSize()); static_cast<ADataType*>(p_shared_1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>( auto b_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<BDataType*>(p_shared_1) + bit_cast<BDataType*>(bit_cast<char*>(p_shared_1) +
a_block_space_size_aligned * sizeof(ADataType) / sizeof(BDataType), a_block_space_size_aligned * sizeof(ADataType)),
b_block_desc_bk0_n_bk1.GetElementSpaceSize()); b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_bufs = make_tuple(a_block_buf_ping, a_block_buf_pong); auto a_block_bufs = make_tuple(a_block_buf_ping, a_block_buf_pong);
......
...@@ -307,7 +307,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12, ...@@ -307,7 +307,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12,
// Wave mode dependent propety // Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{}; static constexpr index_t wave_size = Number<WaveSize>{};
// * Fixed in Navi3x, Will be wave mode dependent on Navi4x // * Fixed for gfx11, Will be wave mode dependent on gfx12
// static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4; // static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4; // static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4;
// * num_acc_vgprs_per_wave alone M direction // * num_acc_vgprs_per_wave alone M direction
......
...@@ -429,7 +429,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w ...@@ -429,7 +429,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w
(is_same<T, f8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) || (is_same<T, f8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, bf8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) || (is_same<T, bf8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, int8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) || (is_same<T, int8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, uint8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)), (is_same<T, uint8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, pk_i4_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)),
"wrong! not implemented"); "wrong! not implemented");
using r_t = typename vector_type<T, N>::type; using r_t = typename vector_type<T, N>::type;
......
...@@ -4,13 +4,34 @@ ...@@ -4,13 +4,34 @@
#ifndef CK_AMD_INLINE_ASM_HPP #ifndef CK_AMD_INLINE_ASM_HPP
#define CK_AMD_INLINE_ASM_HPP #define CK_AMD_INLINE_ASM_HPP
#include "data_type.hpp"
#include "c_style_pointer_cast.hpp" #include "c_style_pointer_cast.hpp"
#include "data_type.hpp"
// TODO: deprecate all amd_assembly_outer_product_xxx // TODO: deprecate all amd_assembly_outer_product_xxx
namespace ck { namespace ck {
inline __device__ int amd_assembly_and_or_b32(int a, int b, int d)
{
int c;
asm volatile("v_and_or_b32 %0, %1, %2, %3" : "=v"(c) : "v"(a), "v"(b), "v"(d));
return c;
}
inline __device__ half2_t amd_assembly_pk_fma_f16(half2_t a, half2_t b, half2_t c)
{
half2_t d;
asm volatile("v_pk_fma_f16 %0, %1, %2, %3" : "=v"(d) : "v"(a), "v"(b), "v"(c));
return d;
}
inline __device__ half2_t amd_assembly_pk_add_f16(half2_t a, half2_t b)
{
half2_t c;
asm volatile("v_pk_add_f16 %0, %1, %2" : "=v"(c) : "v"(a), "v"(b));
return c;
}
// c0 += inner_product(a, b0) // c0 += inner_product(a, b0)
// c1 += inner_product(a, b1) // c1 += inner_product(a, b1)
__device__ void amd_assembly_outer_product_1x2(float a, float b0, float b1, float& c0, float& c1) __device__ void amd_assembly_outer_product_1x2(float a, float b0, float b1, float& c0, float& c1)
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment