Unverified Commit a5137505 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into codegen_hiprtc

parents 208a1dab 888317e6
......@@ -51,25 +51,10 @@ using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
struct gemm_basic_args
{
const void* p_a;
const void* p_b;
void* p_c;
ck_tile::index_t kbatch;
ck_tile::index_t M;
ck_tile::index_t N;
ck_tile::index_t K;
ck_tile::index_t stride_A;
ck_tile::index_t stride_B;
ck_tile::index_t stride_C;
};
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("b", "1", "batch size")
.insert("m", "3840", "m dimension")
arg_parser.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "2048", "k dimension")
.insert("a_layout", "R", "A tensor data layout - Row by default")
......@@ -82,11 +67,12 @@ auto create_args(int argc, char* argv[])
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// host API
float gemm_calc(gemm_basic_args args, const ck_tile::stream_config& s);
float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s);
......@@ -16,11 +16,11 @@ float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
int n_warmup,
int n_repeat)
{
gemm_basic_args args;
args.p_a = a_m_k_dev_buf.GetDeviceBuffer();
args.p_b = b_k_n_dev_buf.GetDeviceBuffer();
args.p_c = c_m_n_dev_buf.GetDeviceBuffer();
args.kbatch = kbatch;
ck_tile::GemmHostArgs args;
args.a_ptr = a_m_k_dev_buf.GetDeviceBuffer();
args.b_ptr = b_k_n_dev_buf.GetDeviceBuffer();
args.c_ptr = c_m_n_dev_buf.GetDeviceBuffer();
args.k_batch = kbatch;
args.M = M;
args.N = N;
args.K = K;
......@@ -64,9 +64,9 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t batch_size = arg_parser.get_int("b");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
using namespace ck_tile::literals;
......@@ -133,7 +133,7 @@ int run_gemm_example_with_layouts(int argc,
stride_A,
stride_B,
stride_C,
batch_size,
kbatch,
n_warmup,
n_repeat);
......@@ -161,14 +161,39 @@ int run_gemm_example_with_layouts(int argc,
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
ADataType* d_A;
BDataType* d_B;
CDataType* d_C;
ck_tile::hip_check_error(hipMalloc(&d_A, M * K * sizeof(ADataType)));
ck_tile::hip_check_error(hipMalloc(&d_B, N * K * sizeof(BDataType)));
ck_tile::hip_check_error(hipMalloc(&d_C, M * N * sizeof(CDataType)));
ck_tile::hip_check_error(hipMemcpy(d_A,
a_m_k_dev_buf.GetDeviceBuffer(),
M * K * sizeof(ADataType),
hipMemcpyHostToDevice));
ck_tile::hip_check_error(hipMemcpy(d_B,
b_k_n_dev_buf.GetDeviceBuffer(),
N * K * sizeof(BDataType),
hipMemcpyHostToDevice));
ck_tile::reference_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
a_m_k_dev_buf, b_k_n_dev_buf, c_m_n_gpu_buf_ref, M, N, K, stride_A, stride_B, stride_C);
CLayout>(d_A, d_B, d_C, M, N, K, stride_A, stride_B, stride_C);
ck_tile::hip_check_error(hipMemcpy(c_m_n_gpu_buf_ref.GetDeviceBuffer(),
d_C,
M * N * sizeof(CDataType),
hipMemcpyDeviceToHost));
ck_tile::hip_check_error(hipFree(d_A));
ck_tile::hip_check_error(hipFree(d_B));
ck_tile::hip_check_error(hipFree(d_C));
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref);
......
......@@ -22,7 +22,7 @@
#endif
template <typename ALayout, typename BLayout, typename CLayout>
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
{
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_MEMORY)
// Memory friendly for Interwave scheduler
......@@ -78,7 +78,9 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
#endif
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K);
const ck_tile::index_t k_grain = args.k_batch * K_Tile;
const ck_tile::index_t K_split = (args.K + k_grain - 1) / k_grain * K_Tile;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(K_split);
const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop);
const ck_tile::TailNumber tail_num = BaseGemmPipeline::GetBlockLoopTailNum(num_loop);
......@@ -106,19 +108,16 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
has_hot_loop_v,
tail_number_v>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
args.p_c,
args.M,
args.N,
args.K,
args.stride_A,
args.stride_B,
args.stride_C);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
auto kargs = Kernel::MakeKernelArgs(args);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.k_batch);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
......
......@@ -35,7 +35,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon")
.insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision")
......@@ -49,11 +50,14 @@ auto create_args(int argc, char* argv[])
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(x_stride < 0)
x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
......@@ -68,14 +72,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = float;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
......@@ -116,7 +120,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
x_stride,
y_stride};
auto kargs = Kernel::MakeKargs(args);
......@@ -133,7 +138,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
......@@ -183,7 +188,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
if(y_stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
......@@ -195,10 +200,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * y_stride +
n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
......@@ -210,8 +217,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride
<< ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
<< " m:" << m << ", n:" << n << ", x_stride:" << x_stride
<< ", y_stride:" << y_stride << ", valid:" << (pass ? "y" : "n") << std::flush
<< std::endl;
}
return pass;
......
......@@ -33,7 +33,8 @@ auto create_args(int argc, char* argv[])
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("x_stride", "-1", "input stride per row, if -1 then equal to n")
.insert("y_stride", "-1", "output stride per row, if -1 then equal to n")
.insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
......@@ -47,18 +48,21 @@ auto create_args(int argc, char* argv[])
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t x_stride = arg_parser.get_int("x_stride");
if(x_stride < 0)
x_stride = n;
ck_tile::index_t y_stride = arg_parser.get_int("y_stride");
if(y_stride < 0)
y_stride = n;
std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
assert(x_stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>;
......@@ -69,14 +73,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {y_stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {y_stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
......@@ -90,7 +94,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
<< " m:" << m << ", n:" << n << ", x_stride:" << x_stride << ", y_stride:" << y_stride
<< std::flush;
smoothquant_traits traits{data_type};
......@@ -100,7 +105,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
x_stride,
y_stride};
float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
......@@ -116,7 +122,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {y_stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
......@@ -166,7 +172,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
if(y_stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
......@@ -178,10 +184,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * y_stride,
qy_host_dev.begin() + i_r * y_stride +
n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * y_stride,
qy_host_ref.begin() + i_r * y_stride +
n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
......
......@@ -3,18 +3,42 @@
#include "moe_sorting_api.hpp"
#define MOE_SORTING_DISPATCH(unroll_num_) \
constexpr ck_tile::index_t unroll_num = unroll_num_; \
using ms_problem = ck_tile::MoeSortingProblem<index_t, ms_weight_type, unroll_num>; \
using kernel = ck_tile::MoeSortingKernel<ms_problem>; \
auto kargs = kernel::MakeKargs(a); \
const dim3 grids = kernel::GridSize(a); \
const dim3 blocks = kernel::BlockSize(a); \
const auto lds_bytes = kernel::GetSmemSize(a); \
float ave_time = ck_tile::launch_kernel( \
s, ck_tile::make_kernel(kernel{}, grids, blocks, lds_bytes, kargs)); \
#define MOE_SORTING_DISPATCH_ETILE(unroll_num_, expert_tile_) \
constexpr ck_tile::index_t unroll_num = unroll_num_; \
constexpr ck_tile::index_t expert_tile = expert_tile_; \
using ms_problem = \
ck_tile::MoeSortingProblem<index_t, ms_weight_type, unroll_num, expert_tile>; \
using kernel = ck_tile::MoeSortingKernel<ms_problem>; \
auto kargs = kernel::MakeKargs(a); \
const dim3 grids = kernel::GridSize(a); \
const dim3 blocks = kernel::BlockSize(a); \
const auto lds_bytes = kernel::GetSmemSize(a); \
float ave_time = ck_tile::launch_kernel( \
s, ck_tile::make_kernel(kernel{}, grids, blocks, lds_bytes, kargs)); \
return ave_time;
#define MOE_SORTING_DISPATCH(unroll_num_) \
if(a.num_experts <= 8) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 8) \
} \
else if(a.num_experts <= 16) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 16) \
} \
else if(a.num_experts <= 32) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 32) \
} \
else if(a.num_experts <= 64) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 64) \
} \
else \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 0) \
}
float moe_sorting(moe_sorting_trait t, moe_sorting_args a, ck_tile::stream_config s)
{
if(t.weight_type == "fp32" && t.index_type == "int32")
......@@ -49,21 +73,12 @@ float moe_sorting(moe_sorting_trait t, moe_sorting_args a, ck_tile::stream_confi
case(6): {
MOE_SORTING_DISPATCH(6);
}
case(7): {
MOE_SORTING_DISPATCH(7);
}
case(8): {
MOE_SORTING_DISPATCH(8);
}
case(9): {
MOE_SORTING_DISPATCH(9);
}
case(10): {
MOE_SORTING_DISPATCH(10);
}
case(11): {
MOE_SORTING_DISPATCH(11);
}
default: {
MOE_SORTING_DISPATCH(4);
}
......
......@@ -16,4 +16,5 @@ $EXE -t=127 -e=99 -k=19
$EXE -t=71 -e=11 -k=11
$EXE -t=1 -e=1 -k=1
$EXE -t=99 -e=2 -k=1
$EXE -t=333 -e=99 -k=13
\ No newline at end of file
$EXE -t=333 -e=99 -k=13
$EXE -t=128 -e=32 -k=5 -moe_buf_size=262144
......@@ -3,18 +3,42 @@
#include "fused_moesorting.hpp"
#define MOE_SORTING_DISPATCH(unroll_num_) \
constexpr ck_tile::index_t unroll_num = unroll_num_; \
using ms_problem = ck_tile::MoeSortingProblem<index_t, ms_weight_type, unroll_num>; \
using kernel = ck_tile::MoeSortingKernel<ms_problem>; \
auto kargs = kernel::MakeKargs(a); \
const dim3 grids = kernel::GridSize(a); \
const dim3 blocks = kernel::BlockSize(a); \
const auto lds_bytes = kernel::GetSmemSize(a); \
float ave_time = ck_tile::launch_kernel( \
s, ck_tile::make_kernel(kernel{}, grids, blocks, lds_bytes, kargs)); \
#define MOE_SORTING_DISPATCH_ETILE(unroll_num_, expert_tile_) \
constexpr ck_tile::index_t unroll_num = unroll_num_; \
constexpr ck_tile::index_t expert_tile = expert_tile_; \
using ms_problem = \
ck_tile::MoeSortingProblem<index_t, ms_weight_type, unroll_num, expert_tile>; \
using kernel = ck_tile::MoeSortingKernel<ms_problem>; \
auto kargs = kernel::MakeKargs(a); \
const dim3 grids = kernel::GridSize(a); \
const dim3 blocks = kernel::BlockSize(a); \
const auto lds_bytes = kernel::GetSmemSize(a); \
float ave_time = ck_tile::launch_kernel( \
s, ck_tile::make_kernel(kernel{}, grids, blocks, lds_bytes, kargs)); \
return ave_time;
#define MOE_SORTING_DISPATCH(unroll_num_) \
if(a.num_experts <= 8) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 8) \
} \
else if(a.num_experts <= 16) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 16) \
} \
else if(a.num_experts <= 32) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 32) \
} \
else if(a.num_experts <= 64) \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 64) \
} \
else \
{ \
MOE_SORTING_DISPATCH_ETILE(unroll_num_, 0) \
}
float fused_moesorting(fused_moesorting_trait t, fused_moesorting_args a, ck_tile::stream_config s)
{
if(t.weight_type == "fp32" && t.index_type == "int32")
......@@ -49,21 +73,12 @@ float fused_moesorting(fused_moesorting_trait t, fused_moesorting_args a, ck_til
case(6): {
MOE_SORTING_DISPATCH(6);
}
case(7): {
MOE_SORTING_DISPATCH(7);
}
case(8): {
MOE_SORTING_DISPATCH(8);
}
case(9): {
MOE_SORTING_DISPATCH(9);
}
case(10): {
MOE_SORTING_DISPATCH(10);
}
case(11): {
MOE_SORTING_DISPATCH(11);
}
default: {
MOE_SORTING_DISPATCH(4);
}
......
......@@ -16,7 +16,7 @@
#include "batched_gemm.hpp"
template <typename ALayout, typename BLayout, typename CLayout>
float batched_gemm(const batched_gemm_kargs& args, const ck_tile::stream_config& s)
float batched_gemm(const ck_tile::BatchedGemmHostArgs& args, const ck_tile::stream_config& s)
{
// The kPadM, kPadN, kPadK & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadM = false;
......@@ -70,20 +70,25 @@ float batched_gemm(const batched_gemm_kargs& args, const ck_tile::stream_config&
using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::BatchedGemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args);
auto kargs = Kernel::MakeKernelArgs(args);
const dim3 grids = Kernel::GridSize(args);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.k_batch, args.batch_count);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
......
......@@ -29,10 +29,6 @@ using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
struct batched_gemm_kargs : public ck_tile::BatchedGemmHostArgs
{
};
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
......@@ -53,11 +49,12 @@ auto create_args(int argc, char* argv[])
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// host API
float batched_gemm(batched_gemm_kargs args, const ck_tile::stream_config& s);
float batched_gemm(const ck_tile::BatchedGemmHostArgs& args, const ck_tile::stream_config& s);
......@@ -17,13 +17,15 @@ float invoke_batched_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::index_t batch_stride_B,
ck_tile::index_t batch_stride_C,
ck_tile::index_t batch_count,
ck_tile::index_t kbatch,
int n_warmup,
int n_repeat)
{
batched_gemm_kargs args;
ck_tile::BatchedGemmHostArgs args;
args.a_ptr = a_m_k_dev_buf.GetDeviceBuffer();
args.b_ptr = b_k_n_dev_buf.GetDeviceBuffer();
args.c_ptr = c_m_n_dev_buf.GetDeviceBuffer();
args.k_batch = kbatch;
args.M = M;
args.N = N;
args.K = K;
......@@ -79,6 +81,7 @@ int run_batched_gemm_example_with_layouts(int argc,
ck_tile::index_t batch_stride_B = arg_parser.get_int("batch_stride_b");
ck_tile::index_t batch_stride_C = arg_parser.get_int("batch_stride_c");
ck_tile::index_t batch_count = arg_parser.get_int("batch_count");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
......@@ -159,6 +162,7 @@ int run_batched_gemm_example_with_layouts(int argc,
batch_stride_B,
batch_stride_C,
batch_count,
kbatch,
n_warmup,
n_repeat);
......@@ -188,15 +192,33 @@ int run_batched_gemm_example_with_layouts(int argc,
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
ADataType* d_A;
BDataType* d_B;
CDataType* d_C;
ck_tile::hip_check_error(hipMalloc(&d_A, batch_count * M * K * sizeof(ADataType)));
ck_tile::hip_check_error(hipMalloc(&d_B, batch_count * N * K * sizeof(BDataType)));
ck_tile::hip_check_error(hipMalloc(&d_C, batch_count * M * N * sizeof(CDataType)));
ck_tile::hip_check_error(hipMemcpy(d_A,
a_m_k_dev_buf.GetDeviceBuffer(),
batch_count * M * K * sizeof(ADataType),
hipMemcpyHostToDevice));
ck_tile::hip_check_error(hipMemcpy(d_B,
b_k_n_dev_buf.GetDeviceBuffer(),
batch_count * N * K * sizeof(BDataType),
hipMemcpyHostToDevice));
ck_tile::reference_batched_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(a_m_k_dev_buf,
b_k_n_dev_buf,
c_m_n_gpu_buf_ref,
CLayout>(d_A,
d_B,
d_C,
M,
N,
K,
......@@ -208,6 +230,15 @@ int run_batched_gemm_example_with_layouts(int argc,
batch_stride_C,
batch_count);
ck_tile::hip_check_error(hipMemcpy(c_m_n_gpu_buf_ref.GetDeviceBuffer(),
d_C,
batch_count * M * N * sizeof(CDataType),
hipMemcpyDeviceToHost));
ck_tile::hip_check_error(hipFree(d_A));
ck_tile::hip_check_error(hipFree(d_B));
ck_tile::hip_check_error(hipFree(d_C));
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref);
......
add_executable(tile_example_grouped_gemm EXCLUDE_FROM_ALL grouped_gemm.cpp)
# Grouped CShuffle GEMM
This folder contains example for Grouped GEMM using ck_tile tile-programming implementation. Currently, it only supports the basic feature of the CK Tile GEMM, but creates the placeholders for the future support on different GEMM pipeline and different GEMM modules. In the near future, we will gradually migrate all the GEMM features from old CK to CK Tile.
## build
```
# in the root of ck_tile
mkdir build && cd build
# you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
# The basic pipeline method on the gemm calculation
make tile_example_grouped_gemm -j
```
This will result in an executable `build/bin/tile_example_grouped_gemm`
## example
```
args:
-a_layout Tensor A layout (default:R)
-b_layout Tensor B layout (default:R)
-c_layout Tensor C layout (default:R)
-v 0. No validation, 1. Validation on CPU
-warmup number of iterations before benchmark the kernel (default:10)
-repeat number of iterations to benchmark the kernel (default:100)
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <hip/hip_runtime.h>
#include <cstring>
#include <iostream>
#include <ostream>
#include <string>
#include <tuple>
#include <memory>
#include "ck_tile/core.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/host.hpp"
#include "grouped_gemm.hpp"
#include "utils.hpp"
namespace {
struct GroupedGemmKernelParam
{
static const bool kPadM = false;
static const bool kPadN = false;
static const bool kPadK = false;
static const bool kTilePermute = false;
static const ck_tile::index_t kOutputRank = 2;
static const int kBlockPerCu = 1;
static const ck_tile::index_t M_Tile = 128;
static const ck_tile::index_t N_Tile = 128;
static const ck_tile::index_t K_Tile = 32;
static const ck_tile::index_t M_Warp = 2;
static const ck_tile::index_t N_Warp = 2;
static const ck_tile::index_t K_Warp = 1;
static const ck_tile::index_t M_Warp_Tile = 32;
static const ck_tile::index_t N_Warp_Tile = 32;
static const ck_tile::index_t K_Warp_Tile = 8;
};
using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<GroupedGemmKernelParam::M_Tile,
GroupedGemmKernelParam::N_Tile,
GroupedGemmKernelParam::K_Tile>,
ck_tile::sequence<GroupedGemmKernelParam::M_Warp,
GroupedGemmKernelParam::N_Warp,
GroupedGemmKernelParam::K_Warp>,
ck_tile::sequence<GroupedGemmKernelParam::M_Warp_Tile,
GroupedGemmKernelParam::N_Warp_Tile,
GroupedGemmKernelParam::K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTile1DPartitioner<CodegenGemmShape>;
template <typename CLayout>
using GemmEpilogue = std::conditional_t<
std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
GroupedGemmKernelParam::kPadM,
GroupedGemmKernelParam::kPadN,
GroupedGemmKernelParam::kTilePermute,
GroupedGemmKernelParam::kOutputRank,
1,
0,
TilePartitioner::MPerBlock,
TilePartitioner::NPerBlock>>,
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<AccDataType,
CDataType,
GroupedGemmKernelParam::kPadM,
GroupedGemmKernelParam::kPadN>>>;
template <typename ALayout, typename BLayout, typename CLayout>
using CodegenGemmTraits = ck_tile::TileGemmTraits<GroupedGemmKernelParam::kPadM,
GroupedGemmKernelParam::kPadN,
GroupedGemmKernelParam::kPadK,
ALayout,
BLayout,
CLayout>;
template <typename ALayout, typename BLayout, typename CLayout>
using CodegenPipelineProblem =
ck_tile::GemmPipelineProblem<ADataType,
BDataType,
AccDataType,
CodegenGemmShape,
CodegenGemmTraits<ALayout, BLayout, CLayout>>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
template <typename ALayout, typename BLayout, typename CLayout>
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem<ALayout, BLayout, CLayout>,
CodegenGemmPolicy>;
template <typename ALayout, typename BLayout, typename CLayout>
using Kernel = ck_tile::GroupedGemmKernel<TilePartitioner,
CodegenGemmPipeline<ALayout, BLayout, CLayout>,
GemmEpilogue<CLayout>>;
}; // namespace
std::size_t GetWorkspaceSize(const std::vector<grouped_gemm_kargs>& gemm_descs)
{
return ::Kernel<std::nullptr_t, std::nullptr_t, std::nullptr_t>::GetWorkSpaceSize(gemm_descs);
}
template <typename ALayout, typename BLayout, typename CLayout>
float grouped_gemm(const std::vector<grouped_gemm_kargs>& gemm_descs,
const ck_tile::stream_config& s,
void* p_workspace_)
{
using GroupedGemmKernel = ::Kernel<ALayout, BLayout, CLayout>;
auto arguments = GroupedGemmKernel::MakeKargs(gemm_descs);
const dim3 grids = GroupedGemmKernel::GridSize(gemm_descs);
constexpr dim3 blocks = GroupedGemmKernel::BlockSize();
ck_tile::hip_check_error(hipMemcpyWithStream(
p_workspace_,
arguments.data(),
arguments.size() * sizeof(typename GroupedGemmKernel::GemmTransKernelArg),
hipMemcpyHostToDevice,
s.stream_id_));
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
<< std::endl;
}
float ave_time =
ck_tile::launch_kernel(s,
ck_tile::make_kernel<blocks.x, GroupedGemmKernelParam::kBlockPerCu>(
GroupedGemmKernel{},
grids,
blocks,
0,
ck_tile::cast_pointer_to_constant_address_space(p_workspace_),
gemm_descs.size()));
return ave_time;
}
#include "run_grouped_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp"
template <typename DataType>
struct GemmBasicTypeConfig;
template <>
struct GemmBasicTypeConfig<ck_tile::half_t>
{
using ADataType = ck_tile::half_t;
using BDataType = ck_tile::half_t;
using CDataType = ck_tile::half_t;
using AccDataType = float;
};
using Types = GemmBasicTypeConfig<ck_tile::half_t>;
// Specific type aliases for easy access
using ADataType = Types::ADataType;
using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
using grouped_gemm_kargs = ck_tile::GroupedGemmHostArgs;
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("Ms", "", "M dimensions - empty by default.")
.insert("Ns", "", "N dimensions - empty by default.")
.insert("Ks", "", "K dimensions - empty by default.")
.insert("stride_As", "", "Tensor A strides - it is empty by default.")
.insert("stride_Bs", "", "Tensor B strides - it is empty by default.")
.insert("stride_Cs", "", "Tensor C strides - it is empty by default.")
.insert("a_layout", "R", "A tensor data layout - Row by default.")
.insert("b_layout", "R", "B tensor data layout - Row by default.")
.insert("c_layout", "R", "C tensor data layout - Row by default.")
.insert("validate", "1", "0. No validation, 1. Validation on CPU.")
.insert("warmup", "10", "number of iterations before benchmark the kernel.")
.insert("repeat", "100", "number of iterations to benchmark the kernel.")
.insert("group_count", "16", "group count.");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
std::size_t GetWorkspaceSize(const std::vector<grouped_gemm_kargs>& gemm_descs);
float grouped_gemm_calc(const std::vector<grouped_gemm_kargs>& gemm_descs,
const ck_tile::stream_config& s,
void* p_workspace_);
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename ALayout, typename BLayout, typename CLayout>
float invoke_gemm(int n_warmup,
int n_repeat,
int group_count,
const std::vector<grouped_gemm_kargs>& args)
{
ck_tile::DeviceMem gemm_workspace;
gemm_workspace.Realloc(GetWorkspaceSize(args));
float ave_time = grouped_gemm<ALayout, BLayout, CLayout>(
args,
ck_tile::stream_config{nullptr, true, 1, n_warmup, n_repeat},
gemm_workspace.GetDeviceBuffer());
std::string op_name{"Grouped Gemm"};
std::size_t flop = 0, num_btype = 0;
for(int j = 0; j < group_count; ++j)
{
flop += std::size_t(2) * args[j].M * args[j].N * args[j].K;
num_btype += sizeof(ADataType) * args[j].M * args[j].K +
sizeof(BDataType) * args[j].K * args[j].N +
sizeof(CDataType) * args[j].M * args[j].N;
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
return ave_time;
}
template <typename ALayout, typename BLayout, typename CLayout>
int run_grouped_gemm_example_with_layouts(int argc,
char* argv[],
const ALayout a_layout = ALayout{},
const BLayout b_layout = BLayout{},
[[maybe_unused]] const CLayout c_layout = CLayout{})
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
{
return -1;
};
auto valid_input_data = [&](int group_count, const auto&... args) {
return !(args.empty() || ...) && group_count == (args.size() == ...);
};
const int group_count = arg_parser.get_int("group_count");
const int repeat = arg_parser.get_int("repeat");
const int warmup = arg_parser.get_int("warmup");
std::vector<ck_tile::index_t> Ms = arg_parser.get_int_vec("Ms");
std::vector<ck_tile::index_t> Ns = arg_parser.get_int_vec("Ns");
std::vector<ck_tile::index_t> Ks = arg_parser.get_int_vec("Ks");
std::vector<ck_tile::index_t> stride_As = arg_parser.get_int_vec("stride_As");
std::vector<ck_tile::index_t> stride_Bs = arg_parser.get_int_vec("stride_Bs");
std::vector<ck_tile::index_t> stride_Cs = arg_parser.get_int_vec("stride_Cs");
if(!valid_input_data(group_count, Ms, Ns, Ks, stride_As, stride_Bs, stride_Cs))
{
std::cout << "Please check the input data. Default values will be used." << std::endl;
for(int i = 0; i < group_count; i++)
{
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
stride_As.push_back(Ks[i]);
stride_Bs.push_back(Ks[i]);
stride_Cs.push_back(Ns[i]);
}
}
std::vector<ck_tile::HostTensor<ADataType>> a_m_k_tensors;
std::vector<ck_tile::HostTensor<BDataType>> b_k_n_tensors;
std::vector<ck_tile::HostTensor<CDataType>> c_m_n_tensors;
a_m_k_tensors.reserve(group_count);
b_k_n_tensors.reserve(group_count);
c_m_n_tensors.reserve(group_count);
std::vector<std::unique_ptr<ck_tile::DeviceMem>> a_m_k_dev_buf;
std::vector<std::unique_ptr<ck_tile::DeviceMem>> b_k_n_dev_buf;
std::vector<std::unique_ptr<ck_tile::DeviceMem>> c_m_n_dev_buf;
a_m_k_dev_buf.reserve(group_count);
b_k_n_dev_buf.reserve(group_count);
c_m_n_dev_buf.reserve(group_count);
std::vector<grouped_gemm_kargs> gemm_descs;
gemm_descs.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
const ck_tile::index_t M = Ms[i];
const ck_tile::index_t N = Ns[i];
const ck_tile::index_t K = Ks[i];
stride_As[i] = f_get_default_stride(M, N, stride_As[i], a_layout);
stride_Bs[i] = f_get_default_stride(K, N, stride_Bs[i], b_layout);
stride_Cs[i] = f_get_default_stride(M, N, stride_Cs[i], CLayout{});
a_m_k_tensors.push_back(
ck_tile::HostTensor<ADataType>(f_host_tensor_descriptor(M, K, stride_As[i], a_layout)));
b_k_n_tensors.push_back(
ck_tile::HostTensor<BDataType>(f_host_tensor_descriptor(K, N, stride_Bs[i], b_layout)));
c_m_n_tensors.push_back(ck_tile::HostTensor<CDataType>(
f_host_tensor_descriptor(M, N, stride_Cs[i], CLayout{})));
std::cout << "gemm[" << i << "]"
<< " a_m_k: " << a_m_k_tensors[i].mDesc << " b_k_n: " << b_k_n_tensors[i].mDesc
<< " c_m_n: " << c_m_n_tensors[i].mDesc << std::endl;
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k_tensors[i]);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n_tensors[i]);
a_m_k_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
a_m_k_tensors[i].get_element_space_size_in_bytes()));
b_k_n_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
b_k_n_tensors[i].get_element_space_size_in_bytes()));
c_m_n_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
c_m_n_tensors[i].get_element_space_size_in_bytes()));
a_m_k_dev_buf[i]->ToDevice(a_m_k_tensors[i].data());
b_k_n_dev_buf[i]->ToDevice(b_k_n_tensors[i].data());
c_m_n_dev_buf[i]->SetZero();
c_m_n_tensors[i].SetZero();
const void* p_a = a_m_k_dev_buf[i]->GetDeviceBuffer();
const void* p_b = b_k_n_dev_buf[i]->GetDeviceBuffer();
void* p_c = c_m_n_dev_buf[i]->GetDeviceBuffer();
gemm_descs.push_back({p_a, p_b, p_c, M, N, K, stride_As[i], stride_Bs[i], stride_Cs[i]});
}
invoke_gemm<ALayout, BLayout, CLayout>(warmup, repeat, group_count, gemm_descs);
for(int i = 0; i < group_count; i++)
{
c_m_n_dev_buf[i]->FromDevice(c_m_n_tensors[i].data());
}
bool pass{true};
if(arg_parser.get_int("validate"))
{
for(int i = 0; i < group_count; ++i)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(Ms[i], Ns[i], stride_Cs[i], CLayout{}));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k_tensors[i], b_k_n_tensors[i], c_m_n_host_ref);
pass &= ck_tile::check_err(c_m_n_tensors[i], c_m_n_host_ref);
}
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
}
return pass;
}
int run_grouped_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
{
return -1;
}
const std::string a_layout = arg_parser.get_str("a_layout");
const std::string b_layout = arg_parser.get_str("b_layout");
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
if(a_layout == "R" && b_layout == "C")
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "R" && b_layout == "R")
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename TLayout>
constexpr auto
f_host_tensor_descriptor(std::size_t row, std::size_t col, std::size_t stride, TLayout layout)
{
using namespace ck_tile::literals;
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
}
template <typename TLayout>
constexpr auto
f_get_default_stride(std::size_t row, std::size_t col, std::size_t stride, TLayout layout)
{
if(stride == 0)
{
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
}
......@@ -16,3 +16,4 @@ add_subdirectory(13_moe_sorting)
add_subdirectory(14_moe_smoothquant)
add_subdirectory(15_fused_moe)
add_subdirectory(16_batched_gemm)
add_subdirectory(17_grouped_gemm)
......@@ -111,6 +111,22 @@
#cmakedefine CK_USE_WMMA @CK_USE_WMMA@
#endif
#ifndef CK_USE_GFX94
#cmakedefine CK_USE_GFX94 @CK_USE_GFX94@
#endif
#ifndef CK_USE_OCP_FP8
#cmakedefine CK_USE_OCP_FP8 @CK_USE_OCP_FP8@
#endif
#ifndef CK_USE_FNUZ_FP8
#cmakedefine CK_USE_FNUZ_FP8 @CK_USE_FNUZ_FP8@
#endif
#ifndef CK_USE_FP8_ON_UNSUPPORTED_ARCH
#cmakedefine CK_USE_FP8_ON_UNSUPPORTED_ARCH @CK_USE_FP8_ON_UNSUPPORTED_ARCH@
#endif
// clang-format on
#endif // CK_CONFIG_H_IN
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -44,10 +44,19 @@ std::ostream& LogRangeAsType(std::ostream& os, Range&& range, std::string delim)
else
os << delim;
if constexpr(std::is_same_v<T, ck::f8_t> || std::is_same_v<T, ck::bf8_t>)
using RangeType = ck::remove_cvref_t<decltype(v)>;
if constexpr(std::is_same_v<RangeType, ck::f8_t> || std::is_same_v<RangeType, ck::bf8_t> ||
std::is_same_v<RangeType, ck::bhalf_t>)
{
os << ck::type_convert<float>(v);
}
else if constexpr(std::is_same_v<RangeType, ck::pk_i4_t>)
{
const auto packed_floats = ck::type_convert<ck::float2_t>(v);
const ck::vector_type<float, 2> vector_of_floats{packed_floats};
os << vector_of_floats.template AsType<float>()[ck::Number<0>{}] << delim
<< vector_of_floats.template AsType<float>()[ck::Number<1>{}];
}
else
{
os << static_cast<T>(v);
......@@ -266,18 +275,18 @@ struct Tensor
using Data = std::vector<T>;
template <typename X>
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(GetElementSpaceSize())
{
}
template <typename X, typename Y>
Tensor(std::initializer_list<X> lens, std::initializer_list<Y> strides)
: mDesc(lens, strides), mData(mDesc.GetElementSpaceSize())
: mDesc(lens, strides), mData(GetElementSpaceSize())
{
}
template <typename Lengths>
Tensor(const Lengths& lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
Tensor(const Lengths& lens) : mDesc(lens), mData(GetElementSpaceSize())
{
}
......@@ -287,7 +296,7 @@ struct Tensor
{
}
Tensor(const Descriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpaceSize()) {}
Tensor(const Descriptor& desc) : mDesc(desc), mData(GetElementSpaceSize()) {}
template <typename OutT>
Tensor<OutT> CopyAsType() const
......@@ -322,7 +331,17 @@ struct Tensor
std::size_t GetElementSize() const { return mDesc.GetElementSize(); }
std::size_t GetElementSpaceSize() const { return mDesc.GetElementSpaceSize(); }
std::size_t GetElementSpaceSize() const
{
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return (mDesc.GetElementSpaceSize() + 1) / 2;
}
else
{
return mDesc.GetElementSpaceSize();
}
}
std::size_t GetElementSpaceSizeInBytes() const { return sizeof(T) * GetElementSpaceSize(); }
......@@ -469,29 +488,64 @@ struct Tensor
template <typename... Is>
std::size_t GetOffsetFromMultiIndex(Is... is) const
{
return mDesc.GetOffsetFromMultiIndex(is...);
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mDesc.GetOffsetFromMultiIndex(is...) / 2;
}
else
{
return mDesc.GetOffsetFromMultiIndex(is...);
}
}
template <typename... Is>
T& operator()(Is... is)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
}
}
template <typename... Is>
const T& operator()(Is... is) const
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
}
}
T& operator()(std::vector<std::size_t> idx)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
}
}
const T& operator()(std::vector<std::size_t> idx) const
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
}
}
typename Data::iterator begin() { return mData.begin(); }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment