Unverified Commit a5137505 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into codegen_hiprtc

parents 208a1dab 888317e6
......@@ -1007,6 +1007,13 @@ struct ThreadwiseTensorSliceTransfer_v4
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
static constexpr index_t PackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<SrcData>, pk_i4_t>)
return 2;
else
return 1;
}();
__device__ constexpr ThreadwiseTensorSliceTransfer_v4(const Index& src_ref_idx)
: src_ref_coord_(make_tensor_coordinate(SrcDesc{}, src_ref_idx))
{
......@@ -1015,6 +1022,11 @@ struct ThreadwiseTensorSliceTransfer_v4
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! Not divisible");
if constexpr(is_same_v<remove_cvref_t<SrcData>, pk_i4_t>)
{
static_assert(SrcScalarPerVector % PackedSize == 0, "pk data N cannot be 1");
}
}
template <typename SrcRefToOriginDisplacement,
......@@ -1109,7 +1121,202 @@ struct ThreadwiseTensorSliceTransfer_v4
move_tensor_coordinate(src_desc, src_data_coord, src_ref_to_data_disp_coord_step);
vector_type_maker_t<SrcData, SrcScalarPerVector> src_tmp_vector;
vector_type_maker_t<SrcData, SrcScalarPerVector / PackedSize> src_tmp_vector;
using src_vector_t = typename decltype(src_tmp_vector)::type;
const bool is_src_valid = coordinate_has_valid_offset_assuming_visible_index_is_valid(
src_desc, src_data_coord);
// copy data from src_buf into src_tmp_vector
if constexpr(SrcBuffer::IsDynamicBuffer())
{
src_tmp_vector.template AsType<src_vector_t>()(Number<0>{}) =
src_buf.template Get<src_vector_t>(src_data_coord.GetOffset() / PackedSize,
is_src_valid);
}
else if constexpr(SrcBuffer::IsStaticBuffer())
{
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t src_offset = src_desc.CalculateOffset(
src_ref_to_origin_disp_idx + data_to_origin_disp_idx +
i * src_scalar_step_in_vector);
src_tmp_vector.template AsType<SrcData>()(i) = src_buf[Number<src_offset>{}];
});
}
if constexpr(is_same<remove_cvref_t<SrcData>, pk_i4_t>::value)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t<DstData, SrcScalarPerVector> dst_tmp_vector;
constexpr index_t pack_size = 8;
static_assert(SrcScalarPerVector % pack_size == 0, "");
using src_v_t = typename vector_type_maker_t<SrcData, pack_size / PackedSize>::type;
using dst_v_t = typename vector_type_maker_t<DstData, pack_size>::type;
static_for<0, SrcScalarPerVector / pack_size, 1>{}([&](auto i) {
ck::tensor_operation::element_wise::PassThroughPack8{}(
dst_tmp_vector.template AsType<dst_v_t>()(i),
src_tmp_vector.template AsType<src_v_t>()[i]);
});
// copy data from dst_tmp_vector into dst_buf
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) = dst_tmp_vector.template AsType<DstData>()[i];
});
}
else if constexpr(is_same<remove_cvref_t<SrcData>, f8_t>::value &&
is_same<remove_cvref_t<DstData>, half_t>::value &&
SrcScalarPerVector % 2 == 0)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t<DstData, SrcScalarPerVector> dst_tmp_vector;
constexpr index_t pack_size = 2;
using dst_v_t = typename vector_type_maker_t<DstData, pack_size>::type;
using src_v_t = typename vector_type_maker_t<SrcData, pack_size>::type;
static_for<0, SrcScalarPerVector / pack_size, 1>{}([&](auto i) {
ck::tensor_operation::element_wise::PassThroughPack2{}(
dst_tmp_vector.template AsType<dst_v_t>()(i),
src_tmp_vector.template AsType<src_v_t>()[i]);
});
// copy data from dst_tmp_vector into dst_buf
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) = dst_tmp_vector.template AsType<DstData>()[i];
});
}
else
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t<DstData, SrcScalarPerVector> dst_tmp_vector;
// TODO: if SrcData and DstData are vetor type, then static_cast may not compile
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
dst_tmp_vector.template AsType<DstData>()(i) =
type_convert<DstData>(src_tmp_vector.template AsType<SrcData>()[i]);
});
// copy data from dst_tmp_vector into dst_buf
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) = dst_tmp_vector.template AsType<DstData>()[i];
});
}
});
}
// Fuse scale
template <typename SrcRefToOriginDisplacement,
typename DstOriginIdx,
typename SrcBuffer,
typename DstBuffer>
__device__ void Run(const SrcDesc&,
const SrcRefToOriginDisplacement&,
const SrcBuffer& src_buf,
const DstData& scale,
const DstDesc&,
const DstOriginIdx&,
DstBuffer& dst_buf) const
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value &&
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
static_assert(DstBuffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(is_known_at_compile_time<remove_cvref_t<SrcRefToOriginDisplacement>>::value &&
is_known_at_compile_time<remove_cvref_t<DstOriginIdx>>::value,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time");
// SrcDesc and DstDesc are known at compile-time
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr auto src_ref_to_origin_disp_idx = to_multi_index(SrcRefToOriginDisplacement{});
constexpr auto dst_origin_idx = to_multi_index(DstOriginIdx{});
// scalar per access of each dim
constexpr auto src_scalar_per_access = generate_sequence_v2(
[&](auto i) constexpr {
if constexpr(i == SrcVectorDim)
{
return Number<SrcScalarPerVector>{};
}
else
{
return Number<1>{};
}
},
Number<nDim>{});
// scalar step (if steping on SrcVectorDim) of each dim
constexpr auto src_scalar_step_in_vector = generate_sequence_v2(
[&](auto i) constexpr {
if constexpr(i == SrcVectorDim)
{
return Number<1>{};
}
else
{
return Number<0>{};
}
},
Number<nDim>{});
constexpr auto access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto dim_access_order = DimAccessOrder{};
constexpr auto ordered_access_lengths =
container_reorder_given_new2old(access_lengths, dim_access_order);
static_ford<decltype(ordered_access_lengths)>{}([&](auto ordered_access_idx) {
#if 0
// TODO: unable to compile
// position in slice window
constexpr auto data_to_origin_disp_idx =
container_reorder_given_old2new(ordered_access_idx, dim_access_order) *
src_scalar_per_access;
#else
// position in slice window
constexpr auto data_to_origin_disp_idx =
ordered_access_idx.ReorderGivenOld2New(dim_access_order) * src_scalar_per_access;
#endif
// src coordinate
constexpr auto src_ref_to_data_disp_idx =
src_ref_to_origin_disp_idx + data_to_origin_disp_idx;
constexpr auto src_ref_to_data_disp_coord_step =
make_tensor_coordinate_step(src_desc, src_ref_to_data_disp_idx);
auto src_data_coord = src_ref_coord_;
move_tensor_coordinate(src_desc, src_data_coord, src_ref_to_data_disp_coord_step);
vector_type_maker_t<SrcData, SrcScalarPerVector / PackedSize> src_tmp_vector;
using src_vector_t = typename decltype(src_tmp_vector)::type;
......@@ -1120,7 +1327,8 @@ struct ThreadwiseTensorSliceTransfer_v4
if constexpr(SrcBuffer::IsDynamicBuffer())
{
src_tmp_vector.template AsType<src_vector_t>()(Number<0>{}) =
src_buf.template Get<src_vector_t>(src_data_coord.GetOffset(), is_src_valid);
src_buf.template Get<src_vector_t>(src_data_coord.GetOffset() / PackedSize,
is_src_valid);
}
else if constexpr(SrcBuffer::IsStaticBuffer())
{
......@@ -1133,7 +1341,39 @@ struct ThreadwiseTensorSliceTransfer_v4
});
}
if constexpr(is_same<remove_cvref_t<SrcData>, f8_t>::value &&
if constexpr(is_same<remove_cvref_t<SrcData>, pk_i4_t>::value)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t<DstData, SrcScalarPerVector> dst_tmp_vector;
vector_type<DstData, 2> scale_vector;
scale_vector.template AsType<DstData>()(Number<0>{}) = scale;
scale_vector.template AsType<DstData>()(Number<1>{}) = scale;
constexpr index_t pack_size = 8;
static_assert(SrcScalarPerVector % pack_size == 0, "");
using src_v_t = typename vector_type_maker_t<SrcData, pack_size / PackedSize>::type;
using dst_v_t = typename vector_type_maker_t<DstData, pack_size>::type;
using scale_v_t = typename vector_type_maker_t<DstData, 2>::type;
static_for<0, SrcScalarPerVector / pack_size, 1>{}([&](auto i) {
ck::tensor_operation::element_wise::DequantPack8{}(
dst_tmp_vector.template AsType<dst_v_t>()(i),
src_tmp_vector.template AsType<src_v_t>()[i],
scale_vector.template AsType<scale_v_t>()[Number<0>{}]);
});
// copy data from dst_tmp_vector into dst_buf
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) = dst_tmp_vector.template AsType<DstData>()[i];
});
}
else if constexpr(is_same<remove_cvref_t<SrcData>, f8_t>::value &&
is_same<remove_cvref_t<DstData>, half_t>::value &&
SrcScalarPerVector % 2 == 0)
{
......@@ -1304,7 +1544,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic
ElementwiseOperation element_op_;
};
// Specilized for WMMA-Navi3
// Specialized for gfx11
// A single Wave32 is composed by double row
// Data exchange allowed between these two rows
// This RowLane Dst buf will be filled from two Src buf
......@@ -1439,7 +1679,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
ElementwiseOperation element_op_{};
};
// Specilized for WMMA-Navi4
// Specialized for gfx12
template <typename SrcData,
typename DstData,
typename SrcDesc,
......
......@@ -31,8 +31,8 @@ template <typename SliceLengths,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
index_t SrcScalarPerVector,
index_t DstScalarPerVector,
index_t SrcScalarPerVector_,
index_t DstScalarPerVector_,
index_t SrcScalarStrideInVector,
index_t DstScalarStrideInVector,
bool SrcResetCoordinateAfterRun, // control whether to move back src coordinate after each
......@@ -55,6 +55,16 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static constexpr auto I0 = Number<0>{};
static constexpr index_t PackedSize = []() {
if constexpr(is_same_v<remove_cvref_t<SrcData>, pk_i4_t>)
return 2;
else
return 1;
}();
static constexpr auto SrcScalarPerVector = Number<SrcScalarPerVector_ / PackedSize>{};
static constexpr auto DstScalarPerVector = Number<DstScalarPerVector_ / PackedSize>{};
__device__ constexpr ThreadwiseTensorSliceTransfer_v3r1(
const SrcDesc& src_desc,
const Index& src_slice_origin,
......@@ -67,6 +77,17 @@ struct ThreadwiseTensorSliceTransfer_v3r1
src_element_op_(src_element_op),
dst_element_op_(dst_element_op)
{
if constexpr(is_same_v<remove_cvref_t<SrcData>, pk_i4_t>)
{
static_assert(is_same_v<remove_cvref_t<SrcData>, remove_cvref_t<DstData>>,
"SrcData != DstData");
static_assert(
SrcScalarPerVector_ % PackedSize == 0 && DstScalarPerVector_ % PackedSize == 0,
"SrcScalarPerVector_ and DstScalarPerVector_ cannot be 1 for packed data type");
static_assert(SrcVectorDim == DstVectorDim, "pk_i4_t does not support transpose");
}
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
......@@ -95,11 +116,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector_>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
static_assert(SliceLengths::At(SrcVectorDim) % SrcScalarPerVector == 0,
static_assert(SliceLengths::At(SrcVectorDim) % (SrcScalarPerVector_) == 0,
"SliceLengths[SrcVectorDim] must be divisible by SrcScalarPerVector");
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
......@@ -180,9 +201,6 @@ struct ThreadwiseTensorSliceTransfer_v3r1
using src_vector_type = vector_type_maker_t<SrcData, SrcScalarPerVector>;
using src_vector_t = typename src_vector_type::type;
auto src_vector_container =
src_vector_type{src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), true)};
using dst_vector_type = vector_type_maker_t<DstData, SrcScalarPerVector>;
using dst_vector_t = typename dst_vector_type::type;
dst_vector_type op_r_v;
......@@ -193,17 +211,22 @@ struct ThreadwiseTensorSliceTransfer_v3r1
if constexpr(decltype(src_element_op_)::is_pack8_invocable)
return math::min(8, SrcScalarPerVector);
}
if constexpr(is_detected<is_pack4_invocable_t, decltype(src_element_op_)>::value)
else if constexpr(is_detected<is_pack4_invocable_t,
decltype(src_element_op_)>::value)
{
if constexpr(decltype(src_element_op_)::is_pack4_invocable)
return math::min(4, SrcScalarPerVector);
}
if constexpr(is_detected<is_pack2_invocable_t, decltype(src_element_op_)>::value)
else if constexpr(is_detected<is_pack2_invocable_t,
decltype(src_element_op_)>::value)
{
if constexpr(decltype(src_element_op_)::is_pack2_invocable)
return math::min(2, SrcScalarPerVector);
}
else
{
return 1;
}
};
constexpr index_t elem_op_vec_len = get_elem_op_vec_len();
......@@ -211,6 +234,9 @@ struct ThreadwiseTensorSliceTransfer_v3r1
using src_elem_op_vec_t = typename vector_type<SrcData, elem_op_vec_len>::type;
using dst_elem_op_vec_t = typename vector_type<DstData, elem_op_vec_len>::type;
auto src_vector_container = src_vector_type{
src_buf.template Get<src_vector_t>(src_coord_.GetOffset() / PackedSize, true)};
static_for<0, SrcScalarPerVector / elem_op_vec_len, 1>{}([&](auto idx) {
// apply the src elementwise op and convert to DstData under the hood if needed
src_element_op_(op_r_v.template AsType<dst_elem_op_vec_t>()(idx),
......@@ -276,10 +302,9 @@ struct ThreadwiseTensorSliceTransfer_v3r1
dst_thread_scratch_(idx) = src_thread_scratch_tuple_[thread_scratch_id][idx];
});
#else
// OOB Check
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector_>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
......@@ -350,6 +375,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
(is_same<f8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0)))
{
static_assert(!is_same_v<remove_cvref_t<SrcData>, pk_i4_t>,
"in-register transpose is not supported for pk_i4_t");
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
......@@ -410,7 +437,12 @@ struct ThreadwiseTensorSliceTransfer_v3r1
}
else
{
static_ford<SliceLengths>{}([&](auto idx) {
constexpr auto packed_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, PackedSize>{}, Number<nDim>{});
constexpr auto packed_access_lengths = SliceLengths{} / packed_per_access;
static_ford<decltype(packed_access_lengths)>{}([&](auto idx) {
dst_thread_scratch_(idx) = src_thread_scratch_tuple_[thread_scratch_id][idx];
});
}
......@@ -438,7 +470,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// src scalar per access on each dim
// TODO: don't use this
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector_>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
......@@ -526,13 +558,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// apply DstElementwiseOperation
dst_element_op_(dst_v, dst_vector_container.template AsType<DstData>()[i]);
dst_vector_container.template AsType<DstData>()(i) = dst_v;
});
// copy data from dst_vector_container to dst_buf
dst_buf.template Set<dst_vector_t>(
dst_coord_.GetOffset(),
dst_coord_.GetOffset() / PackedSize,
is_dst_valid,
dst_vector_container.template AsType<dst_vector_t>()[I0]);
......@@ -586,7 +616,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector_>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
......@@ -644,7 +674,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector_>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
......@@ -730,7 +760,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__ static constexpr auto GetSrcThreadScratchDescriptor()
{
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector_>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
......@@ -779,7 +809,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__ static constexpr auto GetSrcOOBThreadScratchDescriptor()
{
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector_>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
......@@ -790,7 +820,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
{
// 1st stage of transforms
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector_>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
......
......@@ -307,7 +307,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12,
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
// * Fixed in Navi3x, Will be wave mode dependent on Navi4x
// * Fixed for gfx11, Will be wave mode dependent on gfx12
// static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4;
// * num_acc_vgprs_per_wave alone M direction
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -13,58 +13,514 @@
namespace ck {
namespace tensor_operation {
namespace {
template <
index_t NDimSpatial,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization,
index_t AK1,
index_t BK1,
index_t GemmMPerBlock,
index_t GemmNPerBlock,
index_t GemmKPerBlock,
bool DoPadGemmM,
bool DoPadGemmN,
typename ALayout,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization>
constexpr auto make_out_grid_desc(const index_t N,
const index_t Do,
const index_t Ho,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_strides)
typename BLayout,
typename CLayout,
bool SplitN = false,
typename ADataType = float,
typename CDataType = float,
index_t NumGroupsToMerge = 1,
typename IndexType = index_t>
struct TransformConvBwdDataToGemm_v1
{
const auto KStride = Number<1>{};
private:
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto NonSpatialDimsNum = Number<3>{};
static constexpr auto DIdx = NonSpatialDimsNum;
static constexpr auto HIdx =
NDimSpatial == 2 ? NonSpatialDimsNum : Number<NonSpatialDimsNum + 1>{};
static constexpr auto WIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum + 1>{} : Number<NonSpatialDimsNum + 2>{};
static constexpr auto ZIdx = NonSpatialDimsNum;
static constexpr auto YIdx =
NDimSpatial == 2 ? NonSpatialDimsNum : Number<NonSpatialDimsNum + 1>{};
static constexpr auto XIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum + 1>{} : Number<NonSpatialDimsNum + 2>{};
template <typename ConvDimsType>
static long_index_t calculate_element_space_size_impl(const ConvDimsType& lengths,
const ConvDimsType& strides,
index_t i)
{
long_index_t acc = 1;
for(; i < (NDimSpatial + 3); i++)
{
acc +=
static_cast<long_index_t>(lengths[i] - I1) * static_cast<long_index_t>(strides[i]);
}
return acc;
}
template <typename ConvDimsType>
static IndexType GetSplitedNSize(const ConvDimsType& a_g_n_k_wos_lengths,
const ConvDimsType& a_g_n_k_wos_strides,
const ConvDimsType& c_g_n_c_wis_lengths,
const ConvDimsType& c_g_n_c_wis_strides)
{
const long_index_t a_element_space_size =
calculate_element_space_size_impl(a_g_n_k_wos_lengths, a_g_n_k_wos_strides, I1);
const long_index_t c_element_space_size =
calculate_element_space_size_impl(c_g_n_c_wis_lengths, c_g_n_c_wis_strides, I1);
const long_index_t element_space_size = math::max(a_element_space_size * sizeof(ADataType),
c_element_space_size * sizeof(CDataType));
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
const IndexType N = a_g_n_k_wos_lengths[I1];
if(element_space_size > TwoGB)
{
// Minimum divisor of N to not exceed 2GB
const auto divisor = math::integer_divide_ceil(element_space_size, TwoGB);
if(divisor <= static_cast<double>(N))
{
// Find least divisor of N larger than element_space_size / TwoGB
// Iterate up to sqrt(N). There are no divisors above this value.
for(IndexType least_divisor = divisor; least_divisor * least_divisor <= N;
least_divisor++)
{
if(N % least_divisor == 0)
{
return N / least_divisor;
}
}
// Not found, process one Convolution N per block
return 1;
}
else
{
// Not possible to support even after split N.
// Too large tensor.
return N;
}
}
else
{
// Split N is not needed.
return N;
}
}
public:
__host__ __device__ constexpr TransformConvBwdDataToGemm_v1() {}
template <typename TransformConvBwdDataToGemm_v1Base>
__host__ __device__ TransformConvBwdDataToGemm_v1(
const TransformConvBwdDataToGemm_v1Base& transform_conv_bwd_data_to_gemm_base)
: N_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.N_)},
Di_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Di_)},
Hi_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Hi_)},
Wi_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Wi_)},
Do_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Do_)},
Ho_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Ho_)},
Wo_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Wo_)},
Z_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Z_)},
Y_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.Y_)},
X_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.X_)},
K_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.K_)},
C_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.C_)},
DiStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.DiStride_)},
HiStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.HiStride_)},
WiStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.WiStride_)},
DoStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.DoStride_)},
HoStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.HoStride_)},
WoStride_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.WoStride_)},
CStrideTensorB_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.CStrideTensorB_)},
CStrideTensorC_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.CStrideTensorC_)},
KStrideTensorA_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.KStrideTensorA_)},
KStrideTensorB_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.KStrideTensorB_)},
NStrideTensorA_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.NStrideTensorA_)},
NStrideTensorC_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.NStrideTensorC_)},
ConvStrideD_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvStrideD_)},
ConvStrideH_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvStrideH_)},
ConvStrideW_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvStrideW_)},
ConvDilationD_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvDilationD_)},
ConvDilationH_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvDilationH_)},
ConvDilationW_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ConvDilationW_)},
InLeftPadD_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InLeftPadD_)},
InLeftPadH_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InLeftPadH_)},
InLeftPadW_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InLeftPadW_)},
InRightPadD_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InRightPadD_)},
InRightPadH_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InRightPadH_)},
InRightPadW_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.InRightPadW_)},
IdxZTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.IdxZTilde_)},
IdxYTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.IdxYTilde_)},
IdxXTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.IdxXTilde_)},
GcdStrideDilationD_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.GcdStrideDilationD_)},
GcdStrideDilationH_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.GcdStrideDilationH_)},
GcdStrideDilationW_{
static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.GcdStrideDilationW_)},
ZTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ZTilde_)},
YTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.YTilde_)},
XTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.XTilde_)},
DTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.DTilde_)},
HTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.HTilde_)},
WTilde_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.WTilde_)},
ZDot_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.ZDot_)},
YDot_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.YDot_)},
XDot_{static_cast<IndexType>(transform_conv_bwd_data_to_gemm_base.XDot_)}
{
}
template <typename ConvDimsType, typename ConvSpatialDimsType>
__host__ __device__
TransformConvBwdDataToGemm_v1(const ConvDimsType& a_g_n_k_wos_lengths,
const ConvDimsType& a_g_n_k_wos_strides,
const ConvDimsType& b_g_k_c_xs_lengths,
const ConvDimsType& b_g_k_c_xs_strides,
const ConvDimsType& c_g_n_c_wis_lengths,
const ConvDimsType& c_g_n_c_wis_strides,
const ConvSpatialDimsType& conv_filter_strides,
const ConvSpatialDimsType& conv_filter_dilations,
const ConvSpatialDimsType& input_left_pads,
const ConvSpatialDimsType& input_right_pads,
const ConvSpatialDimsType& tildes)
: Hi_{c_g_n_c_wis_lengths[HIdx]},
Wi_{c_g_n_c_wis_lengths[WIdx]},
Ho_{a_g_n_k_wos_lengths[HIdx]},
Wo_{a_g_n_k_wos_lengths[WIdx]},
Y_{b_g_k_c_xs_lengths[YIdx]},
X_{b_g_k_c_xs_lengths[XIdx]},
K_{a_g_n_k_wos_lengths[I2]},
C_{b_g_k_c_xs_lengths[I2]},
HiStride_{c_g_n_c_wis_strides[HIdx]},
WiStride_{c_g_n_c_wis_strides[WIdx]},
HoStride_{a_g_n_k_wos_strides[HIdx]},
WoStride_{a_g_n_k_wos_strides[WIdx]},
CStrideTensorB_{b_g_k_c_xs_strides[I2]},
CStrideTensorC_{c_g_n_c_wis_strides[I2]},
KStrideTensorA_{a_g_n_k_wos_strides[I2]},
KStrideTensorB_{b_g_k_c_xs_strides[I1]},
NStrideTensorA_{a_g_n_k_wos_strides[I1]},
NStrideTensorC_{c_g_n_c_wis_strides[I1]},
ConvStrideH_{conv_filter_strides[HIdx - NonSpatialDimsNum]},
ConvStrideW_{conv_filter_strides[WIdx - NonSpatialDimsNum]},
ConvDilationH_{conv_filter_dilations[HIdx - NonSpatialDimsNum]},
ConvDilationW_{conv_filter_dilations[WIdx - NonSpatialDimsNum]},
InLeftPadH_{input_left_pads[HIdx - NonSpatialDimsNum]},
InLeftPadW_{input_left_pads[WIdx - NonSpatialDimsNum]},
InRightPadH_{input_right_pads[HIdx - NonSpatialDimsNum]},
InRightPadW_{input_right_pads[WIdx - NonSpatialDimsNum]},
IdxYTilde_{tildes[YIdx - NonSpatialDimsNum]},
IdxXTilde_{tildes[XIdx - NonSpatialDimsNum]}
{
static_assert(is_same_v<ConvSpatialDimsType, std::array<IndexType, NDimSpatial>> ||
is_same_v<ConvSpatialDimsType, ck::Array<IndexType, NDimSpatial>>);
static_assert(is_same_v<ConvDimsType, std::array<IndexType, NDimSpatial + I3>> ||
is_same_v<ConvDimsType, ck::Array<IndexType, NDimSpatial + I3>>);
if constexpr(SplitN)
{
N_ = GetSplitedNSize(
a_g_n_k_wos_lengths, a_g_n_k_wos_strides, c_g_n_c_wis_lengths, c_g_n_c_wis_strides);
}
else
{
N_ = c_g_n_c_wis_lengths[I1];
}
if constexpr(NDimSpatial == 3)
{
Di_ = c_g_n_c_wis_lengths[DIdx];
Do_ = a_g_n_k_wos_lengths[DIdx];
Z_ = b_g_k_c_xs_lengths[ZIdx];
DiStride_ = c_g_n_c_wis_strides[DIdx];
DoStride_ = a_g_n_k_wos_strides[DIdx];
ConvStrideD_ = conv_filter_strides[DIdx - NonSpatialDimsNum];
ConvDilationD_ = conv_filter_dilations[DIdx - NonSpatialDimsNum];
InLeftPadD_ = input_left_pads[DIdx - NonSpatialDimsNum];
InRightPadD_ = input_right_pads[DIdx - NonSpatialDimsNum];
IdxZTilde_ = tildes[ZIdx - NonSpatialDimsNum];
GcdStrideDilationD_ = math::gcd(ConvStrideD_, ConvDilationD_);
ZTilde_ = ConvStrideD_ / GcdStrideDilationD_;
DTilde_ = Do_ + math::integer_divide_ceil(ConvDilationD_ * (Z_ - I1), ConvStrideD_);
ZDot_ = math::integer_divide_ceil(Z_, ZTilde_);
}
else
{
Di_ = Do_ = Z_ = ZTilde_ = ConvStrideD_ = DTilde_ = ZDot_ = 1;
InLeftPadD_ = InRightPadD_ = DiStride_ = DoStride_ = IdxZTilde_ = 0;
}
GcdStrideDilationH_ = math::gcd(ConvStrideH_, ConvDilationH_);
GcdStrideDilationW_ = math::gcd(ConvStrideW_, ConvDilationW_);
YTilde_ = ConvStrideH_ / GcdStrideDilationH_;
XTilde_ = ConvStrideW_ / GcdStrideDilationW_;
HTilde_ = Ho_ + math::integer_divide_ceil(ConvDilationH_ * (Y_ - I1), ConvStrideH_);
WTilde_ = Wo_ + math::integer_divide_ceil(ConvDilationW_ * (X_ - I1), ConvStrideW_);
YDot_ = math::integer_divide_ceil(Y_, YTilde_);
XDot_ = math::integer_divide_ceil(X_, XTilde_);
}
#if 0 // At now not supported to split tensor
__host__ bool AreDescriptorsSmallerThan2GB() const
{
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
const long_index_t in_desc_space_size =
I1 + (N_ - I1) * NStrideTensorC_ + (Di_ - I1) * DiStride_ + (Hi_ - I1) * HiStride_ +
(Wi_ - I1) * WiStride_ + (C_ - I1) * CStrideTensorC_;
const long_index_t out_desc_space_size =
I1 + (N_ - I1) * NStrideTensorA_ + (Do_ - I1) * DoStride_ + (Ho_ - I1) * HoStride_ +
(Wo_ - I1) * WoStride_ + (K_ - I1) * KStrideTensorA_;
bool is_a_descriptor_smaller_than_2GB = (out_desc_space_size * sizeof(ADataType)) <= TwoGB;
bool is_c_descriptor_smaller_than_2GB = (in_desc_space_size * sizeof(CDataType)) <= TwoGB;
return is_a_descriptor_smaller_than_2GB && is_c_descriptor_smaller_than_2GB;
}
__host__ auto SplitConvProblem(const ADataType* a_grid_ptr_base,
CDataType* c_grid_ptr_base) const
{
// Create copies
auto conv_to_gemm_transformer_left = *this;
auto conv_to_gemm_transformer_right = *this;
IndexType a_right_offset = 0;
IndexType c_right_offset = 0;
// Calculate real filter size
const IndexType z_eff = (Z_ - 1) * ConvDilationD_ + 1;
const IndexType y_eff = (Y_ - 1) * ConvDilationH_ + 1;
const IndexType x_eff = (X_ - 1) * ConvDilationW_ + 1;
// Calculate start position in input for right tensor
const IndexType di_right_transformer_start_idx = (Do_ / 2) * ConvStrideD_;
const IndexType hi_right_transformer_start_idx = (Ho_ / 2) * ConvStrideH_;
const IndexType wi_right_transformer_start_idx = (Wo_ / 2) * ConvStrideW_;
// Calculate last position in input for left tensor
const IndexType di_left_transformer_end_idx = (Do_ / 2 - 1) * ConvStrideD_ + z_eff;
const IndexType hi_left_transformer_end_idx = (Ho_ / 2 - 1) * ConvStrideH_ + y_eff;
const IndexType wi_left_transformer_end_idx = (Wo_ / 2 - 1) * ConvStrideW_ + x_eff;
// Allow to split if whole left padding will be in left tensor and right padding in right
// tensor
const bool is_possible_to_split_d = Do_ != 1 &&
di_right_transformer_start_idx > InLeftPadD_ &&
di_left_transformer_end_idx <= (InLeftPadD_ + Di_);
const bool is_possible_to_split_h = Ho_ != 1 &&
hi_right_transformer_start_idx > InLeftPadH_ &&
hi_left_transformer_end_idx <= (InLeftPadH_ + Hi_);
const bool is_possible_to_split_w = Wo_ != 1 &&
wi_right_transformer_start_idx > InLeftPadW_ &&
wi_left_transformer_end_idx <= (InLeftPadW_ + Wi_);
if(is_possible_to_split_d)
{
// Apply new sizes
// Split output on half
conv_to_gemm_transformer_left.Do_ = Do_ / 2;
conv_to_gemm_transformer_right.Do_ = Do_ - Do_ / 2;
// Assign left padding to left convolution
conv_to_gemm_transformer_left.InLeftPadD_ = InLeftPadD_;
conv_to_gemm_transformer_right.InLeftPadD_ = 0;
// Assign right padding to right convolution
conv_to_gemm_transformer_left.InRightPadD_ = 0;
conv_to_gemm_transformer_right.InRightPadD_ = InRightPadD_;
// Calculate new input size
conv_to_gemm_transformer_left.Di_ = di_left_transformer_end_idx - InLeftPadD_;
conv_to_gemm_transformer_right.Di_ =
math::min(Di_ - (di_right_transformer_start_idx - InLeftPadD_),
(conv_to_gemm_transformer_right.Do_ - 1) * ConvStrideD_ + z_eff);
;
// Calcualte offsets
a_right_offset = (Do_ / 2) * DoStride_;
c_right_offset = ((Do_ / 2) * ConvStrideD_ - InLeftPadD_) * DiStride_;
}
else if(is_possible_to_split_h)
{
conv_to_gemm_transformer_left.Ho_ = Ho_ / 2;
conv_to_gemm_transformer_right.Ho_ = Ho_ - Ho_ / 2;
conv_to_gemm_transformer_left.InLeftPadH_ = InLeftPadH_;
conv_to_gemm_transformer_right.InLeftPadH_ = 0;
conv_to_gemm_transformer_left.InRightPadH_ = 0;
conv_to_gemm_transformer_right.InRightPadH_ = InRightPadH_;
conv_to_gemm_transformer_left.Hi_ = hi_left_transformer_end_idx - InLeftPadH_;
conv_to_gemm_transformer_right.Hi_ =
math::min(Hi_ - (hi_right_transformer_start_idx - InLeftPadH_),
(conv_to_gemm_transformer_right.Ho_ - 1) * ConvStrideH_ + y_eff);
a_right_offset = (Ho_ / 2) * HoStride_;
c_right_offset = ((Ho_ / 2) * ConvStrideH_ - InLeftPadH_) * HiStride_;
}
else if(is_possible_to_split_w)
{
conv_to_gemm_transformer_left.Wo_ = Wo_ / 2;
conv_to_gemm_transformer_right.Wo_ = Wo_ - Wo_ / 2;
conv_to_gemm_transformer_left.InLeftPadW_ = InLeftPadW_;
conv_to_gemm_transformer_right.InLeftPadW_ = 0;
conv_to_gemm_transformer_left.InRightPadW_ = 0;
conv_to_gemm_transformer_right.InRightPadW_ = InRightPadW_;
conv_to_gemm_transformer_left.Wi_ = wi_left_transformer_end_idx - InLeftPadW_;
conv_to_gemm_transformer_right.Wi_ =
math::min(Wi_ - (wi_right_transformer_start_idx - InLeftPadW_),
(conv_to_gemm_transformer_right.Wo_ - 1) * ConvStrideW_ + x_eff);
a_right_offset = (Wo_ / 2) * WoStride_;
c_right_offset = ((Wo_ / 2) * ConvStrideW_ - InLeftPadW_) * WiStride_;
}
// Return left transform, right transformer, right offset to Input and right offset to
// Output
return ck::make_tuple(conv_to_gemm_transformer_left,
conv_to_gemm_transformer_right,
a_grid_ptr_base + a_right_offset,
c_grid_ptr_base + c_right_offset);
}
__host__ auto SplitConvProblem(const ADataType* a_grid_ptr_base,
CDataType* c_grid_ptr_base) const
{
// Create copies
auto conv_to_gemm_transformer_left = *this;
auto conv_to_gemm_transformer_right = *this;
IndexType a_right_offset = 0;
IndexType c_right_offset = 0;
// Calculate start position in input for right tensor
const IndexType do_right_transformer_start_idx = math::integer_divide_ceil((Di_ / 2) + InLeftPadD_ - ((Z_ - 1) * ConvDilationD_), ConvStrideD_);
const IndexType ho_right_transformer_start_idx = math::integer_divide_ceil((Hi_ / 2) + InLeftPadH_ - ((Y_ - 1) * ConvDilationH_), ConvStrideH_);
const IndexType wo_right_transformer_start_idx = math::integer_divide_ceil((Wi_ / 2) + InLeftPadW_ - ((X_ - 1) * ConvDilationW_), ConvStrideW_);
// Calculate last position in input for left tensor
const IndexType do_left_transformer_end_idx = math::integer_divide_ceil((Di_ / 2 - 1) + InLeftPadD_, ConvStrideD_);
const IndexType ho_left_transformer_end_idx = math::integer_divide_ceil((Hi_ / 2 - 1) + InLeftPadH_, ConvStrideH_);
const IndexType wo_left_transformer_end_idx = math::integer_divide_ceil((Wi_ / 2 - 1) + InLeftPadW_, ConvStrideW_);
if(Di_!=1)
{
// Apply new sizes
// Split output on half
conv_to_gemm_transformer_left.Di_ = Di_ / 2;
conv_to_gemm_transformer_right.Di_ = Di_ - Di_ / 2;
// Assign left padding to left convolution
conv_to_gemm_transformer_left.InLeftPadD_ = InLeftPadD_;
conv_to_gemm_transformer_right.InLeftPadD_ = 0;
// // Assign right padding to right convolution
conv_to_gemm_transformer_left.InRightPadD_ = 0;
conv_to_gemm_transformer_right.InRightPadD_ = InRightPadD_;
// Calculate new input size
conv_to_gemm_transformer_left.Do_ = do_left_transformer_end_idx;
conv_to_gemm_transformer_right.Do_ = Do_ - do_right_transformer_start_idx;
;
// Calcualte offsets
a_right_offset = do_right_transformer_start_idx * DoStride_;
c_right_offset = (Di_ / 2) * DiStride_;
}
else if(Hi_!=1)
{
// Apply new sizes
// Split output on half
conv_to_gemm_transformer_left.Hi_ = Hi_ / 2;
conv_to_gemm_transformer_right.Hi_ = Hi_ - Hi_ / 2;
// Assign left padding to left convolution
conv_to_gemm_transformer_left.InLeftPadH_ = InLeftPadH_;
conv_to_gemm_transformer_right.InLeftPadH_ = 0;
// // Assign right padding to right convolution
conv_to_gemm_transformer_left.InRightPadH_ = 0;
conv_to_gemm_transformer_right.InRightPadH_ = InRightPadH_;
// Calculate new input size
conv_to_gemm_transformer_left.Ho_ = ho_left_transformer_end_idx ;
conv_to_gemm_transformer_right.Ho_ = Ho_ - ho_right_transformer_start_idx ;
;
// Calcualte offsets
a_right_offset = ho_right_transformer_start_idx * HoStride_;
c_right_offset = (Hi_ / 2) * HiStride_;
}
else if(Wi_!=1)
{
// Apply new sizes
// Split output on half
conv_to_gemm_transformer_left.Wi_ = Wi_ / 2;
conv_to_gemm_transformer_right.Wi_ = Wi_ - Wi_ / 2;
// Assign left padding to left convolution
conv_to_gemm_transformer_left.InLeftPadW_ = InLeftPadW_;
conv_to_gemm_transformer_right.InLeftPadW_ = 0;
// Assign right padding to right convolution
conv_to_gemm_transformer_left.InRightPadW_ = 0;
conv_to_gemm_transformer_right.InRightPadW_ = InRightPadW_;
// Calculate new input size
conv_to_gemm_transformer_left.Wo_ = wo_left_transformer_end_idx;
conv_to_gemm_transformer_right.Wo_ = Wo_ - wo_right_transformer_start_idx;
;
// Calcualte offsets
a_right_offset = wo_right_transformer_start_idx * WoStride_;
c_right_offset = (Wi_ / 2) * WiStride_;
}
// Return left transform, right transformer, right offset to Input and right offset to
// Output
return ck::make_tuple(conv_to_gemm_transformer_left,
conv_to_gemm_transformer_right,
a_grid_ptr_base + a_right_offset,
c_grid_ptr_base + c_right_offset);
}
#endif
__host__ __device__ auto MakeOutGridDesc() const
{
if constexpr(is_same_v<ALayout, tensor_layout::convolution::NHWGK>)
{
const index_t NStride = out_g_n_k_wos_strides[1];
const index_t HiStride = out_g_n_k_wos_strides[3];
const index_t WiStride = out_g_n_k_wos_strides[4];
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Ho * Wo, K),
make_tuple(WiStride, KStride));
return make_naive_tensor_descriptor(make_tuple(N_ * Ho_ * Wo_, K_),
make_tuple(WoStride_, KStrideTensorA_));
}
else
{
return make_naive_tensor_descriptor(make_tuple(N, Ho, Wo, K),
make_tuple(NStride, HiStride, WiStride, KStride));
return make_naive_tensor_descriptor(
make_tuple(N_, Ho_, Wo_, K_),
make_tuple(NStrideTensorA_, HoStride_, WoStride_, KStrideTensorA_));
}
}
else if constexpr(is_same_v<ALayout, tensor_layout::convolution::NDHWGK>)
{
const index_t NStride = out_g_n_k_wos_strides[1];
const index_t DoStride = out_g_n_k_wos_strides[3];
const index_t HoStride = out_g_n_k_wos_strides[4];
const index_t WoStride = out_g_n_k_wos_strides[5];
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Do * Ho * Wo, K),
make_tuple(WoStride, KStride));
return make_naive_tensor_descriptor(make_tuple(N_ * Do_ * Ho_ * Wo_, K_),
make_tuple(WoStride_, KStrideTensorA_));
}
else
{
return make_naive_tensor_descriptor(
make_tuple(N, Do, Ho, Wo, K),
make_tuple(NStride, DoStride, HoStride, WoStride, KStride));
make_tuple(N_, Do_, Ho_, Wo_, K_),
make_tuple(NStrideTensorA_, DoStride_, HoStride_, WoStride_, KStrideTensorA_));
}
}
else if constexpr(is_same_v<ALayout, tensor_layout::convolution::GNHWK>)
......@@ -74,11 +530,11 @@ constexpr auto make_out_grid_desc(const index_t N,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
return make_naive_tensor_descriptor_packed(make_tuple(N_ * Ho_ * Wo_, K_));
}
else
{
return make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K));
return make_naive_tensor_descriptor_packed(make_tuple(N_, Ho_, Wo_, K_));
}
}
else if constexpr(is_same_v<ALayout, tensor_layout::convolution::GNDHWK>)
......@@ -88,170 +544,83 @@ constexpr auto make_out_grid_desc(const index_t N,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K));
return make_naive_tensor_descriptor_packed(make_tuple(N_ * Do_ * Ho_ * Wo_, K_));
}
else
{
return make_naive_tensor_descriptor_packed(make_tuple(N, Do, Ho, Wo, K));
return make_naive_tensor_descriptor_packed(make_tuple(N_, Do_, Ho_, Wo_, K_));
}
}
else
{
throw std::runtime_error("wrong! unsupported layout: " + ALayout::name());
}
}
}
template <typename BLayout>
constexpr auto make_wei_grid_desc(
const index_t K, const index_t Z, const index_t Y, const index_t X, const index_t C)
{
__host__ __device__ auto MakeWeiGridDesc() const
{
if constexpr(is_same_v<BLayout, tensor_layout::convolution::GKYXC>)
{
return make_naive_tensor_descriptor_packed(make_tuple(K, Y, X, C));
return make_naive_tensor_descriptor_packed(make_tuple(K_, Y_, X_, C_));
}
else if constexpr(is_same_v<BLayout, tensor_layout::convolution::GKZYXC>)
{
return make_naive_tensor_descriptor_packed(make_tuple(K, Z, Y, X, C));
return make_naive_tensor_descriptor_packed(make_tuple(K_, Z_, Y_, X_, C_));
}
else
{
throw std::runtime_error("wrong! unsupported layout: " + BLayout::name());
}
}
}
template <index_t NDimSpatial, typename CLayout>
constexpr auto make_in_grid_desc(const index_t N,
const index_t Di,
const index_t Hi,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_strides)
{
__host__ __device__ auto MakeInGridDesc() const
{
if constexpr(is_same_v<CLayout, tensor_layout::convolution::GNHWC> ||
is_same_v<CLayout, tensor_layout::convolution::NHWGC> ||
is_same_v<CLayout, tensor_layout::convolution::G_NHW_C>)
{
return make_naive_tensor_descriptor(make_tuple(N, Hi, Wi, C),
make_tuple(in_g_n_c_wis_strides[1],
in_g_n_c_wis_strides[3],
in_g_n_c_wis_strides[4],
in_g_n_c_wis_strides[2]));
return make_naive_tensor_descriptor(
make_tuple(N_, Hi_, Wi_, C_),
make_tuple(NStrideTensorC_, HiStride_, WiStride_, CStrideTensorC_));
}
else if constexpr(is_same_v<CLayout, tensor_layout::convolution::GNDHWC> ||
is_same_v<CLayout, tensor_layout::convolution::NDHWGC>)
{
return make_naive_tensor_descriptor(make_tuple(N, Di, Hi, Wi, C),
make_tuple(in_g_n_c_wis_strides[1],
in_g_n_c_wis_strides[3],
in_g_n_c_wis_strides[4],
in_g_n_c_wis_strides[5],
in_g_n_c_wis_strides[2]));
return make_naive_tensor_descriptor(
make_tuple(N_, Di_, Hi_, Wi_, C_),
make_tuple(NStrideTensorC_, DiStride_, HiStride_, WiStride_, CStrideTensorC_));
}
else
{
throw std::runtime_error("wrong! unsupported layout: " + CLayout::name());
}
}
} // namespace
template <
index_t NDimSpatial,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization,
index_t AK1,
index_t BK1,
index_t GemmMPerBlock,
index_t GemmNPerBlock,
index_t GemmKPerBlock,
bool DoPadGemmM,
bool DoPadGemmN>
struct TransformConvBwdDataToGemm_v1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto NonSpatialDimsNum = Number<3>{};
static constexpr auto DIdx = Number<NonSpatialDimsNum>{};
static constexpr auto HIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum>{} : Number<NonSpatialDimsNum + 1>{};
static constexpr auto WIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum + 1>{} : Number<NonSpatialDimsNum + 2>{};
static constexpr auto ZIdx = Number<NonSpatialDimsNum>{};
static constexpr auto YIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum>{} : Number<NonSpatialDimsNum + 1>{};
static constexpr auto XIdx =
NDimSpatial == 2 ? Number<NonSpatialDimsNum + 1>{} : Number<NonSpatialDimsNum + 2>{};
}
template <typename ALayout,
template <
typename ALayout_ = ALayout,
typename std::enable_if<(NDimSpatial == 2 || NDimSpatial == 3) &&
(is_same_v<ALayout, tensor_layout::convolution::GNHWK> ||
is_same_v<ALayout, tensor_layout::convolution::GNDHWK> ||
is_same_v<ALayout, tensor_layout::convolution::NHWGK> ||
is_same_v<ALayout, tensor_layout::convolution::NDHWGK>),
(is_same_v<ALayout_, tensor_layout::convolution::GNHWK> ||
is_same_v<ALayout_, tensor_layout::convolution::GNDHWK> ||
is_same_v<ALayout_, tensor_layout::convolution::NHWGK> ||
is_same_v<ALayout_, tensor_layout::convolution::NDHWGK>),
bool>::type = false>
static auto MakeADescriptor_AK0_M_AK1(
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& /* in_g_n_c_wis_strides */,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& /* input_right_pads */,
const std::array<index_t, NDimSpatial>& tildes)
{
index_t i_ztilde = tildes[ZIdx - NonSpatialDimsNum];
index_t i_ytilde = tildes[YIdx - NonSpatialDimsNum];
index_t i_xtilde = tildes[XIdx - NonSpatialDimsNum];
const index_t N = in_g_n_c_wis_lengths[1];
const index_t K = wei_g_k_c_xs_lengths[1];
const index_t Di = NDimSpatial == 3 ? in_g_n_c_wis_lengths[DIdx] : 1;
const index_t Hi = in_g_n_c_wis_lengths[HIdx];
const index_t Wi = in_g_n_c_wis_lengths[WIdx];
const index_t Do = NDimSpatial == 3 ? out_g_n_k_wos_lengths[DIdx] : 1;
const index_t Ho = out_g_n_k_wos_lengths[HIdx];
const index_t Wo = out_g_n_k_wos_lengths[WIdx];
const index_t Z = NDimSpatial == 3 ? wei_g_k_c_xs_lengths[ZIdx] : 1;
const index_t Y = wei_g_k_c_xs_lengths[YIdx];
const index_t X = wei_g_k_c_xs_lengths[XIdx];
const index_t InLeftPadD = input_left_pads[DIdx - NonSpatialDimsNum];
const index_t InLeftPadH = input_left_pads[HIdx - NonSpatialDimsNum];
const index_t InLeftPadW = input_left_pads[WIdx - NonSpatialDimsNum];
const index_t ConvStrideD = conv_filter_strides[DIdx - NonSpatialDimsNum];
const index_t ConvStrideH = conv_filter_strides[HIdx - NonSpatialDimsNum];
const index_t ConvStrideW = conv_filter_strides[WIdx - NonSpatialDimsNum];
const index_t ConvDilationD = conv_filter_dilations[DIdx - NonSpatialDimsNum];
const index_t ConvDilationH = conv_filter_dilations[HIdx - NonSpatialDimsNum];
const index_t ConvDilationW = conv_filter_dilations[WIdx - NonSpatialDimsNum];
__host__ __device__ auto MakeADescriptor_AK0_M_AK1() const
{
// n_do_ho_wo_k for 3d or n_ho_wo_k for 2d
const auto out_grid_desc =
make_out_grid_desc<NDimSpatial, ALayout, ConvBwdDataSpecialization>(
N, Do, Ho, Wo, K, out_g_n_k_wos_strides);
const auto out_grid_desc = MakeOutGridDesc();
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
const index_t AK0 = math::integer_divide_ceil(K, AK1);
const index_t AK0 = math::integer_divide_ceil(K_, AK1);
// A: output tensor
const auto out_gemmak0_gemmmraw_gemmak1_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_pass_through_transform(N * Do * Ho * Wo),
make_tuple(make_pass_through_transform(N_ * Do_ * Ho_ * Wo_),
make_unmerge_transform(make_tuple(AK0, AK1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
......@@ -266,82 +635,63 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto ZDot = math::integer_divide_ceil(Z, ZTilde);
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto DTilde =
Do + math::integer_divide_ceil(ConvDilationD * (Z - I1), ConvStrideD);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IDTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadD - ConvDilationD * (ZTilde - I1)), ConvStrideD);
math::max(I0, InLeftPadD_ - ConvDilationD_ * (ZTilde_ - I1)), ConvStrideD_);
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
math::max(I0, InLeftPadH_ - ConvDilationH_ * (YTilde_ - I1)), ConvStrideH_);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
math::max(I0, InLeftPadW_ - ConvDilationW_ * (XTilde_ - I1)), ConvStrideW_);
const auto IDTildeSliceEnd = math::min(
DTilde, math::integer_divide_ceil(InLeftPadD + Di - I1, ConvStrideD) + I1);
DTilde_, math::integer_divide_ceil(InLeftPadD_ + Di_ - I1, ConvStrideD_) + I1);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
HTilde_, math::integer_divide_ceil(InLeftPadH_ + Hi_ - I1, ConvStrideH_) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
WTilde_, math::integer_divide_ceil(InLeftPadW_ + Wi_ - I1, ConvStrideW_) + I1);
const auto DTildeSlice = IDTildeSliceEnd - IDTildeSliceBegin;
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
const auto ZDotSlice = math::integer_divide_ceil(Z_ - IdxZTilde_, ZTilde_);
const auto YDotSlice = math::integer_divide_ceil(Y_ - IdxYTilde_, YTilde_);
const auto XDotSlice = math::integer_divide_ceil(X_ - IdxXTilde_, XTilde_);
if constexpr(NDimSpatial == 2)
{
// A: output tensor
const auto out_n_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(make_pass_through_transform(N_),
make_pad_transform(Ho_, I0, I0),
make_pad_transform(Wo_, I0, I0),
make_pass_through_transform(K_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto out_n_ydot_htilde_xdot_wtilde_k_grid_desc = transform_tensor_descriptor(
out_n_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_pass_through_transform(N_),
make_embed_transform(make_tuple(YDot_, HTilde_),
make_tuple(-ConvDilationH_ / GcdStrideDilationH_, I1)),
make_embed_transform(make_tuple(XDot_, WTilde_),
make_tuple(-ConvDilationW_ / GcdStrideDilationW_, I1)),
make_pass_through_transform(K_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k_grid_desc =
transform_tensor_descriptor(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(K)),
make_tuple(make_pass_through_transform(N_),
make_slice_transform(YDot_, I0, YDotSlice),
make_slice_transform(HTilde_, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot_, I0, XDotSlice),
make_slice_transform(WTilde_, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(K_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -357,8 +707,8 @@ struct TransformConvBwdDataToGemm_v1
const auto out_gemmk_gemmmraw_grid_desc = transform_tensor_descriptor(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K)),
make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice))),
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K_)),
make_merge_transform(make_tuple(N_, HTildeSlice, WTildeSlice))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -385,11 +735,11 @@ struct TransformConvBwdDataToGemm_v1
// A: output tensor
const auto out_n_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Do, I0, I0),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(make_pass_through_transform(N_),
make_pad_transform(Do_, I0, I0),
make_pad_transform(Ho_, I0, I0),
make_pad_transform(Wo_, I0, I0),
make_pass_through_transform(K_)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
......@@ -398,17 +748,17 @@ struct TransformConvBwdDataToGemm_v1
const auto out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc =
transform_tensor_descriptor(
out_n_hop_wop_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_tuple(make_pass_through_transform(N_),
make_embed_transform(
make_tuple(ZDot, DTilde),
make_tuple(-ConvDilationD / GcdStrideDilationD, I1)),
make_tuple(ZDot_, DTilde_),
make_tuple(-ConvDilationD_ / GcdStrideDilationD_, I1)),
make_embed_transform(
make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_tuple(YDot_, HTilde_),
make_tuple(-ConvDilationH_ / GcdStrideDilationH_, I1)),
make_embed_transform(
make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(XDot_, WTilde_),
make_tuple(-ConvDilationW_ / GcdStrideDilationW_, I1)),
make_pass_through_transform(K_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -424,14 +774,15 @@ struct TransformConvBwdDataToGemm_v1
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k_grid_desc =
transform_tensor_descriptor(
out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(K)),
make_tuple(
make_pass_through_transform(N_),
make_slice_transform(ZDot_, I0, ZDotSlice),
make_slice_transform(DTilde_, IDTildeSliceBegin, DTildeSlice),
make_slice_transform(YDot_, I0, YDotSlice),
make_slice_transform(HTilde_, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot_, I0, XDotSlice),
make_slice_transform(WTilde_, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(K_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -452,8 +803,9 @@ struct TransformConvBwdDataToGemm_v1
const auto out_gemmk_gemmmraw_grid_desc = transform_tensor_descriptor(
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k_grid_desc,
make_tuple(
make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K)),
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice))),
make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K_)),
make_merge_transform(
make_tuple(N_, DTildeSlice, HTildeSlice, WTildeSlice))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -482,66 +834,31 @@ struct TransformConvBwdDataToGemm_v1
}
}
template <typename BLayout,
template <typename BLayout_ = BLayout,
typename std::enable_if<(NDimSpatial == 2 || NDimSpatial == 3) &&
(is_same_v<BLayout, tensor_layout::convolution::GKYXC> ||
is_same_v<BLayout, tensor_layout::convolution::GKZYXC>),
(is_same_v<BLayout_, tensor_layout::convolution::GKYXC> ||
is_same_v<BLayout_, tensor_layout::convolution::GKZYXC>),
bool>::type = false>
static auto MakeBDescriptor_BK0_N_BK1(
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* out_g_n_k_wos_strides */,
const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& /* in_g_n_c_wis_strides */,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& /* input_left_pads */,
const std::array<index_t, NDimSpatial>& /* input_right_pads */,
const std::array<index_t, NDimSpatial>& tildes)
{
index_t i_ztilde = tildes[ZIdx - NonSpatialDimsNum];
index_t i_ytilde = tildes[YIdx - NonSpatialDimsNum];
index_t i_xtilde = tildes[XIdx - NonSpatialDimsNum];
const index_t N = in_g_n_c_wis_lengths[1];
const index_t K = wei_g_k_c_xs_lengths[1];
const index_t C = wei_g_k_c_xs_lengths[2];
const index_t Do = NDimSpatial == 3 ? out_g_n_k_wos_lengths[DIdx] : 1;
const index_t Ho = out_g_n_k_wos_lengths[HIdx];
const index_t Wo = out_g_n_k_wos_lengths[WIdx];
const index_t Z = NDimSpatial == 3 ? wei_g_k_c_xs_lengths[ZIdx] : 1;
const index_t Y = wei_g_k_c_xs_lengths[YIdx];
const index_t X = wei_g_k_c_xs_lengths[XIdx];
const index_t ConvStrideD = conv_filter_strides[DIdx - NonSpatialDimsNum];
const index_t ConvStrideH = conv_filter_strides[HIdx - NonSpatialDimsNum];
const index_t ConvStrideW = conv_filter_strides[WIdx - NonSpatialDimsNum];
const index_t ConvDilationD = conv_filter_dilations[DIdx - NonSpatialDimsNum];
const index_t ConvDilationH = conv_filter_dilations[HIdx - NonSpatialDimsNum];
const index_t ConvDilationW = conv_filter_dilations[WIdx - NonSpatialDimsNum];
__host__ __device__ auto MakeBDescriptor_BK0_N_BK1() const
{
// assume packed
// k_y_x_c for 2d or k_z_y_x_c for 3d
const auto wei_grid_desc = make_wei_grid_desc<BLayout>(K, Z, Y, X, C);
const auto wei_grid_desc = MakeWeiGridDesc();
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
const index_t BK0 = math::integer_divide_ceil(K, BK1);
const index_t BK0 = math::integer_divide_ceil(K_, BK1);
// B: weight tensor
const auto wei_gemmbk0_gemmnraw_gemmbk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K_, C_)),
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(C)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
make_naive_tensor_descriptor(make_tuple(N * Do * Ho * Wo, C), make_tuple(I0, I1));
make_naive_tensor_descriptor(make_tuple(N_ * Do_ * Ho_ * Wo_, C_), make_tuple(I0, I1));
const auto wei_gemmbk0_gemmn_gemmbk1_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
......@@ -553,22 +870,10 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto ZDot = math::integer_divide_ceil(Z, ZTilde);
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
// GemmK is different for each GEMM
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
const auto ZDotSlice = math::integer_divide_ceil(Z_ - IdxZTilde_, ZTilde_);
const auto YDotSlice = math::integer_divide_ceil(Y_ - IdxYTilde_, YTilde_);
const auto XDotSlice = math::integer_divide_ceil(X_ - IdxXTilde_, XTilde_);
// B weight tensor
if constexpr(NDimSpatial == 2)
......@@ -576,23 +881,23 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc = transform_tensor_descriptor(
wei_grid_desc,
make_tuple(
make_pass_through_transform(K),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_pass_through_transform(K_),
make_embed_transform(make_tuple(YDot_, YTilde_),
make_tuple(ConvStrideH_ / GcdStrideDilationH_, I1)),
make_embed_transform(make_tuple(XDot_, XTilde_),
make_tuple(ConvStrideW_ / GcdStrideDilationW_, I1)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto wei_k_ydotslice_xdotslice_c_grid_desc = transform_tensor_descriptor(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(K_),
make_slice_transform(YDot_, I0, YDotSlice),
make_slice_transform(XDot_, I0, XDotSlice),
make_freeze_transform(IdxYTilde_),
make_freeze_transform(IdxXTilde_),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
......@@ -608,8 +913,8 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_gemmk_gemmnraw_grid_desc = transform_tensor_descriptor(
wei_k_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K)),
make_pass_through_transform(C)),
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<1, 2, 0>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -636,15 +941,17 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc =
transform_tensor_descriptor(
wei_grid_desc,
make_tuple(
make_pass_through_transform(K),
make_embed_transform(make_tuple(ZDot, ZTilde),
make_tuple(ConvStrideD / GcdStrideDilationD, I1)),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(K_),
make_embed_transform(
make_tuple(ZDot_, ZTilde_),
make_tuple(ConvStrideD_ / GcdStrideDilationD_, I1)),
make_embed_transform(
make_tuple(YDot_, YTilde_),
make_tuple(ConvStrideH_ / GcdStrideDilationH_, I1)),
make_embed_transform(
make_tuple(XDot_, XTilde_),
make_tuple(ConvStrideW_ / GcdStrideDilationW_, I1)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -659,14 +966,14 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_gemmk_zdotslice_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(
wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ztilde),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(K_),
make_slice_transform(ZDot_, I0, ZDotSlice),
make_slice_transform(YDot_, I0, YDotSlice),
make_slice_transform(XDot_, I0, XDotSlice),
make_freeze_transform(IdxZTilde_),
make_freeze_transform(IdxYTilde_),
make_freeze_transform(IdxXTilde_),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
......@@ -686,8 +993,9 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_gemmk_gemmnraw_grid_desc = transform_tensor_descriptor(
wei_gemmk_zdotslice_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K)),
make_pass_through_transform(C)),
make_tuple(
make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<1, 2, 3, 0>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -716,66 +1024,20 @@ struct TransformConvBwdDataToGemm_v1
}
}
template <typename CLayout,
template <
typename CLayout_ = CLayout,
typename std::enable_if<(NDimSpatial == 2 || NDimSpatial == 3) &&
(is_same_v<CLayout, tensor_layout::convolution::GNHWC> ||
is_same_v<CLayout, tensor_layout::convolution::GNDHWC> ||
is_same_v<CLayout, tensor_layout::convolution::NHWGC> ||
is_same_v<CLayout, tensor_layout::convolution::NDHWGC> ||
is_same_v<CLayout, tensor_layout::convolution::G_NHW_C>),
(is_same_v<CLayout_, tensor_layout::convolution::GNHWC> ||
is_same_v<CLayout_, tensor_layout::convolution::GNDHWC> ||
is_same_v<CLayout_, tensor_layout::convolution::NHWGC> ||
is_same_v<CLayout_, tensor_layout::convolution::NDHWGC> ||
is_same_v<CLayout_, tensor_layout::convolution::G_NHW_C>),
bool>::type = false>
static auto
MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* out_g_n_k_wos_strides */,
const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const std::array<index_t, NDimSpatial>& tildes)
{
index_t i_ztilde = tildes[ZIdx - NonSpatialDimsNum];
index_t i_ytilde = tildes[YIdx - NonSpatialDimsNum];
index_t i_xtilde = tildes[XIdx - NonSpatialDimsNum];
const index_t N = in_g_n_c_wis_lengths[1];
const index_t C = wei_g_k_c_xs_lengths[2];
const index_t Di = NDimSpatial == 3 ? in_g_n_c_wis_lengths[DIdx] : 1;
const index_t Hi = in_g_n_c_wis_lengths[HIdx];
const index_t Wi = in_g_n_c_wis_lengths[WIdx];
const index_t Do = NDimSpatial == 3 ? out_g_n_k_wos_lengths[DIdx] : 1;
const index_t Ho = out_g_n_k_wos_lengths[HIdx];
const index_t Wo = out_g_n_k_wos_lengths[WIdx];
const index_t Z = NDimSpatial == 3 ? wei_g_k_c_xs_lengths[ZIdx] : 1;
const index_t Y = wei_g_k_c_xs_lengths[YIdx];
const index_t X = wei_g_k_c_xs_lengths[XIdx];
const index_t InLeftPadD = input_left_pads[DIdx - NonSpatialDimsNum];
const index_t InLeftPadH = input_left_pads[HIdx - NonSpatialDimsNum];
const index_t InLeftPadW = input_left_pads[WIdx - NonSpatialDimsNum];
const index_t InRightPadD = input_right_pads[DIdx - NonSpatialDimsNum];
const index_t InRightPadH = input_right_pads[HIdx - NonSpatialDimsNum];
const index_t InRightPadW = input_right_pads[WIdx - NonSpatialDimsNum];
const index_t ConvStrideD = conv_filter_strides[DIdx - NonSpatialDimsNum];
const index_t ConvStrideH = conv_filter_strides[HIdx - NonSpatialDimsNum];
const index_t ConvStrideW = conv_filter_strides[WIdx - NonSpatialDimsNum];
const index_t ConvDilationD = conv_filter_dilations[DIdx - NonSpatialDimsNum];
const index_t ConvDilationH = conv_filter_dilations[HIdx - NonSpatialDimsNum];
const index_t ConvDilationW = conv_filter_dilations[WIdx - NonSpatialDimsNum];
__host__ __device__ auto MakeCDescriptor_M_N() const
{
// assume strided
// n_hi_wi_c for 2d n_di_hi_wi_c for 3d
const auto in_grid_desc =
make_in_grid_desc<NDimSpatial, CLayout>(N, Di, Hi, Wi, C, in_g_n_c_wis_strides);
const auto in_grid_desc = MakeInGridDesc();
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
......@@ -787,10 +1049,10 @@ struct TransformConvBwdDataToGemm_v1
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_pass_through_transform(N_),
make_embed_transform(make_tuple(I1, Ho_), make_tuple(I1, ConvStrideH_)),
make_embed_transform(make_tuple(I1, Wo_), make_tuple(I1, ConvStrideW_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
......@@ -798,8 +1060,8 @@ struct TransformConvBwdDataToGemm_v1
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_merge_transform(make_tuple(N_, Ho_, Wo_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<1>{}, Sequence<3>{}, Sequence<0, 2, 4>{}, Sequence<5>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
......@@ -818,11 +1080,11 @@ struct TransformConvBwdDataToGemm_v1
const auto in_n_x_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Do), make_tuple(I1, ConvStrideD)),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_pass_through_transform(N_),
make_embed_transform(make_tuple(I1, Do_), make_tuple(I1, ConvStrideD_)),
make_embed_transform(make_tuple(I1, Ho_), make_tuple(I1, ConvStrideH_)),
make_embed_transform(make_tuple(I1, Wo_), make_tuple(I1, ConvStrideW_)),
make_pass_through_transform(C_)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
......@@ -836,8 +1098,8 @@ struct TransformConvBwdDataToGemm_v1
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_merge_transform(make_tuple(N_, Do_, Ho_, Wo_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<1>{},
Sequence<3>{},
Sequence<5>{},
......@@ -861,36 +1123,21 @@ struct TransformConvBwdDataToGemm_v1
}
else
{
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto DTilde =
Do + math::integer_divide_ceil(ConvDilationD * (Z - I1), ConvStrideD);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on DTilde, HTilde and WTilde that contribute to
// non-padding area of input tensor
const auto IDTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadD - ConvDilationD * (ZTilde - I1)), ConvStrideD);
math::max(I0, InLeftPadD_ - ConvDilationD_ * (ZTilde_ - I1)), ConvStrideD_);
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
math::max(I0, InLeftPadH_ - ConvDilationH_ * (YTilde_ - I1)), ConvStrideH_);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
math::max(I0, InLeftPadW_ - ConvDilationW_ * (XTilde_ - I1)), ConvStrideW_);
const auto IDTildeSliceEnd = math::min(
DTilde, math::integer_divide_ceil(InLeftPadD + Di - I1, ConvStrideD) + I1);
DTilde_, math::integer_divide_ceil(InLeftPadD_ + Di_ - I1, ConvStrideD_) + I1);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
HTilde_, math::integer_divide_ceil(InLeftPadH_ + Hi_ - I1, ConvStrideH_) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
WTilde_, math::integer_divide_ceil(InLeftPadW_ + Wi_ - I1, ConvStrideW_) + I1);
const auto DTildeSlice = IDTildeSliceEnd - IDTildeSliceBegin;
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
......@@ -901,34 +1148,34 @@ struct TransformConvBwdDataToGemm_v1
{
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_pad_transform(Hi_, InLeftPadH_, InRightPadH_),
make_pad_transform(Wi_, InLeftPadW_, InRightPadW_),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc =
transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_embed_transform(make_tuple(YTilde_, HTilde_),
make_tuple(ConvDilationH_, ConvStrideH_)),
make_embed_transform(make_tuple(XTilde_, WTilde_),
make_tuple(ConvDilationW_, ConvStrideW_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_n_htildeslice_wtildeslice_c_grid_desc = transform_tensor_descriptor(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_freeze_transform(IdxYTilde_),
make_slice_transform(HTilde_, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(IdxXTilde_),
make_slice_transform(WTilde_, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -944,8 +1191,8 @@ struct TransformConvBwdDataToGemm_v1
const auto in_gemmmraw_gemmnraw_grid_desc = transform_tensor_descriptor(
in_n_htildeslice_wtildeslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(make_merge_transform(make_tuple(N_, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -961,11 +1208,11 @@ struct TransformConvBwdDataToGemm_v1
{
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_pad_transform(Di_, InLeftPadD_, InRightPadD_),
make_pad_transform(Hi_, InLeftPadH_, InRightPadH_),
make_pad_transform(Wi_, InLeftPadW_, InRightPadW_),
make_pass_through_transform(C_)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
......@@ -974,14 +1221,14 @@ struct TransformConvBwdDataToGemm_v1
const auto in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc =
transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(ZTilde, DTilde),
make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_embed_transform(make_tuple(ZTilde_, DTilde_),
make_tuple(ConvDilationD_, ConvStrideD_)),
make_embed_transform(make_tuple(YTilde_, HTilde_),
make_tuple(ConvDilationH_, ConvStrideH_)),
make_embed_transform(make_tuple(XTilde_, WTilde_),
make_tuple(ConvDilationW_, ConvStrideW_)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -996,14 +1243,14 @@ struct TransformConvBwdDataToGemm_v1
const auto in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc =
transform_tensor_descriptor(
in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ztilde),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(make_pass_through_transform(N_),
make_freeze_transform(IdxZTilde_),
make_slice_transform(DTilde_, IDTildeSliceBegin, DTildeSlice),
make_freeze_transform(IdxYTilde_),
make_slice_transform(HTilde_, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(IdxXTilde_),
make_slice_transform(WTilde_, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C_)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -1024,8 +1271,8 @@ struct TransformConvBwdDataToGemm_v1
const auto in_gemmmraw_gemmnraw_grid_desc = transform_tensor_descriptor(
in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc,
make_tuple(
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_merge_transform(make_tuple(N_, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C_)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -1044,84 +1291,41 @@ struct TransformConvBwdDataToGemm_v1
}
// for input bias
template <typename CLayout,
template <typename CLayout_ = CLayout,
typename std::enable_if<NDimSpatial == 2 &&
(is_same_v<CLayout, tensor_layout::convolution::GC> ||
is_same_v<CLayout, tensor_layout::convolution::G_C>),
(is_same_v<CLayout_, tensor_layout::convolution::GC> ||
is_same_v<CLayout_, tensor_layout::convolution::G_C>),
bool>::type = false>
static auto
MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* out_g_n_k_wos_strides */,
const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& /* in_g_n_c_wis_strides */,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& /* input_right_pads */,
const std::array<index_t, NDimSpatial>& /* tildes */)
__host__ __device__ auto MakeCDescriptor_M_N() const
{
const index_t N = in_g_n_c_wis_lengths[1];
const index_t C = wei_g_k_c_xs_lengths[2];
const index_t Hi = in_g_n_c_wis_lengths[3];
const index_t Wi = in_g_n_c_wis_lengths[4];
const index_t Ho = out_g_n_k_wos_lengths[3];
const index_t Wo = out_g_n_k_wos_lengths[4];
const index_t Y = wei_g_k_c_xs_lengths[3];
const index_t X = wei_g_k_c_xs_lengths[4];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
const auto in_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor(make_tuple(N * Ho * Wo, C), make_tuple(I0, I1));
make_naive_tensor_descriptor(make_tuple(N_ * Ho_ * Wo_, C_), make_tuple(I0, I1));
return in_gemmm_gemmn_grid_desc;
}
else
{
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
math::max(I0, InLeftPadH_ - ConvDilationH_ * (YTilde_ - I1)), ConvStrideH_);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
math::max(I0, InLeftPadW_ - ConvDilationW_ * (XTilde_ - I1)), ConvStrideW_);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
HTilde_, math::integer_divide_ceil(InLeftPadH_ + Hi_ - I1, ConvStrideH_) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
WTilde_, math::integer_divide_ceil(InLeftPadW_ + Wi_ - I1, ConvStrideW_) + I1);
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// bias tensor
const auto in_gemmmraw_gemmnraw_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * HTildeSlice * WTildeSlice, C), make_tuple(I0, I1));
make_tuple(N_ * HTildeSlice * WTildeSlice, C_), make_tuple(I0, I1));
const auto in_gemmm_gemmn_grid_desc = ck::tensor_operation::device::PadTensorDescriptor(
in_gemmmraw_gemmnraw_grid_desc,
......@@ -1131,6 +1335,25 @@ struct TransformConvBwdDataToGemm_v1
return in_gemmm_gemmn_grid_desc;
}
}
IndexType N_;
IndexType Di_, Hi_, Wi_;
IndexType Do_, Ho_, Wo_;
IndexType Z_, Y_, X_;
IndexType K_, C_;
IndexType DiStride_, HiStride_, WiStride_;
IndexType DoStride_, HoStride_, WoStride_;
IndexType CStrideTensorB_, CStrideTensorC_, KStrideTensorA_, KStrideTensorB_;
IndexType NStrideTensorA_, NStrideTensorC_;
IndexType ConvStrideD_, ConvStrideH_, ConvStrideW_;
IndexType ConvDilationD_, ConvDilationH_, ConvDilationW_;
IndexType InLeftPadD_, InLeftPadH_, InLeftPadW_;
IndexType InRightPadD_, InRightPadH_, InRightPadW_;
IndexType IdxZTilde_, IdxYTilde_, IdxXTilde_;
IndexType GcdStrideDilationD_, GcdStrideDilationH_, GcdStrideDilationW_;
IndexType ZTilde_, YTilde_, XTilde_;
IndexType DTilde_, HTilde_, WTilde_;
IndexType ZDot_, YDot_, XDot_;
};
} // namespace tensor_operation
......
......@@ -429,7 +429,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w
(is_same<T, f8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, bf8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, int8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, uint8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)),
(is_same<T, uint8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, pk_i4_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)),
"wrong! not implemented");
using r_t = typename vector_type<T, N>::type;
......
......@@ -20,6 +20,20 @@
#define CK_USE_OCP_FP8 0
#endif
namespace {
// https://en.cppreference.com/w/cpp/types/conditional
template <bool B, class T, class F>
struct conditional
{
using type = T;
};
template <class T, class F>
struct conditional<false, T, F>
{
using type = F;
};
} // namespace
namespace ck {
using f8_fnuz_t = _BitInt(8);
......@@ -193,11 +207,10 @@ __host__ __device__ static inline T cast_from_f8(fp8_storage_t x)
}
}
typename __hip_internal::conditional<
typename conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type retval;
typename conditional<sizeof(T) == 4, unsigned int, unsigned long long>::type>::type retval;
if constexpr(we == 5 && is_half && !is_fnuz)
{
......@@ -540,11 +553,10 @@ __host__ __device__ static inline fp8_storage_t cast_to_f8(T _x, unsigned int rn
constexpr int mfmt = (sizeof(T) == 8) ? 52 : ((sizeof(T) == 4) ? 23 : 10);
using T_bitwise = typename __hip_internal::conditional<
using T_bitwise = typename conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type;
typename conditional<sizeof(T) == 4, unsigned int, unsigned long long>::type>::type;
T_bitwise x_bitwise = bit_cast<T_bitwise>(_x);
unsigned long long x{x_bitwise};
......
......@@ -4,13 +4,34 @@
#ifndef CK_AMD_INLINE_ASM_HPP
#define CK_AMD_INLINE_ASM_HPP
#include "data_type.hpp"
#include "c_style_pointer_cast.hpp"
#include "data_type.hpp"
// TODO: deprecate all amd_assembly_outer_product_xxx
namespace ck {
inline __device__ int amd_assembly_and_or_b32(int a, int b, int d)
{
int c;
asm volatile("v_and_or_b32 %0, %1, %2, %3" : "=v"(c) : "v"(a), "v"(b), "v"(d));
return c;
}
inline __device__ half2_t amd_assembly_pk_fma_f16(half2_t a, half2_t b, half2_t c)
{
half2_t d;
asm volatile("v_pk_fma_f16 %0, %1, %2, %3" : "=v"(d) : "v"(a), "v"(b), "v"(c));
return d;
}
inline __device__ half2_t amd_assembly_pk_add_f16(half2_t a, half2_t b)
{
half2_t c;
asm volatile("v_pk_add_f16 %0, %1, %2" : "=v"(c) : "v"(a), "v"(b));
return c;
}
// c0 += inner_product(a, b0)
// c1 += inner_product(a, b1)
__device__ void amd_assembly_outer_product_1x2(float a, float b0, float b1, float& c0, float& c1)
......
......@@ -24,6 +24,17 @@ using bhalf_t = ushort;
using half_t = _Float16;
using int4_t = _BitInt(4);
// custom data type - pack int4 data
struct pk_i4_t
{
using type = int8_t;
type data;
__host__ __device__ constexpr pk_i4_t() : data{type{}} {}
__host__ __device__ constexpr pk_i4_t(type init) : data{init} {}
__host__ __device__ constexpr operator float() const { return static_cast<int8_t>(data); }
};
inline constexpr auto next_pow2(uint32_t x)
{
// Precondition: x > 1.
......@@ -177,6 +188,13 @@ struct scalar_type<int4_t>
};
#endif
template <>
struct scalar_type<pk_i4_t>
{
using type = pk_i4_t;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<f8_fnuz_t>
{
......@@ -1056,6 +1074,12 @@ struct nnvb_data_t_selector<bf8_ocp_t>
using type = bf8_ocp_t::data_type;
};
template <>
struct nnvb_data_t_selector<pk_i4_t>
{
using type = pk_i4_t::type;
};
template <typename T, index_t N>
struct non_native_vector_base<
T,
......@@ -1175,6 +1199,14 @@ struct scalar_type<non_native_vector_base<bf8_ocp_t, N>>
static constexpr index_t vector_size = N;
};
template <index_t N>
struct scalar_type<non_native_vector_base<pk_i4_t, N>>
{
using type = typename non_native_vector_base<pk_i4_t, N>::data_t;
static constexpr index_t vector_size = N;
};
// non-native vector_type implementation
template <typename T>
struct vector_type<T, 1, typename ck::enable_if_t<!is_native_type<T>()>>
......@@ -1883,6 +1915,11 @@ using uint8x16_t = typename vector_type<uint8_t, 16>::type;
using uint8x32_t = typename vector_type<uint8_t, 32>::type;
using uint8x64_t = typename vector_type<uint8_t, 64>::type;
// pack int4
using pk_i4x2_t = typename vector_type<pk_i4_t, 2>::type;
using pk_i4x4_t = typename vector_type<pk_i4_t, 4>::type;
using pk_i4x8_t = typename vector_type<pk_i4_t, 8>::type;
#ifdef CK_CODE_GEN_RTC
template <typename T>
struct NumericLimits;
......
......@@ -54,7 +54,8 @@ struct DynamicBuffer
template <typename X,
typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
typename scalar_type<remove_cvref_t<T>>::type>::value,
typename scalar_type<remove_cvref_t<T>>::type>::value ||
!is_native_type<X>(),
bool>::type = false>
__host__ __device__ constexpr auto Get(index_t i, bool is_valid_element) const
{
......@@ -195,7 +196,8 @@ struct DynamicBuffer
template <typename X,
typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
typename scalar_type<remove_cvref_t<T>>::type>::value,
typename scalar_type<remove_cvref_t<T>>::type>::value ||
!is_native_type<X>(),
bool>::type = false>
__host__ __device__ void Set(index_t i, bool is_valid_element, const X& x)
{
......
......@@ -611,7 +611,7 @@ inline __device__ int8_t neg<int8_t>(int8_t x)
template <>
inline __device__ half_t neg<half_t>(half_t x)
{
return __hneg(x);
return __hneg(static_cast<__half>(x));
};
template <typename T>
......
......@@ -116,7 +116,8 @@ struct StaticBufferTupleOfVector
// i is offset of S, not X. i should be aligned to X
template <typename X,
index_t I,
typename enable_if<has_same_scalar_type<S, X>::value, bool>::type = false>
typename enable_if<has_same_scalar_type<S, X>::value || !is_native_type<S>(),
bool>::type = false>
__host__ __device__ constexpr auto GetAsType(Number<I> i) const
{
constexpr auto s_per_x = Number<scalar_type<remove_cvref_t<X>>::vector_size>{};
......@@ -134,7 +135,8 @@ struct StaticBufferTupleOfVector
// i is offset of S, not X. i should be aligned to X
template <typename X,
index_t I,
typename enable_if<has_same_scalar_type<S, X>::value, bool>::type = false>
typename enable_if<has_same_scalar_type<S, X>::value || !is_native_type<S>(),
bool>::type = false>
__host__ __device__ constexpr void SetAsType(Number<I> i, X x)
{
constexpr auto s_per_x = Number<scalar_type<remove_cvref_t<X>>::vector_size>{};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -467,6 +467,19 @@ inline __host__ __device__ float2_t type_convert<float2_t, f8x2_ocp_t>(f8x2_ocp_
#endif
}
template <>
inline __host__ __device__ float2_t type_convert<float2_t, pk_i4_t>(pk_i4_t x)
{
uint8_t x_u8 = ck::bit_cast<uint8_t>(x);
uint8_t x_l = (x_u8 & 0x0f) >> 0;
uint8_t x_h = (x_u8 & 0xf0) >> 4;
auto l_f32 = ck::type_convert<float>(x_l);
auto h_f32 = ck::type_convert<float>(x_h);
return {l_f32, h_f32};
}
template <>
inline __host__ __device__ half2_t type_convert<half2_t, float2_t>(float2_t x)
{
......
......@@ -45,5 +45,8 @@ our implementation of different device operators.
**[ops/epilogue]**
epilogue part of our kernel. We may extend this epilogue part to let users to build their own cutomized epilogues.
**[ref]**
reference implementation of cpu or gpu. This folder is supposed to include a specific header on demand.
## examples
currently we put all ck_tile related example under [/example/ck_tile](/example/ck_tile/) folder. Please check each example's subfolder.
......@@ -54,6 +54,7 @@
#include "ck_tile/core/tensor/tile_window_linear.hpp"
#include "ck_tile/core/tensor/tile_window_utils.hpp"
#include "ck_tile/core/tensor/update_tile.hpp"
#include "ck_tile/core/utility/amd_address_space.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/functional_with_tuple.hpp"
......
......@@ -1303,8 +1303,8 @@ CK_TILE_DEVICE thread_buffer<T, N> amd_buffer_load_impl(int32x4_t src_wave_buffe
static_assert(
(std::is_same<T, double>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, float>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, int32_t>::value &&
(N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
......
......@@ -30,7 +30,7 @@ struct meta_data_buffer
{
constexpr index_t size = sizeof(T);
auto tmp = bit_cast<array<std::byte, size>>(data);
auto tmp = ck_tile::bit_cast<array<std::byte, size>>(data);
for(int i = 0; i < size; i++)
{
......@@ -66,7 +66,7 @@ struct meta_data_buffer
pos++;
}
data = bit_cast<T>(tmp);
data = ck_tile::bit_cast<T>(tmp);
}
return data;
......@@ -86,7 +86,7 @@ struct meta_data_buffer
pos++;
}
auto data = bit_cast<T>(tmp);
auto data = ck_tile::bit_cast<T>(tmp);
return data;
}
......
......@@ -29,6 +29,7 @@ struct static_distributed_tensor
remove_cvref_t<decltype(StaticTileDistribution{}.get_ys_to_d_descriptor())>;
static constexpr index_t kThreadElementSpaceSize = ThreadTensorDesc{}.get_element_space_size();
static_assert(0 < kThreadElementSpaceSize, "Make sure tile distribution is valid");
CK_TILE_HOST_DEVICE static constexpr auto get_num_of_dimension()
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
// Address Space for AMDGCN
// https://llvm.org/docs/AMDGPUUsage.html#address-space
namespace ck_tile {
#define CK_CONSTANT_ADDRESS_SPACE __attribute__((address_space(4)))
template <typename T>
__device__ T* cast_pointer_to_generic_address_space(T CK_CONSTANT_ADDRESS_SPACE* p)
{
// cast a pointer in "Constant" address space (4) to "Generic" address space (0)
// only c-style pointer cast seems be able to be compiled
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
return (T*)p; // NOLINT(old-style-cast)
#pragma clang diagnostic pop
}
template <typename T>
__host__ __device__ T CK_CONSTANT_ADDRESS_SPACE* cast_pointer_to_constant_address_space(T* p)
{
// cast a pointer in "Generic" address space (0) to "Constant" address space (4)
// only c-style pointer cast seems be able to be compiled
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
return (T CK_CONSTANT_ADDRESS_SPACE*)p; // NOLINT(old-style-cast)
#pragma clang diagnostic pop
}
} // namespace ck_tile
......@@ -15,11 +15,14 @@
namespace ck_tile {
/*
* a host side utility, arg parser for
* a host side utility, arg parser for, either
* -[key0] = [value0, value1, value2]
* or
* -[key0]=[value0] -[key1]=[value1] ...
*/
class ArgParser
{
public:
class Arg
{
......@@ -187,6 +190,45 @@ class ArgParser
return value;
}
std::vector<std::string> get_string_vec(const std::string& name,
const std::string& delimiter = ",") const
{
if(get_str(name).empty())
{
return {};
}
std::string s = get_str(name);
std::vector<std::string> tokens;
size_t pos = 0;
std::string token;
while((pos = s.find(delimiter)) != std::string::npos)
{
token = s.substr(0, pos);
tokens.push_back(token);
s.erase(0, pos + delimiter.length());
}
tokens.push_back(s);
return tokens;
}
std::vector<int> get_int_vec(const std::string& name, const std::string& delimiter = ",") const
{
if(get_str(name).empty())
{
return {};
}
const std::vector<std::string> args = get_string_vec(name, delimiter);
std::vector<int> tokens;
tokens.reserve(static_cast<int>(args.size()));
for(const std::string& token : args)
{
int value = atoi(token.c_str());
tokens.push_back(value);
}
return tokens;
}
private:
std::unordered_map<std::string, Arg> input_map;
std::vector<std::string> keys;
......
......@@ -97,9 +97,9 @@ template <typename ADataType,
typename LayoutA,
typename LayoutB,
typename LayoutC>
void reference_gemm_gpu(DeviceMem& a_device,
DeviceMem& b_device,
DeviceMem& c_device,
void reference_gemm_gpu(ADataType* a_ptr,
BDataType* b_ptr,
CDataType* c_ptr,
index_t M,
index_t N,
index_t K,
......@@ -107,79 +107,13 @@ void reference_gemm_gpu(DeviceMem& a_device,
index_t stride_b,
index_t stride_c)
{
ADataType* d_A;
BDataType* d_B;
CDataType* d_C;
hipError_t errA = hipMalloc(&d_A, M * K * sizeof(ADataType));
hipError_t errB = hipMalloc(&d_B, N * K * sizeof(BDataType));
hipError_t errC = hipMalloc(&d_C, M * N * sizeof(CDataType));
if(errA != hipSuccess)
{
std::cerr << "Error allocating device memory for A: " << hipGetErrorString(errA)
<< std::endl;
return; // Early exit on error
}
if(errB != hipSuccess)
{
std::cerr << "Error allocating device memory for B: " << hipGetErrorString(errB)
<< std::endl;
return; // Early exit on error
}
if(errC != hipSuccess)
{
std::cerr << "Error allocating device memory for C: " << hipGetErrorString(errC)
<< std::endl;
return; // Early exit on error
}
errA = hipMemcpy(
d_A, a_device.GetDeviceBuffer(), M * K * sizeof(ADataType), hipMemcpyHostToDevice);
if(errA != hipSuccess)
{
std::cerr << "Error copying A to device: " << hipGetErrorString(errA) << std::endl;
}
errB = hipMemcpy(
d_B, b_device.GetDeviceBuffer(), N * K * sizeof(BDataType), hipMemcpyHostToDevice);
if(errB != hipSuccess)
{
std::cerr << "Error copying B to device: " << hipGetErrorString(errB) << std::endl;
}
int totalElements = M * N;
int numThreadsPerBlock = 256; // Common choice for threads per block
int numBlocks = (totalElements + numThreadsPerBlock - 1) / numThreadsPerBlock;
naive_gemm_kernel<ADataType, BDataType, AccDataType, CDataType, LayoutA, LayoutB, LayoutC>
<<<numBlocks, numThreadsPerBlock>>>(d_A, d_B, d_C, M, N, K, stride_a, stride_b, stride_c);
errC = hipMemcpy(
c_device.GetDeviceBuffer(), d_C, M * N * sizeof(CDataType), hipMemcpyDeviceToHost);
if(errC != hipSuccess)
{
std::cerr << "Error copying C to device: " << hipGetErrorString(errC) << std::endl;
}
errA = hipFree(d_A);
if(errA != hipSuccess)
{
std::cerr << "Error free the A memory: " << hipGetErrorString(errA) << std::endl;
}
errB = hipFree(d_B);
if(errB != hipSuccess)
{
std::cerr << "Error free the B memory: " << hipGetErrorString(errB) << std::endl;
}
errC = hipFree(d_C);
if(errC != hipSuccess)
{
std::cerr << "Error free the C memory: " << hipGetErrorString(errC) << std::endl;
}
<<<numBlocks, numThreadsPerBlock>>>(
a_ptr, b_ptr, c_ptr, M, N, K, stride_a, stride_b, stride_c);
return;
}
......@@ -191,9 +125,9 @@ template <typename ADataType,
typename LayoutA,
typename LayoutB,
typename LayoutC>
void reference_batched_gemm_gpu(DeviceMem& a_device,
DeviceMem& b_device,
DeviceMem& c_device,
void reference_batched_gemm_gpu(ADataType* a_ptr,
BDataType* b_ptr,
CDataType* c_ptr,
index_t M,
index_t N,
index_t K,
......@@ -205,94 +139,20 @@ void reference_batched_gemm_gpu(DeviceMem& a_device,
index_t batch_stride_C,
index_t batch_count)
{
ADataType* d_A;
BDataType* d_B;
CDataType* d_C;
hipError_t errA = hipMalloc(&d_A, batch_count * M * K * sizeof(ADataType));
hipError_t errB = hipMalloc(&d_B, batch_count * N * K * sizeof(BDataType));
hipError_t errC = hipMalloc(&d_C, batch_count * M * N * sizeof(CDataType));
if(errA != hipSuccess)
{
std::cerr << "Error allocating device memory for A: " << hipGetErrorString(errA)
<< std::endl;
return; // Early exit on error
}
if(errB != hipSuccess)
{
std::cerr << "Error allocating device memory for B: " << hipGetErrorString(errB)
<< std::endl;
return; // Early exit on error
}
if(errC != hipSuccess)
{
std::cerr << "Error allocating device memory for C: " << hipGetErrorString(errC)
<< std::endl;
return; // Early exit on error
}
errA = hipMemcpy(d_A,
a_device.GetDeviceBuffer(),
batch_count * M * K * sizeof(ADataType),
hipMemcpyHostToDevice);
if(errA != hipSuccess)
{
std::cerr << "Error copying A to device: " << hipGetErrorString(errA) << std::endl;
}
errB = hipMemcpy(d_B,
b_device.GetDeviceBuffer(),
batch_count * N * K * sizeof(BDataType),
hipMemcpyHostToDevice);
if(errB != hipSuccess)
{
std::cerr << "Error copying B to device: " << hipGetErrorString(errB) << std::endl;
}
int totalElements = M * N;
int numThreadsPerBlock = 256; // Common choice for threads per block
int numBlocks = (totalElements + numThreadsPerBlock - 1) / numThreadsPerBlock;
for(index_t batch_id = 0; batch_id < batch_count; ++batch_id)
{
ADataType* d_ATemp = d_A + batch_id * batch_stride_A;
BDataType* d_BTemp = d_B + batch_id * batch_stride_B;
CDataType* d_CTemp = d_C + batch_id * batch_stride_C;
ADataType* d_ATemp = a_ptr + batch_id * batch_stride_A;
BDataType* d_BTemp = b_ptr + batch_id * batch_stride_B;
CDataType* d_CTemp = c_ptr + batch_id * batch_stride_C;
naive_gemm_kernel<ADataType, BDataType, AccDataType, CDataType, LayoutA, LayoutB, LayoutC>
<<<numBlocks, numThreadsPerBlock>>>(
d_ATemp, d_BTemp, d_CTemp, M, N, K, stride_a, stride_b, stride_c);
}
errC = hipMemcpy(c_device.GetDeviceBuffer(),
d_C,
batch_count * M * N * sizeof(CDataType),
hipMemcpyDeviceToHost);
if(errC != hipSuccess)
{
std::cerr << "Error copying C to device: " << hipGetErrorString(errC) << std::endl;
}
errA = hipFree(d_A);
if(errA != hipSuccess)
{
std::cerr << "Error free the A memory: " << hipGetErrorString(errA) << std::endl;
}
errB = hipFree(d_B);
if(errB != hipSuccess)
{
std::cerr << "Error free the B memory: " << hipGetErrorString(errB) << std::endl;
}
errC = hipFree(d_C);
if(errC != hipSuccess)
{
std::cerr << "Error free the C memory: " << hipGetErrorString(errC) << std::endl;
}
return;
}
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment