Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
a93d07c7
Unverified
Commit
a93d07c7
authored
Aug 06, 2024
by
Illia Silin
Committed by
GitHub
Aug 06, 2024
Browse files
Merge branch 'develop' into ck_codegen_build
parents
9d9ad510
afbf6350
Changes
52
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1065 additions
and
272 deletions
+1065
-272
include/ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp
...eration/operator_transform/transform_conv_fwd_to_gemm.hpp
+417
-91
include/ck/utility/f8_utils.hpp
include/ck/utility/f8_utils.hpp
+3
-2
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+21
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
...erence_tensor_operation/cpu/reference_column_to_image.hpp
+59
-57
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
...eference_tensor_operation/cpu/reference_conv_bwd_data.hpp
+12
-12
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
...erence_tensor_operation/cpu/reference_conv_bwd_weight.hpp
+12
-12
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_conv_fwd.hpp
+13
-13
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
...erence_tensor_operation/cpu/reference_image_to_column.hpp
+50
-49
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp
...fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp
+93
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+13
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_xdl_large_tensor.inc
...ance/gpu/grouped_convolution_forward_xdl_large_tensor.inc
+112
-0
library/include/ck/library/utility/convolution_parameter.hpp
library/include/ck/library/utility/convolution_parameter.hpp
+30
-18
library/include/ck/library/utility/host_tensor.hpp
library/include/ck/library/utility/host_tensor.hpp
+18
-3
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+47
-14
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
..._fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instance.cpp
...d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instance.cpp
...d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instance.cpp
+39
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/xdl/large_tensor/device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...d_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+39
-0
No files found.
include/ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp
View file @
a93d07c7
...
...
@@ -19,7 +19,8 @@ template <index_t NDimSpatial,
bool
SplitN
=
false
,
typename
ADataType
=
float
,
typename
CDataType
=
float
,
index_t
NumGroupsToMerge
=
1
>
index_t
NumGroupsToMerge
=
1
,
typename
IndexType
=
index_t
>
struct
TransformConvFwdToGemm
{
private:
...
...
@@ -46,10 +47,10 @@ struct TransformConvFwdToGemm
}
template
<
typename
ConvDimsType
>
static
i
ndex
_t
GetSplitedNSize
(
const
ConvDimsType
&
a_g_n_c_wis_lengths
,
const
ConvDimsType
&
a_g_n_c_wis_strides
,
const
ConvDimsType
&
c_g_n_k_wos_lengths
,
const
ConvDimsType
&
c_g_n_k_wos_strides
)
static
I
ndex
Type
GetSplitedNSize
(
const
ConvDimsType
&
a_g_n_c_wis_lengths
,
const
ConvDimsType
&
a_g_n_c_wis_strides
,
const
ConvDimsType
&
c_g_n_k_wos_lengths
,
const
ConvDimsType
&
c_g_n_k_wos_strides
)
{
const
long_index_t
a_element_space_size
=
calculate_element_space_size_impl
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
I1
);
...
...
@@ -59,7 +60,7 @@ struct TransformConvFwdToGemm
c_element_space_size
*
sizeof
(
CDataType
));
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
const
i
ndex
_t
N
=
a_g_n_c_wis_lengths
[
I1
];
const
I
ndex
Type
N
=
a_g_n_c_wis_lengths
[
I1
];
if
(
element_space_size
>
TwoGB
)
{
...
...
@@ -70,7 +71,7 @@ struct TransformConvFwdToGemm
{
// Find least divisor of N larger than element_space_size / TwoGB
// Iterate up to sqrt(N). There are no divisors above this value.
for
(
i
ndex
_t
least_divisor
=
divisor
;
least_divisor
*
least_divisor
<=
N
;
for
(
I
ndex
Type
least_divisor
=
divisor
;
least_divisor
*
least_divisor
<=
N
;
least_divisor
++
)
{
if
(
N
%
least_divisor
==
0
)
...
...
@@ -98,6 +99,53 @@ struct TransformConvFwdToGemm
public:
__host__
__device__
constexpr
TransformConvFwdToGemm
()
{}
template
<
typename
TransformConvFwdToGemmBase
>
__host__
__device__
TransformConvFwdToGemm
(
const
TransformConvFwdToGemmBase
&
transform_conv_fwd_to_gemm_base
)
:
N_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
N_
)},
Di_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Di_
)},
Hi_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Hi_
)},
Wi_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Wi_
)},
Do_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Do_
)},
Ho_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Ho_
)},
Wo_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Wo_
)},
Z_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Z_
)},
Y_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
Y_
)},
X_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
X_
)},
K_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
K_
)},
C_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
C_
)},
DiStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
DiStride_
)},
HiStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
HiStride_
)},
WiStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
WiStride_
)},
DoStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
DoStride_
)},
HoStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
HoStride_
)},
WoStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
WoStride_
)},
XStride_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
XStride_
)},
CStrideTensorA_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
CStrideTensorA_
)},
CStrideTensorB_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
CStrideTensorB_
)},
KStrideTensorB_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
KStrideTensorB_
)},
KStrideTensorC_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
KStrideTensorC_
)},
NStrideTensorA_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
NStrideTensorA_
)},
NStrideTensorC_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
NStrideTensorC_
)},
GStrideTensorA_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
GStrideTensorA_
)},
GStrideTensorB_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
GStrideTensorB_
)},
GStrideTensorC_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
GStrideTensorC_
)},
ConvStrideD_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvStrideD_
)},
ConvStrideH_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvStrideH_
)},
ConvStrideW_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvStrideW_
)},
ConvDilationD_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvDilationD_
)},
ConvDilationH_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvDilationH_
)},
ConvDilationW_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ConvDilationW_
)},
InLeftPadD_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InLeftPadD_
)},
InLeftPadH_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InLeftPadH_
)},
InLeftPadW_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InLeftPadW_
)},
InRightPadD_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InRightPadD_
)},
InRightPadH_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InRightPadH_
)},
InRightPadW_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
InRightPadW_
)},
ZYX_
{
static_cast
<
IndexType
>
(
transform_conv_fwd_to_gemm_base
.
ZYX_
)}
{
}
template
<
typename
ConvDimsType
,
typename
ConvSpatialDimsType
,
index_t
NDim
=
NDimSpatial
,
...
...
@@ -126,6 +174,8 @@ struct TransformConvFwdToGemm
DiStride_
{
I1
},
HiStride_
{
I1
},
WiStride_
{
a_g_n_c_wis_strides
[
I3
]},
DoStride_
{
I1
},
HoStride_
{
I1
},
WoStride_
{
c_g_n_k_wos_strides
[
I3
]},
XStride_
{
b_g_k_c_xs_strides
[
I3
]},
CStrideTensorA_
{
a_g_n_c_wis_strides
[
I2
]},
...
...
@@ -133,6 +183,7 @@ struct TransformConvFwdToGemm
KStrideTensorB_
{
b_g_k_c_xs_strides
[
I1
]},
KStrideTensorC_
{
c_g_n_k_wos_strides
[
I2
]},
NStrideTensorA_
{
a_g_n_c_wis_strides
[
I1
]},
NStrideTensorC_
{
c_g_n_k_wos_strides
[
I1
]},
GStrideTensorA_
{
a_g_n_c_wis_strides
[
I0
]},
GStrideTensorB_
{
b_g_k_c_xs_strides
[
I0
]},
GStrideTensorC_
{
c_g_n_k_wos_strides
[
I0
]},
...
...
@@ -150,10 +201,10 @@ struct TransformConvFwdToGemm
InRightPadW_
{
input_right_pads
[
I0
]},
ZYX_
{
X_
}
{
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
);
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
);
if
constexpr
(
SplitN
)
{
...
...
@@ -164,7 +215,6 @@ struct TransformConvFwdToGemm
{
N_
=
c_g_n_k_wos_lengths
[
I1
];
}
NDoHoWo_
=
N_
*
Wo_
;
}
template
<
typename
ConvDimsType
,
...
...
@@ -195,6 +245,8 @@ struct TransformConvFwdToGemm
DiStride_
{
I1
},
HiStride_
{
a_g_n_c_wis_strides
[
I3
]},
WiStride_
{
a_g_n_c_wis_strides
[
I4
]},
DoStride_
{
I1
},
HoStride_
{
c_g_n_k_wos_strides
[
I3
]},
WoStride_
{
c_g_n_k_wos_strides
[
I4
]},
XStride_
{
b_g_k_c_xs_strides
[
I4
]},
CStrideTensorA_
{
a_g_n_c_wis_strides
[
I2
]},
...
...
@@ -202,6 +254,7 @@ struct TransformConvFwdToGemm
KStrideTensorB_
{
b_g_k_c_xs_strides
[
I1
]},
KStrideTensorC_
{
c_g_n_k_wos_strides
[
I2
]},
NStrideTensorA_
{
a_g_n_c_wis_strides
[
I1
]},
NStrideTensorC_
{
c_g_n_k_wos_strides
[
I1
]},
GStrideTensorA_
{
a_g_n_c_wis_strides
[
I0
]},
GStrideTensorB_
{
b_g_k_c_xs_strides
[
I0
]},
GStrideTensorC_
{
c_g_n_k_wos_strides
[
I0
]},
...
...
@@ -219,10 +272,10 @@ struct TransformConvFwdToGemm
InRightPadW_
{
input_right_pads
[
I1
]},
ZYX_
{
Y_
*
X_
}
{
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
);
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
);
if
constexpr
(
SplitN
)
{
...
...
@@ -233,7 +286,6 @@ struct TransformConvFwdToGemm
{
N_
=
c_g_n_k_wos_lengths
[
I1
];
}
NDoHoWo_
=
N_
*
Ho_
*
Wo_
;
}
template
<
typename
ConvDimsType
,
...
...
@@ -264,6 +316,8 @@ struct TransformConvFwdToGemm
DiStride_
{
a_g_n_c_wis_strides
[
I3
]},
HiStride_
{
a_g_n_c_wis_strides
[
I4
]},
WiStride_
{
a_g_n_c_wis_strides
[
I5
]},
DoStride_
{
c_g_n_k_wos_strides
[
I3
]},
HoStride_
{
c_g_n_k_wos_strides
[
I4
]},
WoStride_
{
c_g_n_k_wos_strides
[
I5
]},
XStride_
{
b_g_k_c_xs_strides
[
I5
]},
CStrideTensorA_
{
a_g_n_c_wis_strides
[
I2
]},
...
...
@@ -271,6 +325,7 @@ struct TransformConvFwdToGemm
KStrideTensorB_
{
b_g_k_c_xs_strides
[
I1
]},
KStrideTensorC_
{
c_g_n_k_wos_strides
[
I2
]},
NStrideTensorA_
{
a_g_n_c_wis_strides
[
I1
]},
NStrideTensorC_
{
c_g_n_k_wos_strides
[
I1
]},
GStrideTensorA_
{
a_g_n_c_wis_strides
[
I0
]},
GStrideTensorB_
{
b_g_k_c_xs_strides
[
I0
]},
GStrideTensorC_
{
c_g_n_k_wos_strides
[
I0
]},
...
...
@@ -288,10 +343,10 @@ struct TransformConvFwdToGemm
InRightPadW_
{
input_right_pads
[
I2
]},
ZYX_
{
Z_
*
Y_
*
X_
}
{
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
i
ndex
_t
,
NDimSpatial
+
I3
>>
);
static_assert
(
is_same_v
<
ConvSpatialDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
>>
||
is_same_v
<
ConvSpatialDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
>>
);
static_assert
(
is_same_v
<
ConvDimsType
,
std
::
array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
||
is_same_v
<
ConvDimsType
,
ck
::
Array
<
I
ndex
Type
,
NDimSpatial
+
I3
>>
);
if
constexpr
(
SplitN
)
{
...
...
@@ -302,7 +357,122 @@ struct TransformConvFwdToGemm
{
N_
=
c_g_n_k_wos_lengths
[
I1
];
}
NDoHoWo_
=
N_
*
Do_
*
Ho_
*
Wo_
;
}
__host__
bool
AreDescriptorsSmallerThan2GB
()
const
{
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
const
long_index_t
in_desc_space_size
=
I1
+
(
N_
-
I1
)
*
NStrideTensorA_
+
(
Di_
-
I1
)
*
DiStride_
+
(
Hi_
-
I1
)
*
HiStride_
+
(
Wi_
-
I1
)
*
WiStride_
+
(
C_
-
I1
)
*
CStrideTensorA_
;
const
long_index_t
out_desc_space_size
=
I1
+
(
N_
-
I1
)
*
NStrideTensorC_
+
(
Do_
-
I1
)
*
DoStride_
+
(
Ho_
-
I1
)
*
HoStride_
+
(
Wo_
-
I1
)
*
WoStride_
+
(
K_
-
I1
)
*
KStrideTensorC_
;
bool
is_a_descriptor_smaller_than_2GB
=
(
in_desc_space_size
*
sizeof
(
ADataType
))
<=
TwoGB
;
bool
is_c_descriptor_smaller_than_2GB
=
(
out_desc_space_size
*
sizeof
(
CDataType
))
<=
TwoGB
;
return
is_a_descriptor_smaller_than_2GB
&&
is_c_descriptor_smaller_than_2GB
;
}
__host__
auto
SplitConvProblem
(
const
ADataType
*
a_grid_ptr_base
,
CDataType
*
c_grid_ptr_base
)
const
{
// Create copies
auto
conv_to_gemm_transformer_left
=
*
this
;
auto
conv_to_gemm_transformer_right
=
*
this
;
IndexType
a_right_offset
=
0
;
IndexType
c_right_offset
=
0
;
// Calculate real filter size
const
IndexType
z_eff
=
(
Z_
-
1
)
*
ConvDilationD_
+
1
;
const
IndexType
y_eff
=
(
Y_
-
1
)
*
ConvDilationH_
+
1
;
const
IndexType
x_eff
=
(
X_
-
1
)
*
ConvDilationW_
+
1
;
// Calculate start position in input for right tensor
const
IndexType
di_right_transformer_start_idx
=
(
Do_
/
2
)
*
ConvStrideD_
;
const
IndexType
hi_right_transformer_start_idx
=
(
Ho_
/
2
)
*
ConvStrideH_
;
const
IndexType
wi_right_transformer_start_idx
=
(
Wo_
/
2
)
*
ConvStrideW_
;
// Calculate last position in input for left tensor
const
IndexType
di_left_transformer_end_idx
=
(
Do_
/
2
-
1
)
*
ConvStrideD_
+
z_eff
;
const
IndexType
hi_left_transformer_end_idx
=
(
Ho_
/
2
-
1
)
*
ConvStrideH_
+
y_eff
;
const
IndexType
wi_left_transformer_end_idx
=
(
Wo_
/
2
-
1
)
*
ConvStrideW_
+
x_eff
;
// Allow to split if whole left padding will be in left tensor and right padding in right
// tensor
const
bool
is_possible_to_split_d
=
Do_
!=
1
&&
di_right_transformer_start_idx
>
InLeftPadD_
&&
di_left_transformer_end_idx
<=
(
InLeftPadD_
+
Di_
);
const
bool
is_possible_to_split_h
=
Ho_
!=
1
&&
hi_right_transformer_start_idx
>
InLeftPadH_
&&
hi_left_transformer_end_idx
<=
(
InLeftPadH_
+
Hi_
);
const
bool
is_possible_to_split_w
=
Wo_
!=
1
&&
wi_right_transformer_start_idx
>
InLeftPadW_
&&
wi_left_transformer_end_idx
<=
(
InLeftPadW_
+
Wi_
);
if
(
is_possible_to_split_d
)
{
// Apply new sizes
// Split output on half
conv_to_gemm_transformer_left
.
Do_
=
Do_
/
2
;
conv_to_gemm_transformer_right
.
Do_
=
Do_
-
Do_
/
2
;
// Assign left padding to left convolution
conv_to_gemm_transformer_left
.
InLeftPadD_
=
InLeftPadD_
;
conv_to_gemm_transformer_right
.
InLeftPadD_
=
0
;
// Assign right padding to right convolution
conv_to_gemm_transformer_left
.
InRightPadD_
=
0
;
conv_to_gemm_transformer_right
.
InRightPadD_
=
InRightPadD_
;
// Calculate new input size
conv_to_gemm_transformer_left
.
Di_
=
di_left_transformer_end_idx
-
InLeftPadD_
;
conv_to_gemm_transformer_right
.
Di_
=
math
::
min
(
Di_
-
(
di_right_transformer_start_idx
-
InLeftPadD_
),
(
conv_to_gemm_transformer_right
.
Do_
-
1
)
*
ConvStrideD_
+
z_eff
);
;
// Calcualte offsets
a_right_offset
=
((
Do_
/
2
)
*
ConvStrideD_
-
InLeftPadD_
)
*
DiStride_
;
c_right_offset
=
(
Do_
/
2
)
*
DoStride_
;
}
else
if
(
is_possible_to_split_h
)
{
conv_to_gemm_transformer_left
.
Ho_
=
Ho_
/
2
;
conv_to_gemm_transformer_right
.
Ho_
=
Ho_
-
Ho_
/
2
;
conv_to_gemm_transformer_left
.
InLeftPadH_
=
InLeftPadH_
;
conv_to_gemm_transformer_right
.
InLeftPadH_
=
0
;
conv_to_gemm_transformer_left
.
InRightPadH_
=
0
;
conv_to_gemm_transformer_right
.
InRightPadH_
=
InRightPadH_
;
conv_to_gemm_transformer_left
.
Hi_
=
hi_left_transformer_end_idx
-
InLeftPadH_
;
conv_to_gemm_transformer_right
.
Hi_
=
math
::
min
(
Hi_
-
(
hi_right_transformer_start_idx
-
InLeftPadH_
),
(
conv_to_gemm_transformer_right
.
Ho_
-
1
)
*
ConvStrideH_
+
y_eff
);
a_right_offset
=
((
Ho_
/
2
)
*
ConvStrideH_
-
InLeftPadH_
)
*
HiStride_
;
c_right_offset
=
(
Ho_
/
2
)
*
HoStride_
;
}
else
if
(
is_possible_to_split_w
)
{
conv_to_gemm_transformer_left
.
Wo_
=
Wo_
/
2
;
conv_to_gemm_transformer_right
.
Wo_
=
Wo_
-
Wo_
/
2
;
conv_to_gemm_transformer_left
.
InLeftPadW_
=
InLeftPadW_
;
conv_to_gemm_transformer_right
.
InLeftPadW_
=
0
;
conv_to_gemm_transformer_left
.
InRightPadW_
=
0
;
conv_to_gemm_transformer_right
.
InRightPadW_
=
InRightPadW_
;
conv_to_gemm_transformer_left
.
Wi_
=
wi_left_transformer_end_idx
-
InLeftPadW_
;
conv_to_gemm_transformer_right
.
Wi_
=
math
::
min
(
Wi_
-
(
wi_right_transformer_start_idx
-
InLeftPadW_
),
(
conv_to_gemm_transformer_right
.
Wo_
-
1
)
*
ConvStrideW_
+
x_eff
);
a_right_offset
=
((
Wo_
/
2
)
*
ConvStrideW_
-
InLeftPadW_
)
*
WiStride_
;
c_right_offset
=
(
Wo_
/
2
)
*
WoStride_
;
}
// Return left transform, right transformer, right offset to Input and right offset to
// Output
return
ck
::
make_tuple
(
conv_to_gemm_transformer_left
,
conv_to_gemm_transformer_right
,
a_grid_ptr_base
+
a_right_offset
,
c_grid_ptr_base
+
c_right_offset
);
}
// TODO: implement ck::tensor_layout::convolution that describe packed/strided dimemsion as
...
...
@@ -320,20 +490,27 @@ struct TransformConvFwdToGemm
{
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
C_
),
make_tuple
(
WiStride_
,
CStrideTensorA_
));
const
auto
in_gemmm_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N_
,
Wo_
,
C_
),
make_tuple
(
NStrideTensorA_
,
WiStride_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Wo_
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
const
auto
in_gemmm_groups_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
DoHo
Wo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
make_tuple
(
N
_
,
Wo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
NStrideTensorA_
,
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_groups_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
DoHo
Wo_
,
NumGroupsToMerge
)),
make_tuple
(
make_merge_transform
(
make_tuple
(
N
_
,
Wo_
,
NumGroupsToMerge
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
...
...
@@ -527,20 +704,29 @@ struct TransformConvFwdToGemm
{
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
C_
),
make_tuple
(
WiStride_
,
CStrideTensorA_
));
const
auto
in_gemmm_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N_
,
Ho_
,
Wo_
,
C_
),
make_tuple
(
NStrideTensorA_
,
HiStride_
,
WiStride_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Ho_
,
Wo_
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
const
auto
in_gemmm_groups_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
make_tuple
(
N_
,
Ho_
,
Wo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
NStrideTensorA_
,
HiStride_
,
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_groups_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
DoHo
Wo_
,
NumGroupsToMerge
)),
make_tuple
(
make_merge_transform
(
make_tuple
(
N
_
,
Ho_
,
Wo_
,
NumGroupsToMerge
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
...
...
@@ -759,20 +945,34 @@ struct TransformConvFwdToGemm
{
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
C_
),
make_tuple
(
WiStride_
,
CStrideTensorA_
));
const
auto
in_gemmm_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
,
C_
),
make_tuple
(
NStrideTensorA_
,
DiStride_
,
HiStride_
,
WiStride_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
const
auto
in_gemmm_groups_gemmk_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
,
NumGroupsToMerge
,
C_
),
make_tuple
(
NStrideTensorA_
,
DiStride_
,
HiStride_
,
WiStride_
,
GStrideTensorA_
,
CStrideTensorA_
));
return
transform_tensor_descriptor
(
in_gemmm_groups_gemmk_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
NDoHoWo_
,
NumGroupsToMerge
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
,
NumGroupsToMerge
)),
make_pass_through_transform
(
C_
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
...
...
@@ -1119,45 +1319,70 @@ struct TransformConvFwdToGemm
}
template
<
typename
CLayout
,
typename
std
::
enable_if
<
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNWK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
,
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
1
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_K
>),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
NDoHoWo_
,
K_
));
return
make_naive_tensor_descriptor
(
make_tuple
(
N_
*
Wo_
,
K_
),
make_tuple
(
I0
,
KStrideTensorC_
));
}
template
<
typename
CLayout
,
typename
std
::
enable_if
<
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NHW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NDHW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NWGK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NHWGK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
,
bool
>::
type
=
false
>
template
<
typename
CLayout
,
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
2
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_K
>),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N_
*
Ho_
*
Wo_
,
K_
),
make_tuple
(
I0
,
KStrideTensorC_
));
}
template
<
typename
CLayout
,
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
3
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_K
>),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N_
*
Do_
*
Ho_
*
Wo_
,
K_
),
make_tuple
(
I0
,
KStrideTensorC_
));
}
template
<
typename
CLayout
,
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
1
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NWGK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNWK
>
),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
const
IndexType
NDoHoWo
=
N_
*
Wo_
;
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
_
,
K_
),
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
,
K_
),
make_tuple
(
WoStride_
,
KStrideTensorC_
));
}
else
{
const
auto
nhwo_groups_k_1_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
NumGroupsToMerge
,
K_
,
1
),
make_tuple
(
WoStride_
,
GStrideTensorC_
,
KStrideTensorC_
,
GStrideTensorC_
));
make_tuple
(
N_
,
Wo_
,
NumGroupsToMerge
,
K_
,
1
),
make_tuple
(
NStrideTensorC_
,
WoStride_
,
GStrideTensorC_
,
KStrideTensorC_
,
GStrideTensorC_
));
// Padd 1 to NumGroupsToMerge
const
auto
padded_desc
=
transform_tensor_descriptor
(
nhwo_groups_k_1_desc
,
make_tuple
(
make_
pass_through_transform
(
NDoHo
Wo_
),
make_tuple
(
make_
merge_transform
(
make_tuple
(
N_
,
Wo_
)
)
,
make_pass_through_transform
(
NumGroupsToMerge
),
make_pass_through_transform
(
K_
),
make_pad_transform
(
1
,
0
,
NumGroupsToMerge
-
1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}
,
Sequence
<
4
>
{}
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
// We need only matrices from diagonal. X_or returns 0 for the same
// values. So if matrices is not on diagonal then it will be stored in padding.
...
...
@@ -1167,7 +1392,7 @@ struct TransformConvFwdToGemm
NumGroupsToMerge
==
32
||
NumGroupsToMerge
==
64
);
const
auto
unmerged_padded_desc
=
transform_tensor_descriptor
(
padded_desc
,
make_tuple
(
make_pass_through_transform
(
NDoHoWo
_
),
make_tuple
(
make_pass_through_transform
(
NDoHoWo
),
make_xor_transform
(
make_tuple
(
NumGroupsToMerge
,
NumGroupsToMerge
)),
make_pass_through_transform
(
K_
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}),
...
...
@@ -1175,45 +1400,146 @@ struct TransformConvFwdToGemm
// Merge To M, N
return
transform_tensor_descriptor
(
unmerged_padded_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
NDoHoWo
_
,
NumGroupsToMerge
)),
make_tuple
(
make_merge_transform
(
make_tuple
(
NDoHoWo
,
NumGroupsToMerge
)),
make_merge_transform
(
make_tuple
(
K_
,
NumGroupsToMerge
))),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
// for output bias
template
<
typename
CLayout
,
typename
std
::
enable_if
<
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_K
>,
bool
>::
type
=
false
>
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
2
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NHW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NHWGK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNHWK
>
),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
const
auto
out_gemmm_gemmn_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo_
,
K_
),
make_tuple
(
I0
,
KStrideTensorC_
));
return
out_gemmm_gemmn_desc
;
const
IndexType
NDoHoWo
=
N_
*
Ho_
*
Wo_
;
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
,
K_
),
make_tuple
(
WoStride_
,
KStrideTensorC_
));
}
else
{
const
auto
nhwo_groups_k_1_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N_
,
Ho_
,
Wo_
,
NumGroupsToMerge
,
K_
,
1
),
make_tuple
(
NStrideTensorC_
,
HoStride_
,
WoStride_
,
GStrideTensorC_
,
KStrideTensorC_
,
GStrideTensorC_
));
// Padd 1 to NumGroupsToMerge
const
auto
padded_desc
=
transform_tensor_descriptor
(
nhwo_groups_k_1_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Ho_
,
Wo_
)),
make_pass_through_transform
(
NumGroupsToMerge
),
make_pass_through_transform
(
K_
),
make_pad_transform
(
1
,
0
,
NumGroupsToMerge
-
1
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
// We need only matrices from diagonal. X_or returns 0 for the same
// values. So if matrices is not on diagonal then it will be stored in padding.
// To avoid use of modulo after xor we assume that NumBatch to merge is power of 2.
static_assert
(
NumGroupsToMerge
==
1
||
NumGroupsToMerge
==
2
||
NumGroupsToMerge
==
4
||
NumGroupsToMerge
==
8
||
NumGroupsToMerge
==
16
||
NumGroupsToMerge
==
32
||
NumGroupsToMerge
==
64
);
const
auto
unmerged_padded_desc
=
transform_tensor_descriptor
(
padded_desc
,
make_tuple
(
make_pass_through_transform
(
NDoHoWo
),
make_xor_transform
(
make_tuple
(
NumGroupsToMerge
,
NumGroupsToMerge
)),
make_pass_through_transform
(
K_
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}));
// Merge To M, N
return
transform_tensor_descriptor
(
unmerged_padded_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
NDoHoWo
,
NumGroupsToMerge
)),
make_merge_transform
(
make_tuple
(
K_
,
NumGroupsToMerge
))),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
public:
index_t
N_
;
template
<
typename
CLayout
,
index_t
NDimSp
=
NDimSpatial
,
typename
std
::
enable_if
<
NDimSp
==
3
&&
(
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
G_NDHW_K
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
||
is_same_v
<
CLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
),
bool
>::
type
=
false
>
__host__
__device__
auto
MakeCDescriptor_M_N
()
const
{
private:
const
index_t
Di_
,
Hi_
,
Wi_
;
const
index_t
Do_
,
Ho_
,
Wo_
;
const
index_t
Z_
,
Y_
,
X_
;
const
index_t
K_
,
C_
;
const
index_t
DiStride_
,
HiStride_
,
WiStride_
;
const
index_t
WoStride_
;
const
index_t
XStride_
;
const
index_t
CStrideTensorA_
,
CStrideTensorB_
,
KStrideTensorB_
,
KStrideTensorC_
;
const
index_t
NStrideTensorA_
;
const
index_t
GStrideTensorA_
,
GStrideTensorB_
,
GStrideTensorC_
;
const
index_t
ConvStrideD_
,
ConvStrideH_
,
ConvStrideW_
;
const
index_t
ConvDilationD_
,
ConvDilationH_
,
ConvDilationW_
;
const
index_t
InLeftPadD_
,
InLeftPadH_
,
InLeftPadW_
;
const
index_t
InRightPadD_
,
InRightPadH_
,
InRightPadW_
;
const
index_t
ZYX_
;
index_t
NDoHoWo_
;
const
IndexType
NDoHoWo
=
N_
*
Do_
*
Ho_
*
Wo_
;
if
constexpr
(
NumGroupsToMerge
==
1
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
,
K_
),
make_tuple
(
WoStride_
,
KStrideTensorC_
));
}
else
{
const
auto
nhwo_groups_k_1_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
,
NumGroupsToMerge
,
K_
,
1
),
make_tuple
(
NStrideTensorC_
,
DoStride_
,
HoStride_
,
WoStride_
,
GStrideTensorC_
,
KStrideTensorC_
,
GStrideTensorC_
));
// Padd 1 to NumGroupsToMerge
const
auto
padded_desc
=
transform_tensor_descriptor
(
nhwo_groups_k_1_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N_
,
Do_
,
Ho_
,
Wo_
)),
make_pass_through_transform
(
NumGroupsToMerge
),
make_pass_through_transform
(
K_
),
make_pad_transform
(
1
,
0
,
NumGroupsToMerge
-
1
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
// We need only matrices from diagonal. X_or returns 0 for the same
// values. So if matrices is not on diagonal then it will be stored in padding.
// To avoid use of modulo after xor we assume that NumBatch to merge is power of 2.
static_assert
(
NumGroupsToMerge
==
1
||
NumGroupsToMerge
==
2
||
NumGroupsToMerge
==
4
||
NumGroupsToMerge
==
8
||
NumGroupsToMerge
==
16
||
NumGroupsToMerge
==
32
||
NumGroupsToMerge
==
64
);
const
auto
unmerged_padded_desc
=
transform_tensor_descriptor
(
padded_desc
,
make_tuple
(
make_pass_through_transform
(
NDoHoWo
),
make_xor_transform
(
make_tuple
(
NumGroupsToMerge
,
NumGroupsToMerge
)),
make_pass_through_transform
(
K_
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}));
// Merge To M, N
return
transform_tensor_descriptor
(
unmerged_padded_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
NDoHoWo
,
NumGroupsToMerge
)),
make_merge_transform
(
make_tuple
(
K_
,
NumGroupsToMerge
))),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
IndexType
N_
;
IndexType
Di_
,
Hi_
,
Wi_
;
IndexType
Do_
,
Ho_
,
Wo_
;
IndexType
Z_
,
Y_
,
X_
;
IndexType
K_
,
C_
;
IndexType
DiStride_
,
HiStride_
,
WiStride_
;
IndexType
DoStride_
,
HoStride_
,
WoStride_
;
IndexType
XStride_
;
IndexType
CStrideTensorA_
,
CStrideTensorB_
,
KStrideTensorB_
,
KStrideTensorC_
;
IndexType
NStrideTensorA_
,
NStrideTensorC_
;
IndexType
GStrideTensorA_
,
GStrideTensorB_
,
GStrideTensorC_
;
IndexType
ConvStrideD_
,
ConvStrideH_
,
ConvStrideW_
;
IndexType
ConvDilationD_
,
ConvDilationH_
,
ConvDilationW_
;
IndexType
InLeftPadD_
,
InLeftPadH_
,
InLeftPadW_
;
IndexType
InRightPadD_
,
InRightPadH_
,
InRightPadW_
;
IndexType
ZYX_
;
};
// wrapper class to call member functions on TransformConvToGemm struct at runtime
...
...
@@ -1230,17 +1556,17 @@ struct TransformConv
if
(
NDimSpatial
==
2
)
{
return
conv_fwd_to_gemm
.
template
MakeCDescriptor_M_N
<
ck
::
tensor_layout
::
convolution
::
NHWGK
>();
.
template
MakeCDescriptor_M_N
<
ck
::
tensor_layout
::
convolution
::
NHWGK
,
2
>();
}
else
if
(
NDimSpatial
==
3
)
{
return
conv_fwd_to_gemm
.
template
MakeCDescriptor_M_N
<
tensor_layout
::
convolution
::
NDHWGK
>();
.
template
MakeCDescriptor_M_N
<
tensor_layout
::
convolution
::
NDHWGK
,
3
>();
}
else
if
(
NDimSpatial
==
1
)
{
return
conv_fwd_to_gemm
.
template
MakeCDescriptor_M_N
<
tensor_layout
::
convolution
::
NWGK
>();
.
template
MakeCDescriptor_M_N
<
tensor_layout
::
convolution
::
NWGK
,
1
>();
}
}
};
...
...
include/ck/utility/f8_utils.hpp
View file @
a93d07c7
...
...
@@ -165,7 +165,7 @@ In this case, the fp16 mantissa should be shift left by 1 */
if
(
out_exponent
>
max_exp
)
{
if
(
clip
)
if
constexpr
(
clip
)
{
mantissa
=
(
1
<<
out_mant
)
-
1
;
out_exponent
=
max_exp
;
...
...
@@ -235,7 +235,8 @@ __host__ __device__ Y run_cast_from_f8(X x)
return
(
mantissa
==
0
)
?
(
sign
?
NegInf
:
Inf
)
:
NaN
;
}
if
((
NumericUtils
<
Y
>::
mant
==
10
)
&&
(
NumericUtils
<
X
>::
mant
==
2
)
&&
!
negative_zero_nan
)
if
constexpr
((
NumericUtils
<
Y
>::
mant
==
10
)
&&
(
NumericUtils
<
X
>::
mant
==
2
)
&&
!
negative_zero_nan
)
{
retval
=
x
;
retval
<<=
8
;
...
...
include/ck/utility/type_convert.hpp
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/f8_utils.hpp"
#include "ck/utility/random_gen.hpp"
#include "ck/utility/array.hpp"
namespace
ck
{
// Define the common macro for gfx94x models
...
...
@@ -500,6 +501,25 @@ inline __host__ __device__ half_t type_convert<half_t, bf8_t>(bf8_t x)
#endif
}
template
<
typename
Y
,
typename
X
,
std
::
size_t
NumElems
>
inline
__host__
__device__
void
array_convert
(
std
::
array
<
Y
,
NumElems
>&
y
,
const
std
::
array
<
X
,
NumElems
>&
x
)
{
for
(
std
::
size_t
i
=
0
;
i
<
NumElems
;
i
++
)
{
y
[
i
]
=
type_convert
<
Y
>
(
x
[
i
]);
}
}
template
<
typename
Y
,
typename
X
,
index_t
NumElems
>
inline
__host__
__device__
void
array_convert
(
Array
<
Y
,
NumElems
>&
y
,
const
Array
<
X
,
NumElems
>&
x
)
{
for
(
std
::
size_t
i
=
0
;
i
<
NumElems
;
i
++
)
{
y
[
i
]
=
type_convert
<
Y
>
(
x
[
i
]);
}
}
// Declare a template function for bf16 conversion using RTN
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
bf16_convert_rtn
(
X
x
);
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -39,11 +39,11 @@ struct ReferenceColumnToImage : public device::BaseOperator
public:
Argument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
std
::
vector
<
ck
::
long_
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
)
:
input_
{
input
},
output_
{
output
},
conv_strides_
{
conv_filter_strides
},
...
...
@@ -58,24 +58,25 @@ struct ReferenceColumnToImage : public device::BaseOperator
const
Tensor
<
InDataType
>&
input_
;
Tensor
<
OutDataType
>&
output_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
long_
index_t
>
conv_strides_
;
std
::
vector
<
long_
index_t
>
conv_dilations_
;
std
::
vector
<
long_
index_t
>
in_left_pads_
;
std
::
vector
<
long_
index_t
>
in_right_pads_
;
std
::
vector
<
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
index_t
>
output_spatial_lengths_
;
std
::
vector
<
long_
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
long_
index_t
>
output_spatial_lengths_
;
private:
void
initOutputSpatialLengths
()
{
constexpr
auto
input_offset_to_spatial
=
3
;
for
(
ck
::
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
for
(
ck
::
long_
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const
ck
::
index_t
x_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_dilations_
[
i
]
+
1
;
const
ck
::
long_index_t
x_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_dilations_
[
i
]
+
1
;
output_spatial_lengths_
.
push_back
(
(
output_
.
GetLengths
()[
i
+
input_offset_to_spatial
]
+
in_left_pads_
[
i
]
+
...
...
@@ -98,26 +99,26 @@ struct ReferenceColumnToImage : public device::BaseOperator
throw
std
::
runtime_error
(
"wrong! inconsistent dimension"
);
}
const
index_t
G
=
arg
.
output_
.
GetLengths
()[
0
];
const
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
const
long_
index_t
G
=
arg
.
output_
.
GetLengths
()[
0
];
const
long_
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
long_
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
if
constexpr
(
NDimSpatial
==
1
)
{
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
0
];
auto
func
=
[
&
](
auto
g
,
auto
n
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
0
];
auto
func
=
[
&
](
auto
g
,
auto
n
)
{
for
(
long_
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Wo
+
wo
;
index_t
column
=
0
;
long_
index_t
row
=
n
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
0
];
++
x
)
for
(
long_
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
0
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
output_
.
GetLengths
()[
3
])
...
...
@@ -140,32 +141,32 @@ struct ReferenceColumnToImage : public device::BaseOperator
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
1
];
const
long_
index_t
Ho
=
arg
.
output_spatial_lengths_
[
0
];
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
1
];
auto
func
=
[
&
](
auto
g
,
auto
n
)
{
for
(
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
for
(
long_
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
for
(
long_
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
long_
index_t
row
=
n
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
0
];
++
y
)
for
(
long_
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
0
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
1
];
++
x
)
for
(
long_
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
1
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
1
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
hi
>=
0
&&
...
...
@@ -196,27 +197,27 @@ struct ReferenceColumnToImage : public device::BaseOperator
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
const
index_t
Do
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
1
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
2
];
const
long_
index_t
Do
=
arg
.
output_spatial_lengths_
[
0
];
const
long_
index_t
Ho
=
arg
.
output_spatial_lengths_
[
1
];
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
2
];
auto
func
=
[
&
](
auto
g
,
auto
n
)
{
for
(
index_t
d_o
=
0
;
d_o
<
Do
;
++
d_o
)
for
(
long_
index_t
d_o
=
0
;
d_o
<
Do
;
++
d_o
)
{
for
(
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
for
(
long_
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
for
(
long_
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Do
*
Ho
*
Wo
+
d_o
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
long_
index_t
row
=
n
*
Do
*
Ho
*
Wo
+
d_o
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
z
=
0
;
z
<
arg
.
filter_spatial_lengths_
[
0
];
++
z
)
for
(
long_
index_t
z
=
0
;
z
<
arg
.
filter_spatial_lengths_
[
0
];
++
z
)
{
auto
di
=
static_cast
<
ck
::
long_index_t
>
(
d_o
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
z
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
1
];
++
y
)
for
(
long_
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
1
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
...
...
@@ -224,7 +225,8 @@ struct ReferenceColumnToImage : public device::BaseOperator
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
2
];
++
x
)
for
(
long_index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
2
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
...
...
@@ -232,7 +234,7 @@ struct ReferenceColumnToImage : public device::BaseOperator
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
2
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
2
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
di
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
di
)
<
...
...
@@ -294,15 +296,15 @@ struct ReferenceColumnToImage : public device::BaseOperator
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
const
ck
::
index_t
G
=
arg
.
output_
.
GetLengths
()[
0
];
const
ck
::
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
ck
::
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
const
ck
::
long_
index_t
G
=
arg
.
output_
.
GetLengths
()[
0
];
const
ck
::
long_
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
ck
::
long_
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
const
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
index_t
>
(
const
long_
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
long_
index_t
>
(
arg
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
index_t
>
(
const
long_
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
long_
index_t
>
(
arg
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
if
(
!
(
arg
.
input_
.
GetLengths
()[
0
]
==
static_cast
<
std
::
size_t
>
(
G
)
&&
...
...
@@ -326,11 +328,11 @@ struct ReferenceColumnToImage : public device::BaseOperator
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
std
::
vector
<
ck
::
long_
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
)
{
return
Argument
{
input
,
output
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp
View file @
a93d07c7
...
...
@@ -38,10 +38,10 @@ struct ReferenceConvBwdData : public device::BaseOperator
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
@@ -72,10 +72,10 @@ struct ReferenceConvBwdData : public device::BaseOperator
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors_
;
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
long_
index_t
>
conv_strides_
;
std
::
vector
<
long_
index_t
>
conv_dilations_
;
std
::
vector
<
long_
index_t
>
in_left_pads_
;
std
::
vector
<
long_
index_t
>
in_right_pads_
;
InElementwiseOperation
in_element_op_
;
WeiElementwiseOperation
wei_element_op_
;
...
...
@@ -447,10 +447,10 @@ struct ReferenceConvBwdData : public device::BaseOperator
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
const
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
View file @
a93d07c7
...
...
@@ -40,10 +40,10 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
const
Tensor
<
InDataType
>&
in_n_c_hi_wi
,
Tensor
<
WeiDataType
>&
wei_k_c_y_x
,
const
Tensor
<
OutDataType
>&
out_n_k_ho_wo
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
@@ -74,10 +74,10 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
const
std
::
array
<
Tensor
<
InDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors_
;
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
long_
index_t
>
conv_strides_
;
std
::
vector
<
long_
index_t
>
conv_dilations_
;
std
::
vector
<
long_
index_t
>
in_left_pads_
;
std
::
vector
<
long_
index_t
>
in_right_pads_
;
InElementwiseOperation
in_element_op_
;
WeiElementwiseOperation
wei_element_op_
;
...
...
@@ -402,10 +402,10 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
const
Tensor
<
InDataType
>&
in_n_c_hi_wi
,
Tensor
<
WeiDataType
>&
wei_k_c_y_x
,
const
Tensor
<
OutDataType
>&
out_n_k_ho_wo
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -69,10 +69,10 @@ struct ReferenceConvFwd : public device::BaseOperator
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
@@ -103,10 +103,10 @@ struct ReferenceConvFwd : public device::BaseOperator
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors_
;
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
ck
::
long_
index_t
>
conv_strides_
;
std
::
vector
<
ck
::
long_
index_t
>
conv_dilations_
;
std
::
vector
<
ck
::
long_
index_t
>
in_left_pads_
;
std
::
vector
<
ck
::
long_
index_t
>
in_right_pads_
;
InElementwiseOperation
in_element_op_
;
WeiElementwiseOperation
wei_element_op_
;
...
...
@@ -416,10 +416,10 @@ struct ReferenceConvFwd : public device::BaseOperator
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
View file @
a93d07c7
...
...
@@ -40,11 +40,11 @@ struct ReferenceImageToColumn : public device::BaseOperator
public:
Argument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
std
::
vector
<
ck
::
long_
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
)
:
input_
{
input
},
output_
{
output
},
conv_strides_
{
conv_filter_strides
},
...
...
@@ -59,13 +59,13 @@ struct ReferenceImageToColumn : public device::BaseOperator
const
Tensor
<
InDataType
>&
input_
;
Tensor
<
OutDataType
>&
output_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
long_
index_t
>
conv_strides_
;
std
::
vector
<
long_
index_t
>
conv_dilations_
;
std
::
vector
<
long_
index_t
>
in_left_pads_
;
std
::
vector
<
long_
index_t
>
in_right_pads_
;
std
::
vector
<
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
index_t
>
output_spatial_lengths_
;
std
::
vector
<
long_
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
long_
index_t
>
output_spatial_lengths_
;
private:
void
initOutputSpatialLengths
()
...
...
@@ -76,7 +76,8 @@ struct ReferenceImageToColumn : public device::BaseOperator
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const
ck
::
index_t
x_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_dilations_
[
i
]
+
1
;
const
ck
::
long_index_t
x_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_dilations_
[
i
]
+
1
;
output_spatial_lengths_
.
push_back
(
(
input_
.
GetLengths
()[
i
+
input_offset_to_spatial
]
+
in_left_pads_
[
i
]
+
...
...
@@ -99,24 +100,24 @@ struct ReferenceImageToColumn : public device::BaseOperator
throw
std
::
runtime_error
(
"wrong! inconsistent dimension"
);
}
const
index_t
G
=
arg
.
input_
.
GetLengths
()[
0
];
const
index_t
N
=
arg
.
input_
.
GetLengths
()[
1
];
const
index_t
C
=
arg
.
input_
.
GetLengths
()[
2
];
const
long_
index_t
G
=
arg
.
input_
.
GetLengths
()[
0
];
const
long_
index_t
N
=
arg
.
input_
.
GetLengths
()[
1
];
const
long_
index_t
C
=
arg
.
input_
.
GetLengths
()[
2
];
if
constexpr
(
NDimSpatial
==
1
)
{
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
0
];
auto
func
=
[
&
](
auto
g
,
auto
n
,
auto
wo
)
{
index_t
row
=
n
*
Wo
+
wo
;
index_t
column
=
0
;
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
0
];
auto
func
=
[
&
](
auto
g
,
auto
n
,
auto
wo
)
{
long_
index_t
row
=
n
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
0
];
++
x
)
for
(
long_
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
0
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
...
...
@@ -135,26 +136,26 @@ struct ReferenceImageToColumn : public device::BaseOperator
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
1
];
const
long_
index_t
Ho
=
arg
.
output_spatial_lengths_
[
0
];
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
1
];
auto
func
=
[
&
](
auto
g
,
auto
n
,
auto
ho
,
auto
wo
)
{
index_t
row
=
n
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
long_
index_t
row
=
n
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
0
];
++
y
)
for
(
long_
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
0
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
1
];
++
x
)
for
(
long_
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
1
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
1
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
hi
>=
0
&&
...
...
@@ -178,31 +179,31 @@ struct ReferenceImageToColumn : public device::BaseOperator
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
const
index_t
Do
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
1
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
2
];
const
long_
index_t
Do
=
arg
.
output_spatial_lengths_
[
0
];
const
long_
index_t
Ho
=
arg
.
output_spatial_lengths_
[
1
];
const
long_
index_t
Wo
=
arg
.
output_spatial_lengths_
[
2
];
auto
func
=
[
&
](
auto
g
,
auto
n
,
auto
d_o
,
auto
ho
,
auto
wo
)
{
index_t
row
=
n
*
Do
*
Ho
*
Wo
+
d_o
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
long_
index_t
row
=
n
*
Do
*
Ho
*
Wo
+
d_o
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
long_
index_t
column
=
0
;
for
(
index_t
z
=
0
;
z
<
arg
.
filter_spatial_lengths_
[
0
];
++
z
)
for
(
long_
index_t
z
=
0
;
z
<
arg
.
filter_spatial_lengths_
[
0
];
++
z
)
{
auto
di
=
static_cast
<
ck
::
long_index_t
>
(
d_o
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
z
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
1
];
++
y
)
for
(
long_
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
1
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
arg
.
conv_strides_
[
1
])
+
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
2
];
++
x
)
for
(
long_
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
2
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
2
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
2
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
2
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
for
(
long_
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
di
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
di
)
<
...
...
@@ -259,15 +260,15 @@ struct ReferenceImageToColumn : public device::BaseOperator
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
const
ck
::
index_t
G
=
arg
.
input_
.
GetLengths
()[
0
];
const
ck
::
index_t
N
=
arg
.
input_
.
GetLengths
()[
1
];
const
ck
::
index_t
C
=
arg
.
input_
.
GetLengths
()[
2
];
const
ck
::
long_
index_t
G
=
arg
.
input_
.
GetLengths
()[
0
];
const
ck
::
long_
index_t
N
=
arg
.
input_
.
GetLengths
()[
1
];
const
ck
::
long_
index_t
C
=
arg
.
input_
.
GetLengths
()[
2
];
const
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
index_t
>
(
const
long_
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
long_
index_t
>
(
arg
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
index_t
>
(
const
long_
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
long_
index_t
>
(
arg
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
if
(
!
(
arg
.
output_
.
GetLengths
()[
0
]
==
static_cast
<
std
::
size_t
>
(
G
)
&&
...
...
@@ -291,11 +292,11 @@ struct ReferenceImageToColumn : public device::BaseOperator
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
std
::
vector
<
ck
::
long_
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
long_
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
long_
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
long_
index_t
>
input_right_pads
)
{
return
Argument
{
input
,
output
,
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_large_tensor_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_large_tensor_bf16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
DsLayout
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
DsLayout
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_large_tensor_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
DsLayout
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
DsLayout
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_large_tensor_f32_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
DsLayout
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
DsLayout
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
View file @
a93d07c7
...
...
@@ -17,6 +17,7 @@
#endif
#ifdef CK_USE_XDL
#include "grouped_convolution_forward_xdl.inc"
#include "grouped_convolution_forward_xdl_large_tensor.inc"
#include "grouped_convolution_forward_xdl_merged_groups.inc"
#include "grouped_convolution_forward_comp_xdl.inc"
#include "grouped_convolution_forward_mem_inter_xdl.inc"
...
...
@@ -200,6 +201,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
float
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_comp_instances
(
op_ptrs
);
...
...
@@ -215,6 +218,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_comp_instances
(
op_ptrs
);
...
...
@@ -232,6 +237,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_comp_instances
(
op_ptrs
);
...
...
@@ -291,6 +298,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_comp_instances
(
op_ptrs
);
...
...
@@ -347,6 +356,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_instances
(
op_ptrs
);
...
...
@@ -364,6 +375,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
BComputeType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_comp_instances
(
op_ptrs
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_xdl_large_tensor.inc
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
#ifdef CK_ENABLE_BF16
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_BF16
// grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK
void
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
Empty_Tuple
,
NDHWGK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
Empty_Tuple
,
NDHWGK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/utility/convolution_parameter.hpp
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -31,23 +31,35 @@ struct ConvParam
const
std
::
vector
<
ck
::
index_t
>&
left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
right_pads
);
ck
::
index_t
num_dim_spatial_
;
ck
::
index_t
G_
;
ck
::
index_t
N_
;
ck
::
index_t
K_
;
ck
::
index_t
C_
;
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_strides_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations_
;
std
::
vector
<
ck
::
index_t
>
input_left_pads_
;
std
::
vector
<
ck
::
index_t
>
input_right_pads_
;
std
::
vector
<
ck
::
index_t
>
GetOutputSpatialLengths
()
const
;
ConvParam
(
ck
::
long_index_t
n_dim
,
ck
::
long_index_t
group_count
,
ck
::
long_index_t
n_batch
,
ck
::
long_index_t
n_out_channels
,
ck
::
long_index_t
n_in_channels
,
const
std
::
vector
<
ck
::
long_index_t
>&
filters_len
,
const
std
::
vector
<
ck
::
long_index_t
>&
input_len
,
const
std
::
vector
<
ck
::
long_index_t
>&
strides
,
const
std
::
vector
<
ck
::
long_index_t
>&
dilations
,
const
std
::
vector
<
ck
::
long_index_t
>&
left_pads
,
const
std
::
vector
<
ck
::
long_index_t
>&
right_pads
);
ck
::
long_index_t
num_dim_spatial_
;
ck
::
long_index_t
G_
;
ck
::
long_index_t
N_
;
ck
::
long_index_t
K_
;
ck
::
long_index_t
C_
;
std
::
vector
<
ck
::
long_index_t
>
filter_spatial_lengths_
;
std
::
vector
<
ck
::
long_index_t
>
input_spatial_lengths_
;
std
::
vector
<
ck
::
long_index_t
>
output_spatial_lengths_
;
std
::
vector
<
ck
::
long_index_t
>
conv_filter_strides_
;
std
::
vector
<
ck
::
long_index_t
>
conv_filter_dilations_
;
std
::
vector
<
ck
::
long_index_t
>
input_left_pads_
;
std
::
vector
<
ck
::
long_index_t
>
input_right_pads_
;
std
::
vector
<
ck
::
long_index_t
>
GetOutputSpatialLengths
()
const
;
std
::
size_t
GetFlops
()
const
;
...
...
library/include/ck/library/utility/host_tensor.hpp
View file @
a93d07c7
...
...
@@ -96,9 +96,16 @@ struct HostTensorDescriptor
this
->
CalculateStrides
();
}
HostTensorDescriptor
(
const
std
::
initializer_list
<
ck
::
long_index_t
>&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
{
this
->
CalculateStrides
();
}
template
<
typename
Lengths
,
typename
=
std
::
enable_if_t
<
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>,
std
::
size_t
>>>
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>,
std
::
size_t
>
||
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>
,
ck
::
long_index_t
>>>
HostTensorDescriptor
(
const
Lengths
&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
{
this
->
CalculateStrides
();
...
...
@@ -114,11 +121,19 @@ struct HostTensorDescriptor
{
}
HostTensorDescriptor
(
const
std
::
initializer_list
<
ck
::
long_index_t
>&
lens
,
const
std
::
initializer_list
<
ck
::
long_index_t
>&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
{
}
template
<
typename
Lengths
,
typename
Strides
,
typename
=
std
::
enable_if_t
<
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>,
std
::
size_t
>
&&
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Strides
>
,
std
::
size_t
>>>
(
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>,
std
::
size_t
>
&&
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Strides
>
,
std
::
size_t
>
)
||
(
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Lengths
>
,
ck
::
long_index_t
>
&&
std
::
is_convertible_v
<
ck
::
ranges
::
range_value_t
<
Strides
>
,
ck
::
long_index_t
>
)
>>
HostTensorDescriptor
(
const
Lengths
&
lens
,
const
Strides
&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
{
...
...
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
a93d07c7
...
...
@@ -64,6 +64,13 @@ function(add_instance_library INSTANCE_NAME)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
# Do not build mha instances if gfx94 targets are not on the target list
foreach
(
source IN LISTS ARGN
)
if
(
NOT INST_TARGETS MATCHES
"gfx94"
AND source MATCHES
"mha"
)
message
(
"removing mha instance
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
#only continue if there are some source files left on the list
if
(
ARGN
)
set
(
INST_OBJ
)
...
...
@@ -77,6 +84,8 @@ function(add_instance_library INSTANCE_NAME)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
elseif
(
ARGN MATCHES
"mha"
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103
)
endif
()
set
(
offload_targets
)
foreach
(
target IN LISTS INST_TARGETS
)
...
...
@@ -86,7 +95,29 @@ function(add_instance_library INSTANCE_NAME)
list
(
APPEND INST_OBJ
${
source
}
)
endforeach
()
add_library
(
${
INSTANCE_NAME
}
OBJECT
${
INST_OBJ
}
)
# Allow comparing floating points directly in order to check sentinel values
if
(
${
INSTANCE_NAME
}
STREQUAL
"device_mha_instance"
)
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
set
(
FMHA_FWD_FAST_EXP2 true
)
endif
()
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
target_compile_options
(
device_mha_instance PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
endif
()
target_compile_features
(
${
INSTANCE_NAME
}
PUBLIC
)
# flags to compress the library
if
(
NOT WIN32 AND
${
hip_VERSION_FLAT
}
GREATER 600241132
)
message
(
"Adding --offload-compress flag for
${
INSTANCE_NAME
}
"
)
target_compile_options
(
${
INSTANCE_NAME
}
PRIVATE --offload-compress
)
endif
()
set_target_properties
(
${
INSTANCE_NAME
}
PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
${
INSTANCE_NAME
}
)
set
(
result 0
)
...
...
@@ -286,20 +317,22 @@ if(CK_DEVICE_CONV_INSTANCES)
)
endif
()
if
(
CK_DEVICE_MHA_INSTANCES
)
add_library
(
device_mha_operations STATIC
${
CK_DEVICE_MHA_INSTANCES
}
)
add_library
(
composablekernels::device_mha_operations ALIAS device_mha_operations
)
target_compile_features
(
device_mha_operations PUBLIC
)
set_target_properties
(
device_mha_operations PROPERTIES POSITION_INDEPENDENT_CODE ON
)
target_include_directories
(
device_mha_operations PUBLIC
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/tensor_operation_instance/gpu/mha>
)
rocm_install
(
TARGETS device_mha_operations
EXPORT device_mha_operationsTargets
)
rocm_install
(
EXPORT device_mha_operationsTargets
FILE composable_kerneldevice_mha_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION
${
CMAKE_INSTALL_LIBDIR
}
/cmake/composable_kernel
)
set
(
gpu_list
${
INST_TARGETS
}
)
list
(
FILTER gpu_list INCLUDE REGEX
"^gfx94"
)
if
(
gpu_list
)
add_library
(
device_mha_operations STATIC
${
CK_DEVICE_MHA_INSTANCES
}
)
add_library
(
composablekernels::device_mha_operations ALIAS device_mha_operations
)
target_compile_features
(
device_mha_operations PUBLIC
)
set_target_properties
(
device_mha_operations PROPERTIES POSITION_INDEPENDENT_CODE ON
)
rocm_install
(
TARGETS device_mha_operations
EXPORT device_mha_operationsTargets
)
rocm_install
(
EXPORT device_mha_operationsTargets
FILE composable_kerneldevice_mha_operationsTargets.cmake
NAMESPACE composable_kernel::
DESTINATION
${
CMAKE_INSTALL_LIBDIR
}
/cmake/composable_kernel
)
endif
()
endif
()
if
(
CK_DEVICE_CONTRACTION_INSTANCES
)
add_library
(
device_contraction_operations STATIC
${
CK_DEVICE_CONTRACTION_INSTANCES
}
)
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
View file @
a93d07c7
...
...
@@ -9,6 +9,11 @@ add_instance_library(device_grouped_conv2d_fwd_instance
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
xdl/device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
# large tensor
# NHWGC, GKYXC, NHWGK
xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instance.cpp
xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instance.cpp
# merged groups
# NHWGC, GKYXC, NHWGK
xdl/merged_groups/device_grouped_conv2d_fwd_xdl_merged_groups_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_large_tensor_bf16_instances
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instance.cpp
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_large_tensor_f16_instances
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/xdl/large_tensor/device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instance.cpp
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv2d_fwd_xdl_large_tensor_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_large_tensor_f32_instances
<
2
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
View file @
a93d07c7
...
...
@@ -9,6 +9,10 @@ set(GROUPED_CONV3D_FWD
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
xdl/large_tensor/device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/large_tensor/device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/large_tensor/device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/merged_groups/device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/merged_groups/device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/merged_groups/device_grouped_conv3d_fwd_xdl_merged_groups_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/xdl/large_tensor/device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
a93d07c7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_large_tensor_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_large_tensor_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_large_tensor_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
Empty_Tuple
,
NDHWGK
,
ConvFwdDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment