Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
aa15c49a
Commit
aa15c49a
authored
Feb 10, 2025
by
coderfeli
Browse files
add moegemm in device and grid
parent
fcf6106b
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
3716 additions
and
3 deletions
+3716
-3
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
+3
-3
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
...e/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
+590
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
...ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
+1566
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
...k/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
+1557
-0
No files found.
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
View file @
aa15c49a
...
...
@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm
_multiple_d_xdl_cshuffle_v3_b_preshuffle
.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_
moe_
gemm.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
...
...
@@ -125,7 +125,7 @@ static constexpr ck::index_t AK1 = 16 / sizeof(A0DataType);
static
constexpr
ck
::
index_t
BK1
=
16
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
MultiD_Xdl_CShuffle_V3_BPreshuffle
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
Device
Moe
Gemm
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
...
...
@@ -154,7 +154,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
EVec
,
1
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
A0DataType
>
;
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
...
...
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
0 → 100644
View file @
aa15c49a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
bool
IsGatherGemm
=
true
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ComputeTypeA
,
typename
LDSTypeB
=
ComputeTypeB
>
struct
DeviceMoeGemm
:
public
DeviceGemmMultipleDSplitKBPreShuffle
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GridwiseGemm
=
std
::
conditional_t
<
IsGatherGemm
,
GridwiseMoeGemmGather
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVectors
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
LDSTypeA
,
LDSTypeB
>
,
GridwiseMoeGemmScatter
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVectors
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
LDSTypeA
,
LDSTypeB
>>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
int
GetPreShuffleParameters
()
override
{
return
NPerXDL
;
}
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
M
,
arg
.
N
);
float
ave_time
=
0
;
index_t
k_grain
=
arg
.
KBatch
*
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
stream_config
.
flush_cache
)
{
std
::
array
<
std
::
size_t
,
NumDTensor
>
DsSize
;
Argument
arg_
=
arg
;
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeAGridDescriptor_AK0_M_AK1
(
arg_
.
M
,
arg_
.
MPadded
,
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
StrideA
,
arg_
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeBGridDescriptor_BK0_N_BK1
(
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
N
,
arg_
.
NPadded
,
arg_
.
StrideB
,
arg_
.
BK0
);
auto
size_a_buffer
=
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
);
auto
size_b_buffer
=
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
);
const
auto
ds_grid_desc_m_n
=
GridwiseGemm
::
MakeDsGridDescriptor_M_N
(
arg_
.
M
,
arg_
.
MPadded
,
arg_
.
N
,
arg_
.
NPadded
,
arg_
.
StrideDs
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
DsSize
[
i
]
=
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
()
*
sizeof
(
DDataType
);
});
ck
::
utility
::
RotatingMemWrapperMultiD
<
Argument
,
DsDataType
>
rotating_mem
(
arg_
,
stream_config
.
rotating_count
,
size_a_buffer
,
size_b_buffer
,
DsSize
);
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
// clear c mem
if
(
arg_
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg_
.
p_c_grid
,
0
,
arg_
.
M
*
arg_
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg_
);
}
else
{
if
(
arg
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
);
}
};
constexpr
auto
estimated_reg_a
=
MPerBlock
*
KPerBlock
*
sizeof
(
ADataType
)
/
BlockSize
/
4
*
(
1
+
GridwiseGemm
::
NWave
);
constexpr
auto
estimated_reg_b
=
NPerBlock
*
KPerBlock
*
sizeof
(
BDataType
)
/
BlockSize
/
4
*
(
2
);
constexpr
auto
estimated_reg_c
=
MPerBlock
*
NPerBlock
*
sizeof
(
GemmAccDataType
)
/
BlockSize
/
4
;
constexpr
auto
estimated_reg_total
=
estimated_reg_a
+
estimated_reg_b
+
estimated_reg_c
;
constexpr
index_t
minimum_occupancy
=
(
estimated_reg_total
>=
256
)
?
1
:
2
;
// static_assert(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3 &&
// has_main_k_block_loop, "only impl BlockGemmPipelineVersion::v3 and has mainloop right
// now");
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel = kernel_moe_gemm_gather<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel = kernel_moe_gemm_gather<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_moe_gemm_gather
<
GridwiseGemm
,
true
,
ScatterOutput
?
InMemoryDataOperationEnum
::
AtomicAdd
:
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_moe_gemm_gather
<
GridwiseGemm
,
true
,
ScatterOutput
?
InMemoryDataOperationEnum
::
AtomicAdd
:
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
// else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
// {
// if(arg.KBatch > 1)
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// InMemoryDataOperationEnum::AtomicAdd,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// else
// {
// if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// ScatterOutput? InMemoryDataOperationEnum::AtomicAdd : InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Odd>;
// Run(kernel);
// }
// else
// {
// const auto kernel =
// kernel_moe_gemm_gather_2lds<
// GridwiseGemm,
// true,
// ScatterOutput? InMemoryDataOperationEnum::AtomicAdd : InMemoryDataOperationEnum::Set,
// minimum_occupancy,
// TailNumber::Even>;
// Run(kernel);
// }
// }
// }
else
{
throw
std
::
runtime_error
(
"todo: only v1 & v2 support now"
);
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
is_bf16_atomic_supported
()
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
&&
arg
.
KBatch
>
1
)
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
if
(
arg
.
N
%
NPerBlock
!=
0
||
arg
.
K
%
KPerBlock
!=
0
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_sorted_token_ids
,
const
void
*
p_sorted_expert_ids
,
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
NumTokens
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
static_cast
<
const
index_t
*>
(
p_sorted_token_ids
),
static_cast
<
const
index_t
*>
(
p_sorted_expert_ids
),
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
NumTokens
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
// assert(0, "no impl");
return
std
::
make_unique
<
Argument
>
(
nullptr
,
nullptr
,
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
M
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceMoeGEmm"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
0 → 100644
View file @
aa15c49a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1_mod8.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_gather
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_gather_2lds
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared1
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run_2Lds
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
p_shared1
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmGather
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeCGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
(
0
,
0
,
0
,
0
,
{}))
>
;
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
LDSTypeA
,
LDSTypeB
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
// printf("tido %d size %d %d MNBLOCK %d %d %d %d\n", threadIdx.x, problem.StrideC, c_grid_desc_m_n.GetElementSpaceSize(),
// problem.MBlock, problem.NBlock, MPerBlock, NPerBlock);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
// constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr
auto
AMThreads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
AK0Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
AK1Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I2
);
constexpr
auto
AKThreads
=
AK0Threads
*
AK1Threads
;
constexpr
auto
AMRepeats
=
MPerBlock
/
AMThreads
;
// static_assert(MLoadRepeats == 1, "only support 1 line per thread now!");
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
AKThreads
*
AMRepeats
;
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
StaticallyIndexedArray
<
index_t
,
AMRepeats
>
gather_offsets
;
//= p_sorted_token_ids[token_pos];
static_for
<
0
,
AMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
gather_offsets
(
m0
)
=
(
p_sorted_token_ids
[
token_pos
+
m0
]
&
0xffffff
)
*
problem
.
K
;
// printf("init off tid %d m %d off %d\n", threadIdx.x, m0(), gather_offsets(m0));
});
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1_mod8
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
1
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
gather_offsets
);
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
)),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
// printf("eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee\n");
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
void
*
p_shared1
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
// const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// p_a_grid,
// p_b_grid,
// p_ds_grid,
// p_c_grid,
// p_shared,
// p_shared1,
// problem,
// a_element_op,
// b_element_op,
// c_element_op,
// block_2_ctile_map);
}
template
<
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
void
*
p_shared1
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
0 → 100644
View file @
aa15c49a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp"
#define DEBUG_LOG 0
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_scatter
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_sorted_token_ids
,
karg
.
p_sorted_expert_ids
,
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Even
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_moe_gemm_scatter_2lds
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared1
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
,
blockIdx
.
z
);
GridwiseGemm
::
template
Run_2Lds
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_ds_grid
,
karg
.
p_c_grid
,
p_shared
,
p_shared1
,
karg
,
karg
.
a_element_op
,
karg
.
b_element_op
,
karg
.
c_element_op
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ADataType
,
typename
LDSTypeB
=
BDataType
>
struct
GridwiseMoeGemmScatter
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
static
constexpr
auto
CShuffleBlockTransferScalarPerVector_NPerBlock
=
CDEShuffleBlockTransferScalarPerVectors
{}[
I0
];
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
auto
BlockSizeNumber
=
Number
<
BlockSize
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
mfma_selector
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
,
ComputeTypeB
>
;
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
mfma_selector
::
selected_mfma
.
k_per_blk
);
static
constexpr
index_t
KLane
=
mfma_selector
::
GetKPerXdlops
()
/
mfma_selector
::
GetK1PerXdlops
();
static
constexpr
index_t
KRepeat
=
KPerBlock
/
KLane
/
KPack
;
static
constexpr
index_t
NLane
=
NPerXdl
;
static
constexpr
index_t
NWave
=
NPerBlock
/
NPerXdl
/
NXdlPerWave
;
static_assert
(
NWave
*
warpSize
==
BlockSize
);
// static constexpr index_t NumTokens = 1;
static
constexpr
index_t
SortedTileSize
=
MPerBlock
;
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
math
::
integer_divide_ceil
(
M
,
MPerBlock
),
1
);
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateBN0Shuffled
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NLane
);
}
__host__
__device__
static
auto
CalculateBK0Shuffled
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KLane
*
KPack
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
__device__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
__device__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
__device__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_Preshuffled
(
index_t
N0
,
index_t
K0
)
{
constexpr
index_t
NkSwizzleNumber
=
Number
<
warpSize
*
KPack
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N0
/
NWave
,
NWave
,
K0
,
NkSwizzleNumber
),
make_tuple
(
NWave
*
K0
*
NkSwizzleNumber
,
K0
*
NkSwizzleNumber
,
NkSwizzleNumber
,
I1
));
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWave
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
template
<
typename
ELayout
>
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeCGridDescriptor_M_N
<
DLayout
>
(
M
,
MPad
,
N
,
NPad
,
StrideDs
[
i
]);
},
Number
<
NumDTensor
>
{});
}
template
<
typename
DsGridDesc
>
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc
&
ds_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
],
MBlock
,
NBlock
);
},
Number
<
NumDTensor
>
{});
}
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
(
0
,
0
,
0
,
0
,
{}))
>
;
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideDs
{
StrideDs_
},
StrideC
{
StrideC_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)},
BN0Shuffled
{
CalculateBN0Shuffled
(
N_
)},
BK0Shuffled
{
CalculateBK0Shuffled
(
K_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
NumTokens
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideC
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
// FOR PRESHUFFLE ONLY
index_t
BN0Shuffled
;
index_t
BK0Shuffled
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
index_t
*
p_sorted_token_ids_
,
const
index_t
*
p_sorted_expert_ids_
,
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
,
index_t
StrideC_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_ds_grid
{},
p_c_grid
{
p_c_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
}
{
// populate pointer, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType_
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid
(
i
)
=
static_cast
<
const
DDataType_
*>
(
p_ds_grid_
[
i
]);
});
}
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
CDataType
*
p_c_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
,
index_t
k_id
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
k_id
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
;
}
if
(
k_id
<
karg
.
KBatch
-
1
)
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
LDSTypeA
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
LDSTypeA
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}));
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmBPreshufflePipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
LDSTypeA
,
LDSTypeB
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
LDSTypeA
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
// check gridwise gemm pipeline
#if 1
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
#endif
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
__device__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
index_t
*
p_sorted_token_ids
,
const
index_t
*
p_sorted_expert_ids
,
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
);
const
index_t
expert_id
=
__builtin_amdgcn_readfirstlane
(
p_sorted_expert_ids
[
block_m_id
]);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
const
index_t
t0
=
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
if
(
t0
>=
problem
.
NumTokens
)
return
;
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
// dummy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
LDSTypeA
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
auto
b_block_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
BDataType
>
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
b_blockwise_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_bpreshuffled
,
make_multi_index
(
n_block_data_idx_on_grid
,
get_warp_local_1d_id
(),
0
,
KPack
*
(
get_thread_local_1d_id
()
%
warpSize
)));
// LDS allocation for A and B: be careful of alignment
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
LDSTypeA
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
0
,
KRepeat
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bpreshuffled
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
using
EDataType
=
CDataType
;
const
auto
ds_grid_desc_m_n
=
MakeDsGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideDs
);
const
auto
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_m_n
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
);
// return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number
<
NumDTensor
>
{}));
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
// static_assert(EMRepeats == 1, "only support 1 line per thread now!");
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
ENThreads
*
EMRepeats
;
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[token_pos];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
(
p_sorted_token_ids
[
token_pos
+
m0
]
&
0xffffff
)
*
problem
.
N
;
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
// printf("tid %d pos %d offset %d size %d\n", threadIdx.x, token_pos, scatter_offsets(I0), c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7r3
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make Sequence
// support arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferCluster
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename SrcDimAccessOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DstDimAccessOrder,
3
,
// index_t SrcVectorDim,
3
,
// index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
0
,
0
,
block_n_id
,
0
)),
c_element_op
,
scatter_offsets
};
// if(threadIdx.x== 0)
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
c_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
void
*
p_shared1
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
// const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
// Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
// p_a_grid,
// p_b_grid,
// p_ds_grid,
// p_c_grid,
// p_shared,
// p_shared1,
// problem,
// a_element_op,
// b_element_op,
// c_element_op,
// block_2_ctile_map);
}
template
<
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
DsGridPointer
&
p_ds_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
void
*
p_shared1
,
const
Problem
&
problem
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
}
};
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment