Unverified Commit a61e73bc authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Add instances for conv_scale with fp8@bf8->fp8 (#1220)

* Update device op api to support BComputeType

* Add example

* Add instances

* Add profiler mode

* Add client example

* Update copyright year

* Add BComputeType check

* Fix compute types
parent 9a194837
......@@ -17,6 +17,11 @@ if((DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
target_link_libraries(client_conv3d_fwd_bf8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp8_bf8 conv3d_fwd_fp8_bf8.cpp)
target_link_libraries(client_conv3d_fwd_fp8_bf8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_conv_operations)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
......@@ -95,7 +95,8 @@ template <ck::index_t NumDimSpatial,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3,
typename ComputeType = InDataType>
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
......@@ -186,7 +187,8 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
PassThrough,
PassThrough,
PassThrough,
ComputeType>;
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::bf8_t;
using OutDataType = ck::f8_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using AComputeType = ck::f8_t;
using BComputeType = ck::bf8_t;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout,
3,
AComputeType,
BComputeType>(
{N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -5,6 +5,7 @@ add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp8 convnd_fwd_xdl_fp8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp)
add_example_executable(example_convnd_fwd_xdl_bf8 convnd_fwd_xdl_bf8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp8_bf8 convnd_fwd_xdl_fp8_bf8.cpp)
add_example_executable(example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp)
add_example_executable(example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp)
add_example_executable(example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::bf8_t;
using AccDataType = float;
using CShuffleDataType = ck::f8_t;
using OutDataType = ck::f8_t;
using AComputeType = ck::f8_t;
using BComputeType = ck::bf8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeType,
BComputeType>;
#include "run_convnd_fwd_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -40,7 +40,8 @@ using is_tuple = decltype(std::declval<T&>().IsTuple());
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
* \tparam AComputeType Compute data type for A tensor (default: ADataType, first if tuple passed).
* \tparam BComputeType Compute data type for B tensor (default: AComputeType).
*/
template <index_t NDimSpatial,
typename ALayout,
......@@ -54,12 +55,13 @@ template <index_t NDimSpatial,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename ComputeType =
typename AComputeType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>())> // ComputeType is InputType by default (first
ADataType>()), // AComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename BComputeType = AComputeType>
struct DeviceGroupedConvFwdMultipleABD : public BaseOperator
{
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -254,12 +254,13 @@ template <index_t NDimSpatial,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
typename ComputeDataType =
typename AComputeDataType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>()), // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename BComputeDataType = AComputeDataType,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
: public DeviceGroupedConvFwdMultipleABD<NDimSpatial,
......@@ -274,7 +275,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
ComputeDataType>
AComputeDataType,
BComputeDataType>
{
using DeviceOp = DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle;
......@@ -386,7 +388,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
using GemmBDataType = std::conditional_t<!isMultiB && isMultiA, Tuple<BDataType>, BDataType>;
#define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
GemmADataType, GemmBDataType, AComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
InMemoryDataOperationEnum::Set, NumGemmKPrefetchStage, BlockSize, MPerBlock, NPerBlock, \
KPerBlock, AK1, BK1, MPerXDL, NPerXDL, MXdlPerWave, NXdlPerWave, \
......@@ -399,7 +401,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
BBlockTransferDstScalarPerVector_BK1, false, BBlockLdsExtraN, \
CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched, PipelineVersion::v1, \
BComputeDataType
// Use appropriate gridwise gemm
using GridwiseGemm =
std::conditional_t<isMultiA || isMultiB,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -75,12 +75,13 @@ template <index_t NDimSpatial,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
typename ComputeDataType =
typename AComputeDataType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>()), // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename BComputeDataType = AComputeDataType,
LoopScheduler LoopSched = make_default_loop_scheduler()>
using DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle = DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
......@@ -128,7 +129,8 @@ using DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle = DeviceGroupedConvFwdMultipl
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
ComputeDataType,
AComputeDataType,
BComputeDataType,
LoopSched>;
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -30,7 +30,7 @@ namespace ck {
// D0, D1, ... and E have the same layout
template <typename AsDataType,
typename BsDataType,
typename ComputeDataType_,
typename AComputeDataType_,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
......@@ -71,7 +71,8 @@ template <typename AsDataType,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename BComputeDataType_ = AComputeDataType_>
struct GridwiseGemmMultipleABD_xdl_cshuffle
{
static constexpr index_t NumATensor = AsDataType::Size();
......@@ -101,10 +102,13 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
#if CK_WORKAROUND_DENORM_FIX
using ComputeDataType =
conditional_t<is_same_v<ComputeDataType_, ck::half_t>, ck::bhalf_t, ComputeDataType_>;
using AComputeDataType =
conditional_t<is_same_v<AComputeDataType_, ck::half_t>, ck::bhalf_t, AComputeDataType_>;
using BComputeDataType =
conditional_t<is_same_v<BComputeDataType_, ck::half_t>, ck::bhalf_t, BComputeDataType_>;
#else
using ComputeDataType = ComputeDataType_;
using AComputeDataType = AComputeDataType_;
using BComputeDataType = BComputeDataType_;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
......@@ -195,8 +199,8 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ComputeDataType),
return math::max(a_block_space_size_aligned * sizeof(AComputeDataType) +
b_block_space_size_aligned * sizeof(BComputeDataType),
c_block_size * sizeof(CShuffleDataType));
}
......@@ -597,7 +601,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
auto a_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
AsDataType,
Tuple<ComputeDataType>,
Tuple<AComputeDataType>,
decltype(as_grid_desc_ak0_m_ak1),
decltype(tie(a_block_desc_ak0_m_ak1)),
AElementwiseOperation,
......@@ -628,7 +632,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
auto b_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
BsDataType,
Tuple<ComputeDataType>,
Tuple<BComputeDataType>,
decltype(bs_grid_desc_bk0_n_bk1),
decltype(tie(b_block_desc_bk0_n_bk1)),
BElementwiseOperation,
......@@ -656,14 +660,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ComputeDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr index_t KPack = math::max(
math::lcm(AK1, BK1),
MfmaSelector<AComputeDataType, MPerXdl, NPerXdl, BComputeDataType>::selected_mfma
.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeDataType, // ComputeDataType for A
ComputeDataType, // ComputeDataType for B
AComputeDataType,
BComputeDataType,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
......@@ -681,10 +686,10 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
static_cast<AComputeDataType*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ComputeDataType*>(p_shared) + a_block_space_size_aligned,
static_cast<BComputeDataType*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1, 0, 0);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -73,7 +73,7 @@ template <typename ADataType,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1,
typename BComputeDataType = AComputeDataType_>
typename BComputeDataType_ = AComputeDataType_>
struct GridwiseGemmMultipleD_xdl_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
......@@ -103,8 +103,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
#if CK_WORKAROUND_DENORM_FIX
using AComputeDataType =
conditional_t<is_same_v<AComputeDataType_, ck::half_t>, ck::bhalf_t, AComputeDataType_>;
using BComputeDataType =
conditional_t<is_same_v<BComputeDataType_, ck::half_t>, ck::bhalf_t, BComputeDataType_>;
#else
using AComputeDataType = AComputeDataType_;
using BComputeDataType = BComputeDataType_;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
......
......@@ -290,6 +290,42 @@ using device_grouped_conv_fwd_xdl_bf8_instances = std::tuple<
// clang-format on
>;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_f8_bf8_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|AComputeType|BComputeType|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if(defined(CK_ENABLE_FP8) && defined(CK_ENABLE_BF8))
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8, BF8>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8, BF8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F8, BF8, F32, F8, DsLayout, F8, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, F8, BF8>
#endif
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -351,6 +351,24 @@ void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf8_instances(
BF8>>>& instances);
#endif
#if(defined(CK_ENABLE_FP8) && defined(CK_ENABLE_BF8))
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F8,
BF8,
Empty_Tuple,
F8,
PassThrough,
PassThrough,
PassThrough,
F8,
BF8>>>& instances);
#endif
} // namespace instance
} // namespace device
} // namespace tensor_operation
......
......@@ -41,4 +41,9 @@ if(DTYPES MATCHES "bf8" OR NOT DEFINED DTYPES)
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf8_instance.cpp)
endif()
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
list(APPEND GROUPED_CONV3D_FWD
xdl/device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_fp8_bf8_instance.cpp)
endif()
add_instance_library(device_grouped_conv3d_fwd_instance ${GROUPED_CONV3D_FWD})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f8_bf8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
F8,
BF8,
Empty_Tuple,
F8,
PassThrough,
PassThrough,
PassThrough,
F8,
BF8>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_f8_bf8_instances<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_f8_bf8_instances<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(instances,
device_grouped_conv_fwd_xdl_f8_bf8_instances<3,
NDHWGC,
GKZYXC,
Empty_Tuple,
NDHWGK,
ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -31,7 +31,9 @@ template <ck::index_t NDimSpatial,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool profile_grouped_conv_fwd_impl(int do_verification,
int init_method,
bool do_log,
......@@ -209,7 +211,9 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
OutElementOp,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
......@@ -25,6 +25,7 @@ enum struct ConvDataType
INT8_INT8_INT8, // 3
F8_F8_F8, // 4
BF8_BF8_F8, // 5
F8_BF8_F8, // 6
};
#define OP_NAME "grouped_conv_fwd"
......@@ -40,7 +41,8 @@ static void print_helper_msg()
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8\n"
<< " 4: Input fp8, Weight fp8, Output fp8\n"
<< " 5: Input bf8, Weight bf8, Output fp8)\n"
<< " 5: Input bf8, Weight bf8, Output fp8\n"
<< " 6: Input fp8, Weight bf8, Output fp8)\n"
<< "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
<< " 1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
......@@ -118,7 +120,9 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
auto out_layout,
auto in_type,
auto wei_type,
auto out_type) {
auto out_type,
auto a_compute_type,
auto b_compute_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
......@@ -129,13 +133,18 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using AComputeType = decltype(a_compute_type);
using BComputeType = decltype(b_compute_type);
bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType>(
OutDataType,
AComputeType,
BComputeType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
......@@ -146,57 +155,59 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
return profile(
I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
return profile(
I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
// NHWGC_GKYXC_NHWGK
......@@ -204,65 +215,71 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
return profile(
I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
return profile(
I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
else if(data_type == ConvDataType::F8_F8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{}, F8{}, F8{});
}
else if(data_type == ConvDataType::BF8_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, BF8{}, F8{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, BF8{}, F8{}, BF8{}, BF8{});
}
else if(data_type == ConvDataType::F8_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, BF8{}, F8{}, F8{}, BF8{});
}
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment