Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
a4d67230
Commit
a4d67230
authored
Jun 24, 2024
by
Harisankar Sadasivan
Browse files
universal streamk files and ckprofiler files for same
parent
cb138394
Changes
58
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
4639 additions
and
3 deletions
+4639
-3
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+2
-0
example/01_gemm/common.hpp
example/01_gemm/common.hpp
+6
-3
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
+48
-0
example/01_gemm/run_gemm_example_streamk_v2.inc
example/01_gemm/run_gemm_example_streamk_v2.inc
+299
-0
include/ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp
...ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp
+44
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
...n/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
+570
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+426
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp
...ration/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp
+2063
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_universal_streamk.hpp
.../tensor_operation_instance/gpu/gemm_universal_streamk.hpp
+788
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/CMakeLists.txt
...ration_instance/gpu/gemm_universal_streamk/CMakeLists.txt
+90
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
...evice_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
+91
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instance.cpp
...al_streamk_f16_f16_f16_mk_kn_mn_comp_default_instance.cpp
+23
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
...l_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
+23
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
...streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
+23
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
..._streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
+23
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
..._streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
+24
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
...streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
+24
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
...reamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
+24
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
..._streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
+24
-0
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
...streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
+24
-0
No files found.
example/01_gemm/CMakeLists.txt
100644 → 100755
View file @
a4d67230
...
@@ -22,6 +22,8 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16)
...
@@ -22,6 +22,8 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16)
add_example_executable
(
example_gemm_xdl_fp16_v2 gemm_xdl_fp16_v2.cpp
)
add_example_executable
(
example_gemm_xdl_fp16_v2 gemm_xdl_fp16_v2.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v2
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v2
)
add_example_executable
(
example_gemm_xdl_fp16_streamk_v3 gemm_xdl_fp16_streamk_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_streamk_v3
)
add_example_executable
(
example_gemm_xdl_fp16_v3 gemm_xdl_fp16_v3.cpp
)
add_example_executable
(
example_gemm_xdl_fp16_v3 gemm_xdl_fp16_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v3
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v3
)
add_example_executable
(
example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp
)
add_example_executable
(
example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp
)
...
...
example/01_gemm/common.hpp
100644 → 100755
View file @
a4d67230
...
@@ -43,7 +43,8 @@ struct ProblemSizeStreamK final
...
@@ -43,7 +43,8 @@ struct ProblemSizeStreamK final
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
NumSKBlocks
=
-
1
;
ck
::
index_t
Grid_size
=
-
1
;
//defaults to max occupancy
ck
::
index_t
Streamk_sel
=
1
;
//defaults to 1-tile SK
};
};
struct
ProblemSizeSplitK
final
struct
ProblemSizeSplitK
final
...
@@ -155,7 +156,8 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
...
@@ -155,7 +156,8 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
if
(
argc
>=
11
)
if
(
argc
>=
11
)
{
{
problem_size
.
NumSKBlocks
=
std
::
stoi
(
argv
[
10
]);
problem_size
.
Streamk_sel
=
std
::
stoi
(
argv
[
10
]);
problem_size
.
Grid_size
=
std
::
stoi
(
argv
[
11
]);
}
}
}
}
else
else
...
@@ -165,7 +167,8 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
...
@@ -165,7 +167,8 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
<<
std
::
endl
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
<<
"arg10: NumSKBlocks(optional)"
<<
std
::
endl
;
<<
"arg10: stream-k select (0: all DP, 1: 1-tile SK, 2: 2-tile SK)"
<<
"
\n
arg11: Grid_size(-1 for max occupancy)"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
...
...
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2_Streamk_Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
224
,
256
,
64
,
8
,
2
,
16
,
16
,
7
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
2
,
0
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example_streamk_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/01_gemm/run_gemm_example_streamk_v2.inc
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
using
namespace
ck
::
literals
;
auto
M
=
problem_size
.
M
;
auto
N
=
problem_size
.
N
;
auto
K
=
problem_size
.
K
;
auto
StrideA
=
problem_size
.
StrideA
;
auto
StrideB
=
problem_size
.
StrideB
;
auto
StrideC
=
problem_size
.
StrideC
;
auto
Grid_size
=
problem_size
.
Grid_size
;
auto
Streamk_sel
=
problem_size
.
Streamk_sel
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
auto
f_get_default_stride
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
stride
==
0
)
{
// give a chance if stride is zero, return a default packed stride
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
col
;
}
else
{
return
row
;
}
}
else
return
stride
;
};
StrideA
=
f_get_default_stride
(
M
,
K
,
StrideA
,
ALayout
{});
StrideB
=
f_get_default_stride
(
K
,
N
,
StrideB
,
BLayout
{});
StrideC
=
f_get_default_stride
(
M
,
N
,
StrideC
,
CLayout
{});
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
3
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
default
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
#if 0
printf
(
"B matrix:
\n
"
);
for
(
int
in
=
0
;
in
<
N
;
in
++
)
{
for
(
int
ik
=
0
;
ik
<
K
;
ik
++
)
{
printf
(
"%02x "
,
*
(
reinterpret_cast
<
uint8_t
*>
(
&
b_k_n
(
ik
,
in
))));
if
(
ik
%
8
==
7
)
printf
(
"|"
);
}
printf
(
"
\n
"
);
}
#endif
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
#ifdef BUILD_INT4_EXAMPLE
DeviceMem
a_m_k_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
const
Tensor
<
KernelADataType
>
a_m_k_converted
(
a_m_k
);
const
Tensor
<
KernelBDataType
>
b_k_n_converted
(
b_k_n
);
a_m_k_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
#else
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
#endif
DeviceMem
workspace
;
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmV2_Streamk_Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
argument
=
gemm
.
MakeArgument
(
#ifdef BUILD_INT4_EXAMPLE
static_cast
<
KernelADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelBDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#else
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#endif
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
Streamk_sel
,
Grid_size
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
#ifdef BUILD_INT4_EXAMPLE
Tensor
<
CDataType
>
c_m_n_device_result_converted
(
c_m_n_host_result
.
mDesc
);
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result_converted
.
mData
.
data
());
c_m_n_device_result
=
c_m_n_device_result_converted
.
CopyAsType
<
CDataType
>
();
return
ck
::
utils
::
check_err
(
c_m_n_device_result_converted
,
c_m_n_host_result
);
#else
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
#endif
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
bool
run_gemm_splitk_example
(
int
argc
,
char
*
argv
[])
{
ProblemSizeStreamK
problem_size
;
ExecutionConfig
config
;
return
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
||
run_gemm
(
problem_size
,
config
);
}
include/ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGemm_Streamk_V2
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
ck
::
index_t
Streamk_sel
,
ck
::
index_t
Grid_size
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
DeviceGemm_Xdl_CShuffle_Streamk_V3
:
public
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_xdl_cshuffle_streamk_v3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
float
ave_time
=
0
;
index_t
k_grain
=
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
// HS
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
dim3
grid_dim
;
if
(
arg
.
Grid_size
<
0
)
{
int
occupancy
,
num_cu
;
hipError_t
rtn
;
rtn
=
hipOccupancyMaxActiveBlocksPerMultiprocessor
(
&
occupancy
,
kernel
,
BlockSize
,
0
);
hip_check_error
(
rtn
);
hipDeviceProp_t
dev_prop
;
hipDevice_t
dev
;
rtn
=
hipGetDevice
(
&
dev
);
hip_check_error
(
rtn
);
rtn
=
hipGetDeviceProperties
(
&
dev_prop
,
dev
);
hip_check_error
(
rtn
);
num_cu
=
dev_prop
.
multiProcessorCount
;
arg
.
Grid_size
=
num_cu
*
occupancy
;
grid_dim
=
arg
.
Grid_size
;
}
else
grid_dim
=
arg
.
Grid_size
;
if
(
stream_config
.
flush_cache
)
{
Argument
arg_
=
arg
;
ck
::
utility
::
RotatingMemWrapper
<
Argument
>
rotating_mem
(
arg_
,
stream_config
.
rotating_count
,
arg_
.
M
*
arg_
.
K
*
sizeof
(
ADataType
),
arg_
.
K
*
arg_
.
N
*
sizeof
(
BDataType
));
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
grid_dim
,
// dim3(gdx, gdy, gdz),
dim3
(
BlockSize
),
0
,
arg_
);
}
else
{
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
// dim3(gdx, gdy, gdz),
grid_dim
,
dim3
(
BlockSize
),
0
,
arg
);
}
};
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
1
:
2
;
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
streamk_sel
,
index_t
Grid_size
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
{
// return Argument{p_a, p_b, p_c, M, N, K, StrideA, StrideB, StrideC, KBatch};
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel
,
Grid_size
};
// HS
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
streamk_sel
,
index_t
Grid_size
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel
,
Grid_size
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGemmXdlUniversal"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
100644 → 100755
View file @
a4d67230
...
@@ -1404,4 +1404,430 @@ struct BlockToCTileMap_GemmStreamK
...
@@ -1404,4 +1404,430 @@ struct BlockToCTileMap_GemmStreamK
}
}
};
};
template
<
uint32_t
MPerBlock_
,
uint32_t
NPerBlock_
,
uint32_t
KPerBlock_
,
StreamKReductionStrategy
ReductionStrategy_
=
StreamKReductionStrategy
::
Atomic
,
uint32_t
TileSwizzleSubM_
=
8
,
index_t
GroupNum
=
8
,
index_t
M01_
=
4
>
struct
BlockToCTileMap_GemmStreamK_v2
{
static
constexpr
uint32_t
min_k_iters_per_sk_block
=
2
;
static
constexpr
uint32_t
MPerBlock
=
MPerBlock_
;
static
constexpr
uint32_t
NPerBlock
=
NPerBlock_
;
static
constexpr
uint32_t
KPerBlock
=
KPerBlock_
;
static
constexpr
StreamKReductionStrategy
ReductionStrategy
=
ReductionStrategy_
;
static
constexpr
uint32_t
tile_swizzle_sub_m
=
TileSwizzleSubM_
;
//--------------------------------------
// pass to device
mutable
uint32_t
sk_num_blocks
;
uint32_t
sk_num_big_blocks
;
uint32_t
dp_start_block_idx
;
uint32_t
reduction_start_block_idx
;
uint32_t
k_iters_per_big_block
;
MDiv2
n_tiles
;
MDiv
k_iters_per_tile
;
MDiv
equiv_tiles_big
;
// for reduction
MDiv
equiv_tiles_little
;
// for reduction
// prefer construct on host
__host__
__device__
BlockToCTileMap_GemmStreamK_v2
(
uint32_t
m
,
uint32_t
n
,
uint32_t
k
,
uint32_t
grid_size
=
1
,
uint32_t
streamk_sel
=
1
)
{
// total output tiles
uint32_t
num_tiles
=
math
::
integer_divide_ceil
(
m
,
MPerBlock
)
*
math
::
integer_divide_ceil
(
n
,
NPerBlock
);
k_iters_per_tile
=
MDiv
(
math
::
integer_divide_ceil
(
k
,
KPerBlock
));
uint32_t
dp_tiles
,
dp_num_blocks
,
sk_total_iters
;
// default to regular DP GEMM if sk blocks == 0
if
(
streamk_sel
==
0
)
{
sk_num_blocks
=
0
;
dp_tiles
=
num_tiles
;
sk_num_big_blocks
=
0
;
k_iters_per_big_block
=
0
;
dp_num_blocks
=
num_tiles
;
// all tile to be dp block
dp_start_block_idx
=
0
;
sk_total_iters
=
0
;
// clear this tiles
}
// 2-tile sk + DP GEMM
else
{
// check if there's enough work for DP+ stream-k
bool
bigEnough
=
num_tiles
>
grid_size
;
// select between 1 tile and 2 tile sk
uint32_t
sk_tiles
=
0
;
if
(
streamk_sel
==
1
)
{
sk_tiles
=
bigEnough
?
(
num_tiles
%
grid_size
)
:
num_tiles
;
}
else
if
(
streamk_sel
==
2
)
{
sk_tiles
=
bigEnough
?
(
grid_size
+
num_tiles
%
grid_size
)
:
num_tiles
;
}
sk_num_blocks
=
sk_tiles
;
// if(sk_tiles < sk_num_blocks)
// {
// sk_num_blocks = sk_tiles;
// }
// remaining tiles are DP tiles
dp_tiles
=
bigEnough
?
(
num_tiles
-
sk_tiles
)
:
0
;
sk_total_iters
=
k_iters_per_tile
.
get
()
*
sk_tiles
;
// k_iters_per_sk_block is the floor of avg each ck block loop over tiles.
// we need to decide how many iters for each sk block
// let m = k_iters_per_sk_block
// some of the sk block (little) will cover m iters, some (big) will cover m+1
// we have
// 1) l + b = sk_blocks
// 2) l * m + b * (m + 1) = sk_total_iters
// => (l + b) * m + b = sk_total_iters
// => sk_blocks * m + b = sk_total_iters
// => b = sk_total_iters - m * sk_blocks
// NOTE: big could be zero
uint32_t
k_iters_per_sk_block
=
sk_total_iters
/
sk_num_blocks
;
sk_num_big_blocks
=
sk_total_iters
-
k_iters_per_sk_block
*
sk_num_blocks
;
k_iters_per_big_block
=
k_iters_per_sk_block
+
1
;
dp_num_blocks
=
dp_tiles
;
dp_start_block_idx
=
sk_num_blocks
;
// dp_start_block_idx = ((sk_num_blocks + grid_size - 1) / grid_size) * grid_size;
}
n_tiles
=
MDiv2
(
math
::
integer_divide_ceil
(
n
,
NPerBlock
));
// using multiple blocks for parallel reduction
reduction_start_block_idx
=
dp_start_block_idx
+
dp_num_blocks
;
if
constexpr
(
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
uint32_t
upper_big
=
math
::
lcm
(
k_iters_per_big_block
,
k_iters_per_tile
.
get
());
uint32_t
upper_little
=
math
::
lcm
(
k_iters_per_big_block
-
1
,
k_iters_per_tile
.
get
());
equiv_tiles_big
=
MDiv
(
upper_big
/
k_iters_per_tile
.
get
());
equiv_tiles_little
=
MDiv
(
upper_little
/
k_iters_per_tile
.
get
());
}
#if 0
printf("streamk_sel=%0d,grid_size=%0d, num_tiles:%d, dp_tiles:%d, sk_tiles:%u, "
"sk_num_blocks:%d,dp_num_blocks:%d,sk_num_big_blocks:%d, "
"sk_total_iters:%d, dp_start_block_idx:%d, "
"k_iters_per_tile:%d, k_iters_per_big_block:%d, reduction_start_block_idx:%u, "
" workspace(acc float):%u\n",
streamk_sel,
grid_size,
// occupancy,
// get_grid_dims(num_cu, occupancy).x,
num_tiles,
dp_tiles,
get_sk_tiles(),
sk_num_blocks,
dp_num_blocks,
sk_num_big_blocks,
sk_total_iters,
dp_start_block_idx,
k_iters_per_tile.get(),
k_iters_per_big_block,
reduction_start_block_idx,
get_workspace_size(sizeof(float)));
#endif
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
;
}
__host__
__device__
uint32_t
get_sk_total_iters
()
const
{
uint32_t
sk_total_iters
=
sk_num_big_blocks
*
k_iters_per_big_block
+
(
sk_num_blocks
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
return
sk_total_iters
;
}
__host__
__device__
uint32_t
get_sk_tiles
()
const
{
// tiles for sk
uint32_t
sk_total_iters
=
get_sk_total_iters
();
return
k_iters_per_tile
.
div
(
sk_total_iters
);
}
__host__
__device__
index_t
get_grid_dims
()
const
{
if
constexpr
(
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
// return dim3(reduction_start_block_idx + get_sk_tiles(), 1, 1);
return
reduction_start_block_idx
+
get_sk_tiles
();
}
else
return
reduction_start_block_idx
;
}
__device__
uint32_t
get_block_idx
()
const
{
// TODO: swizzle block index for better locality
return
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
}
__device__
void
get_block_itr
(
uint32_t
block_idx
,
uint32_t
&
iter_start
,
uint32_t
&
iter_end
)
const
{
if
(
block_idx
<
sk_num_big_blocks
)
{
iter_start
=
block_idx
*
k_iters_per_big_block
;
iter_end
=
iter_start
+
k_iters_per_big_block
;
}
else
if
(
block_idx
<
sk_num_blocks
)
{
iter_start
=
(
sk_num_big_blocks
*
k_iters_per_big_block
)
+
(
block_idx
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
iter_end
=
iter_start
+
(
k_iters_per_big_block
-
1
);
}
else
if
(
block_idx
>=
dp_start_block_idx
)
{
uint32_t
sk_total_iters
=
get_sk_total_iters
();
uint32_t
dp_iters_per_block
=
k_iters_per_tile
.
get
();
iter_start
=
sk_total_iters
+
(
block_idx
-
dp_start_block_idx
)
*
dp_iters_per_block
;
iter_end
=
iter_start
+
dp_iters_per_block
;
}
}
__device__
uint32_t
get_current_iter_length
(
uint32_t
iter_start
,
uint32_t
iter_end
,
uint32_t
total_iter_length
)
const
{
uint32_t
iter_length_mod
,
iter_length_quo
/*unused*/
;
k_iters_per_tile
.
divmod
(
iter_end
,
iter_length_quo
,
iter_length_mod
);
uint32_t
current_iter_length
=
math
::
min
(
iter_length_mod
==
0
?
(
iter_end
-
iter_start
)
:
iter_length_mod
,
total_iter_length
);
return
current_iter_length
;
}
__device__
uint32_t
get_tile_idx
(
uint32_t
iter
)
const
{
return
k_iters_per_tile
.
div
(
iter
);
}
__device__
void
get_tile_idx_with_offset
(
uint32_t
iter
,
uint32_t
&
tile_idx
,
uint32_t
&
iter_offset
)
const
{
k_iters_per_tile
.
divmod
(
iter
,
tile_idx
,
iter_offset
);
}
__device__
auto
tile_to_spatial
(
uint32_t
tile_idx
,
uint32_t
m
,
uint32_t
n
)
const
{
uint32_t
m_tile_idx
,
n_tile_idx
;
uint32_t
n_tiles_value
=
math
::
integer_divide_ceil
(
n
,
NPerBlock
);
n_tiles
.
divmod
(
tile_idx
,
n_tiles_value
,
m_tile_idx
,
n_tile_idx
);
// // swizzle tile
uint32_t
m_tiles
=
math
::
integer_divide_ceil
(
m
,
MPerBlock
);
uint32_t
tile_swizzle_sub_m_rem
=
m_tiles
%
tile_swizzle_sub_m
;
const
auto
sub_m_adapt
=
(
m_tile_idx
<
(
m_tiles
-
tile_swizzle_sub_m_rem
))
?
tile_swizzle_sub_m
:
tile_swizzle_sub_m_rem
;
uint32_t
m_tile_idx_sub0
,
m_tile_idx_sub1
;
m_tile_idx_sub0
=
m_tile_idx
/
tile_swizzle_sub_m
;
m_tile_idx_sub1
=
m_tile_idx
%
tile_swizzle_sub_m
;
uint32_t
tile_idx_local
=
n_tile_idx
+
m_tile_idx_sub1
*
n_tiles_value
;
uint32_t
m_tile_idx_with_adapt
,
n_tile_idx_with_adapt
;
n_tile_idx_with_adapt
=
tile_idx_local
/
sub_m_adapt
;
m_tile_idx_with_adapt
=
tile_idx_local
%
sub_m_adapt
;
return
make_tuple
(
m_tile_idx_with_adapt
+
m_tile_idx_sub0
*
tile_swizzle_sub_m
,
n_tile_idx_with_adapt
);
// adding gfx94x optimized
// index_t block_1d_id = tile_idx;
// const index_t N0 = n_tiles_value;
// const index_t M0 = math::integer_divide_ceil(n * m / m, MPerBlock);
// // index_t GroupNum = 8;
// // index_t M01_ = 4;
// if(M0 == 1)
// {
// return make_tuple(0, block_1d_id);
// }
// else if(N0 == 1)
// {
// return make_tuple(block_1d_id, 0);
// }
// // block_1d_id = block_1d_id % (M0 * N0); // swallow batch index
// else
// {
// const auto group_size = math::integer_divide_ceil(M0 * N0, GroupNum);
// const auto big_group_num = GroupNum - (group_size * GroupNum - M0 * N0);
// auto group_id_x = block_1d_id % GroupNum;
// auto group_id_y = block_1d_id / GroupNum;
// auto remap_block_1d_id =
// group_id_x <= big_group_num
// ? group_id_x * group_size + group_id_y
// : group_id_x * group_size + big_group_num - group_id_x + group_id_y;
// index_t idx_N0 = remap_block_1d_id % N0;
// index_t idx_M0 = remap_block_1d_id / N0;
// const auto M01_adapt = (idx_M0 < M0 - M0 % M01_) ? M01_ : M0 % M01_;
// index_t idx_M00 = idx_M0 / M01_;
// index_t idx_M01 = idx_M0 % M01_;
// index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
// /**
// * idxN0
// *
// * |< mtx N >|
// *
// * NPerBlock NPerBlock NPerBlock NPerBlock
// * N_0 N_1 N_2 N_3
// * - |-----------|-----------|-----------|-----|-----|-
// * ^ | - - 0 |/----> 2 | | | |
// * | | | / | | | | | M_0 MPerBlock
// * | M | /| | | | | |
// * |-0---|---/-|-----|-----|-----------|-----|-----|-
// * | 1 | / | | | blockid | | |
// * idxM0 | | | / | V | 5 | | | M_1 MPerBlock
// * | - V 1 | - 3 | | | |
// * |-----------|-----------|-----------|-----|-----|-
// * mtx M | | | | | |
// * | | | | | | M_2 MPerBlock
// * | | | | | |
// * |-----------|-----------|-----------|-----|-----|-
// * | | | | | |
// * | | | | | | M_3 MPerBlock
// * | | | | | |
// * |-----------|-----------|-----------|-----|-----|-
// * V | | | | | |
// * - |-----------|-----------|-----------|-----|-----|- M_4 MPerBlock
// * | | | | | |
// * |-----------|-----------|-----------|-----|-----|-
// * Example:
// * assume:
// * M0 = 5
// * N0 = 4
// * block_1d_id = 5
// * M01 = 2
// *
// * idx_N0 = 1
// * idx_M0 = 1
// * M01_adapt = 2
// * idx_M00 = 0
// * idx_M01 = 1
// * idx_N0_M01_local = 5
// * output {1, 2}
// */
// return make_tuple(idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
// idx_N0_M01_local / M01_adapt);
//}
}
__host__
__device__
uint32_t
get_workspace_size_for_acc
(
uint32_t
acc_element_bytes
)
const
{
static
constexpr
uint32_t
alignment
=
128
;
uint32_t
acc_buffer_bytes
=
MPerBlock
*
NPerBlock
*
get_total_acc_buffers
()
*
acc_element_bytes
;
return
(
acc_buffer_bytes
+
alignment
-
1
)
/
alignment
*
alignment
;
}
__host__
__device__
uint32_t
get_workspace_size_for_semaphore
()
const
{
return
get_sk_tiles
()
*
sizeof
(
uint32_t
);
}
__host__
__device__
uint32_t
get_workspace_size
(
uint32_t
acc_element_bytes
)
const
{
return
get_workspace_size_for_acc
(
acc_element_bytes
)
+
get_workspace_size_for_semaphore
();
}
__host__
__device__
uint32_t
get_tile_intersections
(
uint32_t
tiles_
,
const
MDiv
&
equiv_tiles_
)
const
{
uint32_t
tile_idx_
=
tiles_
==
0
?
0
:
(
tiles_
-
1
);
uint32_t
max_equiv_tiles_
=
equiv_tiles_
.
get
()
-
1
;
uint32_t
quo_
,
rem_
;
equiv_tiles_
.
divmod
(
tile_idx_
,
quo_
,
rem_
);
return
quo_
*
max_equiv_tiles_
+
rem_
;
}
__host__
__device__
uint32_t
get_tiles_cover_sk_block
(
uint32_t
num_sk_blocks_
,
uint32_t
iters_per_sk_block_
)
const
{
return
k_iters_per_tile
.
div
(
num_sk_blocks_
*
iters_per_sk_block_
+
k_iters_per_tile
.
get
()
-
1
);
}
__host__
__device__
uint32_t
get_total_acc_buffers
()
const
{
uint32_t
tiles_cover_big_blocks
=
get_tiles_cover_sk_block
(
sk_num_big_blocks
,
k_iters_per_big_block
);
uint32_t
tiles_cover_little_blocks
=
get_tiles_cover_sk_block
(
sk_num_blocks
-
sk_num_big_blocks
,
k_iters_per_big_block
-
1
);
uint32_t
total_intersec_big
=
get_tile_intersections
(
tiles_cover_big_blocks
,
equiv_tiles_big
);
uint32_t
total_intersec_little
=
get_tile_intersections
(
tiles_cover_little_blocks
,
equiv_tiles_little
);
return
sk_num_blocks
+
total_intersec_big
+
total_intersec_little
;
}
__device__
uint32_t
get_acc_buffer_offset_from_tile
(
uint32_t
tile_idx_
)
const
{
// TODO: from big to little
uint32_t
tiles_cover_big_blocks
=
get_tiles_cover_sk_block
(
sk_num_big_blocks
,
k_iters_per_big_block
);
if
(
tile_idx_
<
tiles_cover_big_blocks
)
{
uint32_t
touched_sk_blocks
=
(
tile_idx_
*
k_iters_per_tile
.
get
()
+
k_iters_per_big_block
-
1
)
/
k_iters_per_big_block
;
uint32_t
current_intersec
=
get_tile_intersections
(
tile_idx_
,
equiv_tiles_big
);
return
touched_sk_blocks
+
current_intersec
;
}
else
{
uint32_t
iters_per_little_sk_block
=
k_iters_per_big_block
-
1
;
uint32_t
tile_idx_little_reverse
=
get_sk_tiles
()
-
tile_idx_
;
uint32_t
touched_sk_blocks
=
(
tile_idx_little_reverse
*
k_iters_per_tile
.
get
()
+
iters_per_little_sk_block
-
1
)
/
iters_per_little_sk_block
;
uint32_t
current_intersec
=
get_tile_intersections
(
tile_idx_little_reverse
,
equiv_tiles_little
);
return
get_total_acc_buffers
()
-
(
touched_sk_blocks
+
current_intersec
);
}
}
__device__
uint32_t
get_acc_buffer_offset_from_block
(
uint32_t
block_idx_
)
const
{
uint32_t
iters_per_big_sk_block
=
k_iters_per_big_block
;
uint32_t
iters_per_little_sk_block
=
k_iters_per_big_block
-
1
;
if
(
block_idx_
<
sk_num_big_blocks
)
{
uint32_t
touched_tiles
=
k_iters_per_tile
.
div
(
block_idx_
*
iters_per_big_sk_block
+
k_iters_per_tile
.
get
()
-
1
);
uint32_t
current_intersec
=
get_tile_intersections
(
touched_tiles
,
equiv_tiles_big
);
return
block_idx_
+
current_intersec
;
}
else
{
uint32_t
block_idx_little_reverse
=
sk_num_blocks
-
block_idx_
;
uint32_t
touched_tiles
=
k_iters_per_tile
.
div
(
block_idx_little_reverse
*
iters_per_little_sk_block
+
k_iters_per_tile
.
get
()
-
1
);
uint32_t
current_intersec
=
get_tile_intersections
(
touched_tiles
,
equiv_tiles_little
);
return
get_total_acc_buffers
()
-
(
block_idx_little_reverse
+
current_intersec
);
}
}
};
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1r2.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
p_shared
,
karg
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_2lds
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__
char
p_shared_0
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared_1
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
// auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm
::
template
Run_2Lds
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
// karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
// karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
p_shared_0
,
p_shared_1
,
karg
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v4
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
GridwiseGemm_xdl_cshuffle_streamk_v3
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
// __host__ static auto CalculateGridSize(index_t M, index_t N) //, index_t KBatch)
// {
// // return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch);
// // return ((Block2CTileMap::CalculateGridSize(M, N)) * KBatch);
// // return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, 1);
// return Block2CTileMap::CalculateGridSize(M, N);
// }
__host__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWaves
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
struct
Problem
{
__host__
Problem
(
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
index_t
Streamk_sel_
,
index_t
Grid_size_
)
:
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideC
{
StrideC_
},
Streamk_sel
{
Streamk_sel_
},
Grid_size
{
Grid_size_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
1
)},
KPadded
{
CalculateKPadded
(
K_
,
1
)},
AK0
{
CalculateAK0Padded
(
K_
,
1
)},
BK0
{
CalculateBK0Padded
(
K_
,
1
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
", Stream-K Selection:"
<<
Streamk_sel
<<
", Grid size:"
<<
Grid_size
<<
"}"
<<
std
::
endl
;
}
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
index_t
StrideC
;
index_t
Streamk_sel
;
mutable
index_t
Grid_size
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
CDataType
*
p_c_grid_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
index_t
Streamk_sel_
,
index_t
Grid_size_
)
:
Problem
{
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideC_
,
Streamk_sel_
,
Grid_size_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_c_grid
{
p_c_grid_
}
{
}
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
CDataType
*
p_c_grid
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Problem
&
problem
,
unsigned
int
kbatch_id
,
unsigned
int
orig_K
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
kbatch_id
*
problem
.
KRead
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
kbatch_id
*
problem
.
KRead
*
problem
.
M
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
kbatch_id
*
problem
.
KRead
*
problem
.
N
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
b_k_split_offset
=
kbatch_id
*
problem
.
KRead
;
}
if
(
kbatch_id
<
static_cast
<
uint32_t
>
(
problem
.
KBatch
-
1
))
{
problem
.
K
=
problem
.
KRead
;
}
else
{
problem
.
K
=
orig_K
-
problem
.
KRead
*
(
problem
.
KBatch
-
1
);
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
ADataType
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
ADataType
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
if
constexpr
(
BBlockLdsExtraN
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0Number
,
Number
<
NPerBlock
>
{},
BK1Number
),
make_tuple
(
BK1Number
,
Number
<
KPerBlock
+
BBlockLdsExtraN
>
{},
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
// NLdsLayer * K0 as logical Bank
constexpr
auto
NLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
);
;
constexpr
auto
b_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
BK0Number
*
Number
<
NLdsLayer
>
{},
Number
<
NPerBlock
/
NLdsLayer
>
{},
BK1Number
),
make_tuple
(
BK1Number
,
Number
<
KPerBlock
*
NLdsLayer
>
{},
I1
));
constexpr
auto
b_lds_block_desc_permuted
=
transform_tensor_descriptor
(
b_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
NPerBlock
/
NLdsLayer
>
{},
Number
<
BK0Number
*
NLdsLayer
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
b_lds_block_desc_bk0_nldslayer_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0Number
,
Number
<
NLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
NPerBlock
/
NLdsLayer
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
b_lds_block_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_bk0_nldslayer_n_bk1
,
make_tuple
(
make_pass_through_transform
(
BK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
NPerBlock
/
NLdsLayer
>
{},
Number
<
NLdsLayer
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_lds_block_desc_bk0_n_bk1
;
}
else
// RowMajor B
{
constexpr
auto
N0
=
BBlockTransferThreadClusterLengths_BK0_N_BK1
{}.
At
(
I1
);
constexpr
auto
N1
=
NPerBlock
/
N0
;
constexpr
auto
KThreadWrite
=
BBlockTransferThreadClusterLengths_BK0_N_BK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
BK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
NPerXdl
;
constexpr
auto
K0PerThreadRead
=
BK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
BK1Number
*
N0
*
sizeof
(
BDataType
)
>
128
)
?
1
:
128
/
(
BK1Number
*
N0
*
sizeof
(
BDataType
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=npair<=n0
constexpr
auto
npair
=
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)
>
128
)
?
1
:
((
128
/
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)))
>
N0
?
N0
:
128
/
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)));
constexpr
auto
b_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
N1
>
{},
Number
<
kfold
*
N0
/
npair
>
{},
Number
<
npair
>
{},
BK1Number
));
constexpr
auto
b_lds_block_desc_permuted
=
transform_tensor_descriptor
(
b_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
N1
>
{},
Number
<
kfold
*
N0
/
npair
>
{})),
make_pass_through_transform
(
Number
<
npair
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
b_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
b_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
N1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
N0
/
npair
>
{})),
make_pass_through_transform
(
Number
<
npair
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
b_lds_block_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
N0
/
npair
>
{},
Number
<
npair
>
{},
Number
<
N1
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_lds_block_desc_bk0_n_bk1
;
}
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmPipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
ADataType
,
BDataType
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
*
sizeof
(
ADataType
)
+
b_block_space_size_aligned
*
sizeof
(
BDataType
)),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
// constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
// auto K_t = KReadVec;
// auto KReadPadSplited = math::integer_divide_ceil(karg.K, K_t) * KReadVec;
if
(
karg
.
K
<=
0
)
// HS
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
is_same
<
remove_cvref_t
<
CDataType
>
,
bhalf_t
>::
value
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
" Grid size: "
<<
karg
.
Grid_size
<<
" > 1 is not support yet"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
// if(karg.KBatch > 1)
// {
// return false;
// }
}
// check gridwise gemm pipeline
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
constexpr
(
BlkGemmPipelineVer
!=
BlockGemmPipelineVersion
::
v1
)
{
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
// using Block2CTileMap = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
// using Block2CTileMap = BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>;
using
Block2CTileMap_streamk
=
BlockToCTileMap_GemmStreamK_v2
<
MPerBlock
,
NPerBlock
,
KPerBlock
,
StreamKReductionStrategy
::
Atomic
,
8
,
4
>
;
// HS
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared
,
Problem
&
problem
)
{
const
AElementwiseOperation
a_element_op
{};
const
BElementwiseOperation
b_element_op
{};
const
CElementwiseOperation
c_element_op
{};
// Provide a value for TileSwizzleSubM_
Block2CTileMap_streamk
block_2_ctile_map_streamk
(
problem
.
M
,
problem
.
N
,
AK0Number
*
problem
.
KPadded
,
problem
.
Grid_size
,
problem
.
Streamk_sel
);
// HS
uint32_t
iter_start
,
iter_end
;
// HS
bool
is_sk_block
,
is_dp_block
;
//, is_padding_block; //, is_reduction_block; // HS
index_t
num_k_block_main_loop
;
// HS
for
(
auto
block_idx
=
get_block_1d_id
();
block_idx
<
block_2_ctile_map_streamk
.
get_grid_dims
();
block_idx
+=
gridDim
.
x
)
{
// for(unsigned int kbatch_id = 0; kbatch_id < static_cast<unsigned
// int>(problem.KBatch);
// kbatch_id++)
is_sk_block
=
static_cast
<
uint32_t
>
(
block_idx
)
<
block_2_ctile_map_streamk
.
sk_num_blocks
;
is_dp_block
=
static_cast
<
uint32_t
>
(
block_idx
)
>=
block_2_ctile_map_streamk
.
dp_start_block_idx
&&
static_cast
<
uint32_t
>
(
block_idx
)
<
block_2_ctile_map_streamk
.
reduction_start_block_idx
;
// HS
block_2_ctile_map_streamk
.
get_block_itr
(
block_idx
,
iter_start
,
iter_end
);
// HS
num_k_block_main_loop
=
iter_end
-
iter_start
;
// HS
while
(
true
)
{
uint32_t
current_iter_length
=
__builtin_amdgcn_readfirstlane
(
block_2_ctile_map_streamk
.
get_current_iter_length
(
iter_start
,
iter_end
,
num_k_block_main_loop
));
// HS
uint32_t
tile_idx
,
iter_offset
;
// HS
block_2_ctile_map_streamk
.
get_tile_idx_with_offset
(
iter_end
-
1
,
tile_idx
,
iter_offset
);
// HS
iter_offset
=
__builtin_amdgcn_readfirstlane
(
iter_offset
-
current_iter_length
+
1
);
// HS
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeBGridDescriptor_BK0_N_BK1
(
problem
.
K
,
problem
.
KPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideB
,
problem
.
BK0
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
/*+ splitk_batch_offset.a_k_split_offset*/
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
/*+ splitk_batch_offset.b_k_split_offset*/
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// const auto block_work_idx =
// block_2_ctile_map.CalculateBottomIndex(make_multi_index(block_idx));
auto
block_work_idx
=
block_2_ctile_map_streamk
.
tile_to_spatial
(
tile_idx
,
problem
.
M
,
problem
.
N
);
// HS
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NPerBlock
);
const
index_t
k0_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
iter_offset
*
AK0Number
);
// HS
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
ADataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
k0_block_data_idx_on_grid
,
m_block_data_idx_on_grid
,
0
),
// HS
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0Number
,
NPerBlock
,
BK1Number
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
k0_block_data_idx_on_grid
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
BDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1Number
,
0
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
// HS:AK0*KPadded/KPerBlock
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per
// shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per
// shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1r2
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
// CGlobalMemoryDataOperation, // DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
CShuffleDataType
,
// typename SrcData,
CDataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
false
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
c_shuffle_block_copy_lds_to_global
.
SetSrcSliceOrigin
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
0
,
0
,
0
,
0
));
if
(
is_dp_block
)
{
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_shuffle_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
Set
>(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
else
if
(
is_sk_block
)
{
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_shuffle_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
AtomicAdd
>(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
// exit condition
iter_end
-=
current_iter_length
;
if
(
iter_end
<=
iter_start
)
break
;
// make sure next loop LDS is ready for use
block_sync_lds
();
// HS
}
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
void
*
p_shared_0
,
void
*
p_shared_1
,
Problem
&
problem
)
{
const
AElementwiseOperation
a_element_op
{};
const
BElementwiseOperation
b_element_op
{};
const
CElementwiseOperation
c_element_op
{};
Block2CTileMap_streamk
block_2_ctile_map_streamk
(
problem
.
M
,
problem
.
N
,
AK0Number
*
problem
.
KPadded
,
problem
.
Grid_size
);
// HS
uint32_t
iter_start
,
iter_end
;
// HS
bool
is_sk_block
,
is_dp_block
;
//, is_padding_block; //, is_reduction_block; // HS
index_t
num_k_block_main_loop
;
// HS
for
(
auto
block_idx
=
get_block_1d_id
();
block_idx
<
block_2_ctile_map_streamk
.
get_grid_dims
();
block_idx
+=
gridDim
.
x
)
{
is_sk_block
=
static_cast
<
uint32_t
>
(
block_idx
)
<
block_2_ctile_map_streamk
.
sk_num_blocks
;
is_dp_block
=
static_cast
<
uint32_t
>
(
block_idx
)
>=
block_2_ctile_map_streamk
.
dp_start_block_idx
&&
static_cast
<
uint32_t
>
(
block_idx
)
<
block_2_ctile_map_streamk
.
reduction_start_block_idx
;
// HS
block_2_ctile_map_streamk
.
get_block_itr
(
block_idx
,
iter_start
,
iter_end
);
// HS
num_k_block_main_loop
=
iter_end
-
iter_start
;
// HS
{
uint32_t
current_iter_length
=
__builtin_amdgcn_readfirstlane
(
block_2_ctile_map_streamk
.
get_current_iter_length
(
iter_start
,
iter_end
,
num_k_block_main_loop
));
// HS
uint32_t
tile_idx
,
iter_offset
;
// HS
block_2_ctile_map_streamk
.
get_tile_idx_with_offset
(
iter_end
-
1
,
tile_idx
,
iter_offset
);
// HS
iter_offset
=
__builtin_amdgcn_readfirstlane
(
iter_offset
-
current_iter_length
+
1
);
// HS
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeBGridDescriptor_BK0_N_BK1
(
problem
.
K
,
problem
.
KPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideB
,
problem
.
BK0
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
/*+ splitk_batch_offset.a_k_split_offset*/
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
/*+ splitk_batch_offset.b_k_split_offset*/
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
// const auto block_work_idx =
// block_2_ctile_map.CalculateBottomIndex(make_multi_index(block_idx));
auto
block_work_idx
=
block_2_ctile_map_streamk
.
tile_to_spatial
(
tile_idx
,
problem
.
M
,
problem
.
N
);
// HS
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NPerBlock
);
const
index_t
k0_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
iter_offset
*
AK0Number
);
// HS
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
ADataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
k0_block_data_idx_on_grid
,
m_block_data_idx_on_grid
,
0
),
// HS
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0Number
,
NPerBlock
,
BK1Number
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
k0_block_data_idx_on_grid
,
n_block_data_idx_on_grid
,
0
),
// HS
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf_ping
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared_0
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_ping
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
BDataType
*>
(
p_shared_0
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared_1
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
BDataType
*>
(
p_shared_1
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_bufs
=
make_tuple
(
a_block_buf_ping
,
a_block_buf_pong
);
auto
b_block_bufs
=
make_tuple
(
b_block_buf_ping
,
b_block_buf_pong
);
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1Number
,
0
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_bufs
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_bufs
,
b_block_slice_copy_step
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared_0
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per
// shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per
// shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1r2
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
// CGlobalMemoryDataOperation, // DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
CShuffleDataType
,
// typename SrcData,
CDataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
false
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
c_shuffle_block_copy_lds_to_global
.
SetSrcSliceOrigin
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
0
,
0
,
0
,
0
));
if
(
is_dp_block
)
{
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_shuffle_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
Set
>(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
else
if
(
is_sk_block
)
{
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
template
Run
<
decltype
(
c_shuffle_block_buf
),
decltype
(
c_grid_buf
),
InMemoryDataOperationEnum
::
AtomicAdd
>(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
}
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
}
}
};
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_universal_streamk.hpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef CK_ENABLE_FP16
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
// #if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// #endif
// #ifdef CK_ENABLE_FP16
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instances(
// std::vector<std::unique_ptr<
// DeviceGemm_Streamk_V2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough,
// PassThrough>>>& instances);
// #endif
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>>
{
using
DeviceOp
=
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instances
(
op_ptrs
);
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances
(
op_ptrs
);
}
}
#endif
// #if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
// if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
// is_same_v<CDataType, half_t>)
// {
// if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_kpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_kpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// }
// else if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
// is_same_v<CDataType, half_t>)
// {
// if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_kpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_kpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnpadding_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_default_instances(op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// }
// #endif
// #ifdef CK_ENABLE_FP16
// if constexpr(is_same_v<ADataType, bhalf_t> && is_same_v<BDataType, bhalf_t> &&
// is_same_v<CDataType, bhalf_t>)
// {
// if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
// is_same_v<CLayout, Row>)
// {
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instances(
// op_ptrs);
// add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instances(
// op_ptrs);
// }
// }
// #endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/CMakeLists.txt
0 → 100755
View file @
a4d67230
# ONLY XDL_KERNELS
set
(
GEMM_UNIVERSAL_STREAMK_INSTANCES
)
list
(
APPEND GEMM_UNIVERSAL_STREAMK_INSTANCES
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instance.cpp
# device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
)
add_instance_library
(
device_gemm_universal_streamk_instance
${
GEMM_UNIVERSAL_STREAMK_INSTANCES
}
)
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
half_t
;
using
F32
=
float
;
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
index_t
...
Is
>
using
S
=
Sequence
<
Is
...
>
;
using
PassThrough
=
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmKPadding
=
GemmSpecialization
::
KPadding
;
static
constexpr
auto
GemmMNPadding
=
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
Intrawave
=
BlockGemmPipelineScheduler
::
Intrawave
;
static
constexpr
auto
Interwave
=
BlockGemmPipelineScheduler
::
Interwave
;
template
<
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
=
std
::
tuple
<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v3
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
224
,
256
,
64
,
8
,
8
,
16
,
16
,
7
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
0
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v3
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v3
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
256
,
32
,
8
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
128
,
32
,
8
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
// clang-format on
>
;
template
<
BlockGemmPipelineScheduler
BlkGemmPipeSched
,
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
=
std
::
tuple
<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
64
,
16
,
16
,
128
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
16
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
64
,
16
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
16
,
32
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
// Memory friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
32
,
64
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
32
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
16
,
64
,
8
,
2
,
16
,
16
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
32
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
128
,
32
,
64
,
8
,
4
,
32
,
32
,
2
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
128
,
16
,
64
,
8
,
4
,
16
,
16
,
4
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
64
,
32
,
64
,
8
,
4
,
32
,
32
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
64
,
16
,
64
,
8
,
4
,
16
,
16
,
2
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
64
,
16
,
16
,
128
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
16
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
64
,
16
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
16
,
32
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
16
,
64
,
64
,
8
,
4
,
16
,
16
,
1
,
2
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
64
,
64
,
8
,
4
,
32
,
32
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
16
,
128
,
64
,
8
,
4
,
16
,
16
,
1
,
4
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
128
,
64
,
8
,
4
,
32
,
32
,
1
,
2
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
16
,
256
,
64
,
8
,
4
,
16
,
16
,
1
,
4
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
32
,
256
,
64
,
8
,
4
,
32
,
32
,
1
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
8
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
<
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
<
GemmKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
<
GemmMNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
<
GemmMNPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
<
Intrawave
,
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
<
Intrawave
,
GemmKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v1_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
<
Intrawave
,
GemmMNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
<
Interwave
,
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instance.cpp
0 → 100755
View file @
a4d67230
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_v2_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm_Streamk_V2
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
<
Interwave
,
GemmKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment