Commit a4522ae3 authored by illsilin's avatar illsilin
Browse files

sync from public repo

parents 1f127242 e0594d08
#!/bin/sh
EXE="$(find . -name tile_smoothquant -type f | head -n 1)"
for pr_i in "fp16" "bf16" ; do
$EXE -prec=$pr_i -m=99 -n=13
$EXE -prec=$pr_i -m=17 -n=16
$EXE -prec=$pr_i -m=1 -n=100
$EXE -prec=$pr_i -m=4 -n=128
$EXE -prec=$pr_i -m=80 -n=127
$EXE -prec=$pr_i -m=22 -n=255 -stride=256
$EXE -prec=$pr_i -m=7 -n=599
$EXE -prec=$pr_i -m=19 -n=512
$EXE -prec=$pr_i -m=33 -n=313 -stride=1000
$EXE -prec=$pr_i -m=11 -n=510
$EXE -prec=$pr_i -m=171 -n=676 -stride=818
$EXE -prec=$pr_i -m=91 -n=636
$EXE -prec=$pr_i -m=12 -n=768 -stride=800
$EXE -prec=$pr_i -m=100 -n=766 -stride=812
$EXE -prec=$pr_i -m=31 -n=1024
$EXE -prec=$pr_i -m=64 -n=1000 -stride=1004
$EXE -prec=$pr_i -m=8 -n=1501
$EXE -prec=$pr_i -m=3 -n=1826
$EXE -prec=$pr_i -m=5 -n=2040
$EXE -prec=$pr_i -m=7 -n=2734
$EXE -prec=$pr_i -m=1 -n=3182
$EXE -prec=$pr_i -m=9 -n=4096
$EXE -prec=$pr_i -m=3 -n=8192
$EXE -prec=$pr_i -m=1 -n=10547
$EXE -prec=$pr_i -m=3 -n=17134
done
#include "ck_tile/host.hpp"
#include "smoothquant.hpp"
#include <cstring>
// different threshold for different dtype
template <typename DataType>
auto get_elimit()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::int8_t>()
{
// due to rounding, int8 quantization might have 1 abs error
double rtol = 1;
double atol = 1;
return ck_tile::make_tuple(rtol, atol);
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "5", "cold iter")
.insert("repeat", "20", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>;
using XDataType = typename TypeConfig::XDataType;
using XScaleDataType = typename TypeConfig::XScaleDataType;
using YScaleDataType = typename TypeConfig::YScaleDataType;
using QYDataType = typename TypeConfig::QYDataType;
using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem xscale_buf(xscale_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem yscale_buf(yscale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem qy_buf(qy_host_dev.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
smoothquant_traits traits{data_type};
smoothquant_args args{x_buf.GetDeviceBuffer(),
xscale_buf.GetDeviceBuffer(),
yscale_buf.GetDeviceBuffer(),
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XScaleDataType) * n +
sizeof(YScaleDataType) * m + sizeof(QYDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
bool pass = true;
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
auto v_xscale = ck_tile::type_convert<ComputeDataType>(xscale_host(n_));
for(int m_ = 0; m_ < m; ++m_)
{
auto v_x = ck_tile::type_convert<ComputeDataType>(x_host(m_, n_));
y_host(m_, n_) = v_x * v_xscale;
}
};
ck_tile::make_ParallelTensorFunctor(f, xscale_host.get_element_space_size())(
std::thread::hardware_concurrency());
}
// yscale
{
ck_tile::HostTensor<YDataType> y_rowwise_amax_host({m});
using ReduceAmax = ck_tile::ReduceOp::AbsMax;
ck_tile::reference_reduce<ComputeDataType, ComputeDataType, YDataType>(
y_host, y_rowwise_amax_host, ReduceAmax{});
auto op = [](const auto& v0) {
return v0 /
ck_tile::type_convert<ComputeDataType>(ck_tile::numeric<QYDataType>::max());
};
ck_tile::reference_unary_elementwise<YDataType, YScaleDataType, ComputeDataType>(
y_rowwise_amax_host, yscale_host_ref, op);
yscale_buf.FromDevice(yscale_host_dev.mData.data());
auto [rtol, atol] = get_elimit<YScaleDataType>();
pass &= ck_tile::check_err(yscale_host_dev,
yscale_host_ref,
std::string("yscale Error: Incorrect results!"),
rtol,
atol);
}
// rowwise quantization
{
ck_tile::reference_rowwise_quantization2d<YDataType, YScaleDataType, QYDataType>(
y_host, yscale_host_ref, qy_host_ref);
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
std::string("qy Error: Incorrect results!"),
rtol,
atol);
}
else
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
std::string("] Error: Incorrect results!"),
rtol,
atol);
}
}
}
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/smoothquant.hpp"
#include <string>
template <typename DataType>
struct SmoothquantTypeConfig;
template <>
struct SmoothquantTypeConfig<ck_tile::half_t>
{
using XDataType = ck_tile::half_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
template <>
struct SmoothquantTypeConfig<ck_tile::bf16_t>
{
using XDataType = ck_tile::bf16_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
// runtime args
struct smoothquant_args : public ck_tile::SmoothquantHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kTwoPass_>
struct smoothquant_traits_
{
using DataType = ck_tile::remove_cvref_t<DataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
static_assert((ThreadPerBlock_M_ * ThreadPerBlock_N_) % warpSize == 0);
static constexpr ck_tile::index_t total_warps =
(ThreadPerBlock_M_ * ThreadPerBlock_N_) / warpSize;
// num of warps along m
static constexpr ck_tile::index_t BlockWarps_M = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return total_warps * (warpSize / ThreadPerBlock_N_);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return total_warps / (ThreadPerBlock_N_ / warpSize);
}
}();
// num of warps along n
static constexpr ck_tile::index_t BlockWarps_N = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return 1;
}
else
{
static_assert(ThreadPerBlock_N_ % warpSize == 0);
return ThreadPerBlock_N_ / warpSize;
}
}();
static constexpr ck_tile::index_t Repeat_M = Repeat_M_;
static constexpr ck_tile::index_t Repeat_N = Repeat_N_;
static constexpr ck_tile::index_t Block_M = Repeat_M_ * ThreadPerBlock_M_;
static constexpr ck_tile::index_t Block_N = Repeat_N_ * ThreadPerBlock_N_ * Vector_N_;
static constexpr ck_tile::index_t Warp_M = ThreadPerBlock_M_ / BlockWarps_M;
static constexpr ck_tile::index_t Warp_N = ThreadPerBlock_N_ / BlockWarps_N * Vector_N_;
using BlockTile = ck_tile::sequence<Block_M, Block_N>;
using BlockWarps = ck_tile::sequence<BlockWarps_M, BlockWarps_N>;
using WarpTile = ck_tile::sequence<Warp_M, Warp_N>;
using Vector = ck_tile::sequence<1, Vector_N_>;
using Shape = ck_tile::Generic2dBlockShape<BlockTile, BlockWarps, WarpTile, Vector>;
static constexpr bool kPadN = kPadN_;
static constexpr bool kTwoPass = kTwoPass_;
};
template <typename Traits_>
float smoothquant_(const ck_tile::stream_config& s, smoothquant_args a);
// This is the public API, will be generated by script
struct smoothquant_traits
{
std::string data_type;
};
float smoothquant(smoothquant_traits, smoothquant_args, const ck_tile::stream_config&);
......@@ -6,3 +6,9 @@ add_subdirectory(01_fmha)
add_subdirectory(02_layernorm2d)
add_subdirectory(03_gemm)
add_subdirectory(04_img2col)
add_subdirectory(05_reduce)
add_subdirectory(06_permute)
add_subdirectory(09_topk_softmax)
add_subdirectory(10_rmsnorm2d)
add_subdirectory(11_add_rmsnorm2d_rdquant)
add_subdirectory(12_smoothquant)
......@@ -237,7 +237,7 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
Args... args)
{
#if CK_TIME_KERNEL
#define MEDIAN 1
#define MEDIAN 0
if(stream_config.time_kernel_)
{
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
......@@ -275,6 +275,14 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
#else
float total_time = 0;
#endif
hipEvent_t start, stop;
hip_check_error(hipEventCreate(&start));
hip_check_error(hipEventCreate(&stop));
hip_check_error(hipDeviceSynchronize());
hip_check_error(hipEventRecord(start, stream_config.stream_id_));
for(int i = 0; i < nrepeat; ++i)
{
if constexpr(!TimePreprocess)
......@@ -282,13 +290,13 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
preprocess();
}
hipEvent_t start, stop;
// hipEvent_t start, stop;
hip_check_error(hipEventCreate(&start));
hip_check_error(hipEventCreate(&stop));
// hip_check_error(hipEventCreate(&start));
// hip_check_error(hipEventCreate(&stop));
hip_check_error(hipDeviceSynchronize());
hip_check_error(hipEventRecord(start, stream_config.stream_id_));
// hip_check_error(hipDeviceSynchronize());
// hip_check_error(hipEventRecord(start, stream_config.stream_id_));
// calculate preprocess time
if constexpr(TimePreprocess)
{
......@@ -299,25 +307,34 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
hip_check_error(hipGetLastError());
// end real kernel
hip_check_error(hipEventRecord(stop, stream_config.stream_id_));
hip_check_error(hipEventSynchronize(stop));
float cur_time = 0;
hip_check_error(hipEventElapsedTime(&cur_time, start, stop));
#if MEDIAN
times.insert(cur_time);
#else
total_time += cur_time;
#endif
// hip_check_error(hipEventRecord(stop, stream_config.stream_id_));
// hip_check_error(hipEventSynchronize(stop));
// float cur_time = 0;
// hip_check_error(hipEventElapsedTime(&cur_time, start, stop));
// #if MEDIAN
// times.insert(cur_time);
// #else
// total_time += cur_time;
// #endif
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << "i: " << i << " cur_time: " << cur_time << std::endl;
// std::cout << "i: " << i << " cur_time: " << cur_time << std::endl;
printf("gemm_args.p_a_grid: %p, gemm_args.p_b_grid:%p\n",
static_cast<const void*>(gemm_args.p_a_grid),
static_cast<const void*>(gemm_args.p_b_grid));
}
}
hip_check_error(hipEventRecord(stop, stream_config.stream_id_));
hip_check_error(hipEventSynchronize(stop));
float cur_time = 0;
hip_check_error(hipEventElapsedTime(&cur_time, start, stop));
#if MEDIAN
times.insert(cur_time);
#else
total_time += cur_time;
#endif
#if MEDIAN
auto mid = times.begin();
......@@ -333,7 +350,11 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
return (*mid + *mid_next) / 2;
}
#else
return total_time / nrepeat;
// return total_time / nrepeat;
hipDeviceProp_t deviceProps;
hip_check_error(hipGetDeviceProperties(&deviceProps, 0));
float preprocess_offset = deviceProps.multiProcessorCount == 80 ? 0.005 : 0.01;
return (total_time - preprocess_offset * nrepeat) / nrepeat;
#endif
}
else
......
......@@ -352,7 +352,7 @@ struct BlockwiseGemmWMMA
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
wmma_gemm.template Run<>(
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
......@@ -406,7 +406,7 @@ struct BlockwiseGemmWMMA
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
wmma_gemm.template Run<>(
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "device_base.hpp"
......@@ -31,13 +31,13 @@ struct DeviceCGemm : public BaseOperator
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual std::size_t GetWorkspaceSize(index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC) = 0;
index_t StrideC) const = 0;
};
template <typename AElementwiseOperation,
......
......@@ -598,10 +598,26 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
[[maybe_unused]] index_t K,
[[maybe_unused]] index_t StrideA,
[[maybe_unused]] index_t StrideB,
index_t StrideC) override
index_t StrideC) const override
{
return 2 * sizeof(CDataType) * GetCElementSpaceSize(M, N, StrideC);
}
std::size_t GetWorkSpaceSize(const BaseArgument* base_arg) const override
{
const auto* parg = dynamic_cast<const Argument*>(base_arg);
if(!parg)
{
std::ostringstream err;
err << "Provided argument pointer is not of an Argument class!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
return GetWorkspaceSize(
parg->M, parg->N, parg->K, parg->StrideA, parg->StrideB, parg->StrideC);
}
};
} // namespace device
......
......@@ -93,12 +93,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -60,12 +60,12 @@ __global__ void
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -117,12 +117,12 @@ __global__ void
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
......
......@@ -98,12 +98,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t c_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -85,9 +85,9 @@ __global__ void
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -121,6 +121,19 @@ __global__ void
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_group_offset[i]; });
if constexpr(is_same_v<AElementwiseOperation, element_wise::DynamicUnaryOp>)
{
a_element_op.InitUnaryOpPtrOnDevice();
}
if constexpr(is_same_v<BElementwiseOperation, element_wise::DynamicUnaryOp>)
{
b_element_op.InitUnaryOpPtrOnDevice();
}
if constexpr(is_same_v<CDEElementwiseOperation, element_wise::DynamicUnaryOp>)
{
cde_element_op.InitUnaryOpPtrOnDevice();
}
if constexpr(isMultiA || isMultiB)
{
AsPointer p_as_grid_grp;
......
......@@ -272,6 +272,26 @@ struct MultiplyMultiply
e = ck::type_convert<ck::bhalf_t>(x0_f);
}
template <>
__host__ __device__ constexpr void operator()<ck::half_t, int, ck::half_t, ck::half_t>(
ck::half_t& e, const int& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const float x0_f =
ck::type_convert<float>(c) * ck::type_convert<float>(d0) * ck::type_convert<float>(d1);
e = ck::type_convert<ck::half_t>(x0_f);
}
template <>
__host__ __device__ constexpr void operator()<ck::bhalf_t, int, float, float>(
ck::bhalf_t& e, const int& c, const float& d0, const float& d1) const
{
const float x0_f =
ck::type_convert<float>(c) * ck::type_convert<float>(d0) * ck::type_convert<float>(d1);
e = ck::type_convert<ck::bhalf_t>(x0_f);
}
};
struct MultiplyAddFastGelu
......@@ -385,7 +405,7 @@ struct ScaleAddScaleAddRelu
const float& d1) const
{
const float x = c * alpha1_ + alpha2_ * d0 + d1;
Relu{}.template operator()<float>(e, x);
e = x > 0 ? x : 0;
}
template <>
......@@ -396,7 +416,7 @@ struct ScaleAddScaleAddRelu
type_convert<float>(d1);
float result = 0;
Relu{}.template operator()<float>(result, x);
result = x > 0 ? x : 0;
e = type_convert<half_t>(result);
}
......@@ -409,7 +429,7 @@ struct ScaleAddScaleAddRelu
type_convert<float>(d1);
float result = 0;
Relu{}.template operator()<float>(result, x);
result = x > 0 ? x : 0;
e = type_convert<bhalf_t>(result);
}
......@@ -421,7 +441,7 @@ struct ScaleAddScaleAddRelu
const float x = type_convert<float>(c) * alpha1_ + alpha2_ * d0 + d1;
float result = 0;
Relu{}.template operator()<float>(result, x);
result = x > 0 ? x : 0;
e = type_convert<int8_t>(result);
}
......
......@@ -7,11 +7,38 @@
#include "ck/utility/math.hpp"
#include "ck/utility/math_v2.hpp"
#include "ck/utility/type_convert.hpp"
#include <cassert>
namespace ck {
namespace tensor_operation {
namespace element_wise {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
struct UnaryOpBase
{
public:
__host__ __device__ ~UnaryOpBase() = default;
__host__ __device__ constexpr UnaryOpBase() = default;
__host__ __device__ constexpr UnaryOpBase(const UnaryOpBase&) = default;
__host__ __device__ constexpr UnaryOpBase(UnaryOpBase&&) = default;
__host__ __device__ UnaryOpBase& operator=(const UnaryOpBase&) = default;
__host__ __device__ UnaryOpBase& operator=(UnaryOpBase&&) = default;
__host__ __device__ virtual inline void operator()(float& y, const float& x) const = 0;
__host__ __device__ virtual inline void operator()(double& y, const double& x) const = 0;
__host__ __device__ virtual inline void operator()(int32_t& y, const int32_t& x) const = 0;
__host__ __device__ virtual inline void operator()(int8_t& y, const int8_t& x) const = 0;
__host__ __device__ virtual inline void operator()(half_t& y, const half_t& x) const = 0;
__host__ __device__ virtual inline void operator()(bhalf_t& y, const bhalf_t& x) const = 0;
};
struct PassThroughPack2
{
template <typename Y, typename X>
......@@ -25,17 +52,30 @@ struct PassThroughPack2
constexpr const static bool is_pack2_invocable = true;
};
struct PassThrough
struct PassThrough final : public UnaryOpBase
{
__host__ __device__ constexpr PassThrough() = default;
__host__ __device__ constexpr PassThrough(const PassThrough&) = default;
__host__ __device__ constexpr PassThrough(PassThrough&&) = default;
__host__ __device__ PassThrough& operator=(const PassThrough&) = default;
__host__ __device__ PassThrough& operator=(PassThrough&&) = default;
__host__ __device__ ~PassThrough() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final { y = x; }
__host__ __device__ inline void operator()(double& y, const double& x) const final { y = x; }
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final { y = x; }
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final { y = x; }
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final { y = x; }
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final { y = x; }
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const;
template <>
__host__ __device__ void operator()<double, double>(double& y, const double& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<float, double>(float& y, const double& x) const
{
......@@ -48,36 +88,12 @@ struct PassThrough
y = type_convert<double>(x);
}
template <>
__host__ __device__ void operator()<float, float>(float& y, const float& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<half_t, half_t>(half_t& y, const half_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<half_t, float>(half_t& y, const float& x) const
{
y = type_convert<half_t>(x);
}
template <>
__host__ __device__ void operator()<bhalf_t, bhalf_t>(bhalf_t& y, const bhalf_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<int32_t, int32_t>(int32_t& y, const int32_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<bhalf_t, float>(bhalf_t& y, const float& x) const
{
......@@ -102,12 +118,6 @@ struct PassThrough
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<int8_t, int8_t>(int8_t& y, const int8_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<half_t, int8_t>(half_t& y, const int8_t& x) const
{
......@@ -407,17 +417,48 @@ struct UnarySquare
};
};
struct UnaryAbs
struct UnaryAbs final : public UnaryOpBase
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ constexpr UnaryAbs() = default;
__host__ __device__ constexpr UnaryAbs(const UnaryAbs&) = default;
__host__ __device__ constexpr UnaryAbs(UnaryAbs&&) = default;
__host__ __device__ UnaryAbs& operator=(const UnaryAbs&) = default;
__host__ __device__ UnaryAbs& operator=(UnaryAbs&&) = default;
__host__ __device__ ~UnaryAbs() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
y = ck::math::abs(x);
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
y = ck::math::abs(x);
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
y = ck::math::abs(x);
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
y = ck::math::abs(x);
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
y = ck::math::abs(x);
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
y = ck::math::abs(x);
}
__host__ __device__ void operator()(f8_t& y, const f8_t& x) const
{
y = ck::type_convert<f8_t>(ck::math::abs(ck::type_convert<float>(x)));
};
};
......@@ -433,20 +474,41 @@ struct UnarySqrt
};
};
struct Relu
struct Relu final : public UnaryOpBase
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ constexpr Relu() = default;
__host__ __device__ constexpr Relu(const Relu&) = default;
__host__ __device__ constexpr Relu(Relu&&) = default;
__host__ __device__ Relu& operator=(const Relu&) = default;
__host__ __device__ Relu& operator=(Relu&&) = default;
__host__ __device__ ~Relu() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
y = x > 0 ? x : 0;
}
template <>
__host__ __device__ void operator()(bhalf_t& y, const bhalf_t& x) const
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
y = x > 0 ? x : 0;
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
y = x > 0 ? x : 0;
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
y = x > 0 ? x : 0;
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
y = x > 0 ? x : 0;
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
float x_f32 = ck::type_convert<float>(x);
float y_f32 = x_f32 > 0 ? x_f32 : 0;
......@@ -593,18 +655,52 @@ struct Gelu
}
};
struct Sigmoid
struct Sigmoid final : public UnaryOpBase
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ constexpr Sigmoid() = default;
__host__ __device__ constexpr Sigmoid(const Sigmoid&) = default;
__host__ __device__ constexpr Sigmoid(Sigmoid&&) = default;
__host__ __device__ Sigmoid& operator=(const Sigmoid&) = default;
__host__ __device__ Sigmoid& operator=(Sigmoid&&) = default;
__host__ __device__ ~Sigmoid() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value,
"Data type is not supported by this operation!");
constexpr T one = type_convert<T>(1);
y = one / (one + ck::math::exp(-x));
};
constexpr float one = type_convert<float>(1);
y = one / (one + ck::math::exp(-x));
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
constexpr double one = type_convert<double>(1);
y = one / (one + ck::math::exp(-x));
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
constexpr int32_t one = type_convert<int32_t>(1);
y = one / (one + ck::math::exp(-x));
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
constexpr int8_t one = type_convert<int8_t>(1);
y = one / (one + ck::math::exp(-x));
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
constexpr half_t one = type_convert<half_t>(1);
y = one / (one + ck::math::exp(-x));
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
constexpr float one = type_convert<float>(1);
float x_f32 = ck::type_convert<float>(x);
float y_f32 = one / (one + ck::math::exp(x_f32));
y = ck::type_convert<bhalf_t>(y_f32);
}
};
struct Silu
......@@ -620,18 +716,44 @@ struct Silu
};
};
struct TanH
struct TanH final : public UnaryOpBase
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ constexpr TanH() = default;
__host__ __device__ constexpr TanH(const TanH&) = default;
__host__ __device__ constexpr TanH(TanH&&) = default;
__host__ __device__ TanH& operator=(const TanH&) = default;
__host__ __device__ TanH& operator=(TanH&&) = default;
__host__ __device__ ~TanH() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value,
"Data type is not supported by this operation!");
y = ck::math::tanh(x);
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
y = ck::math::tanh(x);
};
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
y = ck::math::tanh(x);
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
y = ck::math::tanh(x);
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
y = ck::math::tanh(x);
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
y = ck::math::tanh(x);
}
};
struct ACos
......@@ -872,138 +994,418 @@ struct Rcp
};
};
struct Swish
struct Swish final : public UnaryOpBase
{
Swish(float beta = 1.0f) : beta_(beta) {}
__host__ __device__ constexpr Swish(const Swish&) = default;
__host__ __device__ constexpr Swish(Swish&&) = default;
__host__ __device__ ~Swish() = default;
__host__ __device__ Swish(float beta = 1.0f) : beta_(beta) {}
__host__ __device__ float get_beta() const { return beta_; }
const float beta_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<float>(x / (1.f + ck::math::exp(bx)));
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<double>(x / (1.f + ck::math::exp(bx)));
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<int32_t>(x / (1.f + ck::math::exp(bx)));
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<int8_t>(x / (1.f + ck::math::exp(bx)));
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<half_t>(x / (1.f + ck::math::exp(bx)));
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
float bx = -beta_ * type_convert<float>(x);
y = type_convert<bhalf_t>(x / (1.f + ck::math::exp(bx)));
}
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
static_assert(is_same<X, float>::value || is_same<X, double>::value ||
is_same<X, ck::half_t>::value,
is_same<X, half_t>::value,
"Data type is not supported by this operation!");
static_assert(is_same<Y, float>::value || is_same<Y, double>::value ||
is_same<Y, ck::half_t>::value,
is_same<Y, half_t>::value,
"Data type is not supported by this operation!");
float bx = -beta_ * type_convert<float>(x);
y = type_convert<Y>(x / (1.f + ck::math::exp(bx)));
};
const float beta_;
}
};
struct SoftRelu
struct SoftRelu final : public UnaryOpBase
{
SoftRelu(float alpha = 1.f) : alpha_(alpha){};
__host__ __device__ constexpr SoftRelu(const SoftRelu&) = default;
__host__ __device__ constexpr SoftRelu(SoftRelu&&) = default;
__host__ __device__ ~SoftRelu() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ SoftRelu(float alpha = 1.0f) : alpha_(alpha) {}
__host__ __device__ float get_alpha() const { return alpha_; }
const float alpha_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
constexpr T one = type_convert<T>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
float casted_alpha = type_convert<float>(alpha_);
constexpr float one = type_convert<float>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
constexpr double one = type_convert<double>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
constexpr int32_t one = type_convert<int32_t>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
constexpr int8_t one = type_convert<int8_t>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
constexpr half_t one = type_convert<half_t>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
bhalf_t casted_alpha = type_convert<bhalf_t>(alpha_);
constexpr bhalf_t one = type_convert<bhalf_t>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
const float alpha_;
};
struct Power
struct Power final : public UnaryOpBase
{
Power(float alpha = 0.f, float beta = 1.f, float gamma = 2.f)
: alpha_(alpha), beta_(beta), gamma_(gamma){};
__host__ __device__ constexpr Power(const Power&) = default;
__host__ __device__ constexpr Power(Power&&) = default;
__host__ __device__ ~Power() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ Power(float alpha = 0.f, float beta = 1.f, float gamma = 2.f)
: alpha_(alpha), beta_(beta), gamma_(gamma)
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
T casted_beta = type_convert<T>(beta_);
T casted_gamma = type_convert<T>(gamma_);
T shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ float get_alpha() const { return alpha_; }
__host__ __device__ float get_beta() const { return beta_; }
__host__ __device__ float get_gamma() const { return gamma_; }
const float alpha_;
const float beta_;
const float gamma_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
float casted_alpha = type_convert<float>(alpha_);
float casted_beta = type_convert<float>(beta_);
float casted_gamma = type_convert<float>(gamma_);
float shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
double casted_beta = type_convert<double>(beta_);
double casted_gamma = type_convert<double>(gamma_);
double shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
int32_t casted_beta = type_convert<int32_t>(beta_);
int32_t casted_gamma = type_convert<int32_t>(gamma_);
int32_t shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
int8_t casted_beta = type_convert<int8_t>(beta_);
int8_t casted_gamma = type_convert<int8_t>(gamma_);
int8_t shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
half_t casted_beta = type_convert<half_t>(beta_);
half_t casted_gamma = type_convert<half_t>(gamma_);
half_t shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
bhalf_t casted_alpha = type_convert<bhalf_t>(alpha_);
bhalf_t casted_beta = type_convert<bhalf_t>(beta_);
bhalf_t casted_gamma = type_convert<bhalf_t>(gamma_);
bhalf_t shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
};
struct ClippedRelu
struct ClippedRelu final : public UnaryOpBase
{
ClippedRelu(float alpha = 0.f, float beta = 1.f) : alpha_(alpha), beta_(beta){};
__host__ __device__ constexpr ClippedRelu(const ClippedRelu&) = default;
__host__ __device__ constexpr ClippedRelu(ClippedRelu&&) = default;
__host__ __device__ ~ClippedRelu() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ ClippedRelu(float alpha = 0.f, float beta = 1.f)
: alpha_(alpha), beta_(beta)
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
T casted_beta = type_convert<T>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ float get_alpha() const { return alpha_; }
__host__ __device__ float get_beta() const { return beta_; }
const float alpha_;
const float beta_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
float casted_alpha = type_convert<float>(alpha_);
float casted_beta = type_convert<float>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
double casted_beta = type_convert<double>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
int32_t casted_beta = type_convert<int32_t>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
int8_t casted_beta = type_convert<int8_t>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
half_t casted_beta = type_convert<half_t>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
bhalf_t casted_alpha = type_convert<bhalf_t>(alpha_);
bhalf_t casted_beta = type_convert<bhalf_t>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
};
struct LeakyRelu
struct LeakyRelu final : public UnaryOpBase
{
LeakyRelu(float alpha = 0.01f) : alpha_(alpha){};
__host__ __device__ constexpr LeakyRelu(const LeakyRelu&) = default;
__host__ __device__ constexpr LeakyRelu(LeakyRelu&&) = default;
__host__ __device__ ~LeakyRelu() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ LeakyRelu(float alpha = 0.f) : alpha_(alpha) {}
__host__ __device__ float get_alpha() const { return alpha_; }
const float alpha_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
float casted_alpha = type_convert<float>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
__host__ __device__ inline void operator()([[maybe_unused]] bhalf_t& y,
[[maybe_unused]] const bhalf_t& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
const float alpha_;
};
struct Elu
struct Elu final : public UnaryOpBase
{
Elu(float alpha = 1.f) : alpha_(alpha){};
__host__ __device__ constexpr Elu(const Elu&) = default;
__host__ __device__ constexpr Elu(Elu&&) = default;
__host__ __device__ ~Elu() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ Elu(float alpha = 1.f) : alpha_(alpha) {}
__host__ __device__ float get_alpha() const { return alpha_; }
const float alpha_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
float casted_alpha = type_convert<float>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
bhalf_t casted_alpha = type_convert<bhalf_t>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
const float alpha_;
};
struct Logistic
struct Logistic final : public UnaryOpBase
{
Logistic(float alpha = 1.f) : alpha_(alpha){};
__host__ __device__ constexpr Logistic(const Logistic&) = default;
__host__ __device__ constexpr Logistic(Logistic&&) = default;
__host__ __device__ ~Logistic() = default;
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
__host__ __device__ Logistic(float alpha = 1.0f) : alpha_(alpha) {}
__host__ __device__ float get_alpha() const { return alpha_; }
const float alpha_;
__host__ __device__ inline void operator()(float& y, const float& x) const final
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
constexpr T one = type_convert<T>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
float casted_alpha = type_convert<float>(alpha_);
constexpr float one = type_convert<float>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
__host__ __device__ inline void operator()(double& y, const double& x) const final
{
double casted_alpha = type_convert<double>(alpha_);
constexpr double one = type_convert<double>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
__host__ __device__ inline void operator()(int32_t& y, const int32_t& x) const final
{
int32_t casted_alpha = type_convert<int32_t>(alpha_);
constexpr int32_t one = type_convert<int32_t>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
__host__ __device__ inline void operator()(int8_t& y, const int8_t& x) const final
{
int8_t casted_alpha = type_convert<int8_t>(alpha_);
constexpr int8_t one = type_convert<int8_t>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
__host__ __device__ inline void operator()(half_t& y, const half_t& x) const final
{
half_t casted_alpha = type_convert<half_t>(alpha_);
constexpr half_t one = type_convert<half_t>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
__host__ __device__ inline void operator()(bhalf_t& y, const bhalf_t& x) const final
{
bhalf_t casted_alpha = type_convert<bhalf_t>(alpha_);
constexpr bhalf_t one = type_convert<bhalf_t>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
const float alpha_;
};
struct ConvInvscale
......@@ -1068,7 +1470,7 @@ struct ConvScaleRelu
__host__ __device__ void operator()<f8_t, float>(f8_t& e, const float& c) const
{
float x;
Relu{}.template operator()<float>(x, c * scale_in_ * scale_wei_);
Relu{}(x, c * scale_in_ * scale_wei_);
e = type_convert<f8_t>(x * scale_out_);
};
......@@ -1147,6 +1549,255 @@ struct FastNumericArrayConverter<uint8_t, ck::half_t, N>
__device__ OutputArray operator()(InputArray const& Input) { return convert(Input); }
};
struct DynamicUnaryOp
{
DynamicUnaryOp& operator=(const DynamicUnaryOp& other)
{
if(this != &other)
{
unary_op_ptr_ = other.unary_op_ptr_;
unary_op_type_ = other.unary_op_type_;
}
return *this;
}
__host__ __device__ DynamicUnaryOp() = delete;
__host__ __device__ DynamicUnaryOp(const Swish& swish)
{
unary_op_type_ = UnaryOpType::Swish;
beta = swish.get_beta();
}
__host__ __device__ DynamicUnaryOp(const Swish&& swish)
{
unary_op_type_ = UnaryOpType::Swish;
beta = swish.get_beta();
}
__host__ __device__ DynamicUnaryOp(const Sigmoid&) { unary_op_type_ = UnaryOpType::Sigmoid; }
__host__ __device__ DynamicUnaryOp(const Sigmoid&&) { unary_op_type_ = UnaryOpType::Sigmoid; }
__host__ __device__ DynamicUnaryOp(const PassThrough&)
{
unary_op_type_ = UnaryOpType::PassThrough;
}
__host__ __device__ DynamicUnaryOp(const PassThrough&&)
{
unary_op_type_ = UnaryOpType::PassThrough;
}
__host__ __device__ DynamicUnaryOp(const Logistic& logistic)
{
unary_op_type_ = UnaryOpType::Logistic;
alpha = logistic.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const Logistic&& logistic)
{
unary_op_type_ = UnaryOpType::Logistic;
alpha = logistic.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const TanH&) { unary_op_type_ = UnaryOpType::TanH; }
__host__ __device__ DynamicUnaryOp(const TanH&&) { unary_op_type_ = UnaryOpType::TanH; }
__host__ __device__ DynamicUnaryOp(const Relu&) { unary_op_type_ = UnaryOpType::Relu; }
__host__ __device__ DynamicUnaryOp(const Relu&&) { unary_op_type_ = UnaryOpType::Relu; }
__host__ __device__ DynamicUnaryOp(const SoftRelu& softrelu)
{
unary_op_type_ = UnaryOpType::SoftRelu;
alpha = softrelu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const SoftRelu&& softrelu)
{
unary_op_type_ = UnaryOpType::SoftRelu;
alpha = softrelu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const UnaryAbs&) { unary_op_type_ = UnaryOpType::UnaryAbs; }
__host__ __device__ DynamicUnaryOp(const UnaryAbs&&) { unary_op_type_ = UnaryOpType::UnaryAbs; }
__host__ __device__ DynamicUnaryOp(const Power& pow)
{
unary_op_type_ = UnaryOpType::Power;
alpha = pow.get_alpha();
beta = pow.get_beta();
gamma = pow.get_gamma();
}
__host__ __device__ DynamicUnaryOp(const Power&& pow)
{
unary_op_type_ = UnaryOpType::Power;
alpha = pow.get_alpha();
beta = pow.get_beta();
gamma = pow.get_gamma();
}
__host__ __device__ DynamicUnaryOp(const ClippedRelu& clippedrelu)
{
unary_op_type_ = UnaryOpType::ClippedRelu;
alpha = clippedrelu.get_alpha();
beta = clippedrelu.get_beta();
}
__host__ __device__ DynamicUnaryOp(const ClippedRelu&& clippedrelu)
{
unary_op_type_ = UnaryOpType::ClippedRelu;
alpha = clippedrelu.get_alpha();
beta = clippedrelu.get_beta();
}
__host__ __device__ DynamicUnaryOp(const LeakyRelu& leakyrelu)
{
unary_op_type_ = UnaryOpType::LeakyRelu;
alpha = leakyrelu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const LeakyRelu&& leakyrelu)
{
unary_op_type_ = UnaryOpType::LeakyRelu;
alpha = leakyrelu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const Elu& elu)
{
unary_op_type_ = UnaryOpType::Elu;
alpha = elu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const Elu&& elu)
{
unary_op_type_ = UnaryOpType::Elu;
alpha = elu.get_alpha();
}
__host__ __device__ DynamicUnaryOp(const DynamicUnaryOp& dynamic_op)
: unary_op_type_(dynamic_op.unary_op_type_),
unary_op_ptr_(dynamic_op.unary_op_ptr_),
alpha(dynamic_op.alpha),
beta(dynamic_op.beta),
gamma(dynamic_op.gamma)
{
}
__host__ __device__ ~DynamicUnaryOp()
{
switch(unary_op_type_)
{
case(UnaryOpType::Swish): delete static_cast<Swish*>(unary_op_ptr_); break;
case(UnaryOpType::Sigmoid): delete static_cast<Sigmoid*>(unary_op_ptr_); break;
case(UnaryOpType::PassThrough): delete static_cast<PassThrough*>(unary_op_ptr_); break;
case(UnaryOpType::Logistic): delete static_cast<Logistic*>(unary_op_ptr_); break;
case(UnaryOpType::TanH): delete static_cast<TanH*>(unary_op_ptr_); break;
case(UnaryOpType::Relu): delete static_cast<Relu*>(unary_op_ptr_); break;
case(UnaryOpType::SoftRelu): delete static_cast<SoftRelu*>(unary_op_ptr_); break;
case(UnaryOpType::UnaryAbs): delete static_cast<UnaryAbs*>(unary_op_ptr_); break;
case(UnaryOpType::Power): delete static_cast<Power*>(unary_op_ptr_); break;
case(UnaryOpType::ClippedRelu): delete static_cast<ClippedRelu*>(unary_op_ptr_); break;
case(UnaryOpType::LeakyRelu): delete static_cast<LeakyRelu*>(unary_op_ptr_); break;
case(UnaryOpType::Elu): delete static_cast<Elu*>(unary_op_ptr_); break;
default: break;
}
}
__device__ void InitUnaryOpPtrOnDevice()
{
switch(unary_op_type_)
{
case(UnaryOpType::Swish): unary_op_ptr_ = new Swish(beta); break;
case(UnaryOpType::Sigmoid): unary_op_ptr_ = new Sigmoid; break;
case(UnaryOpType::PassThrough): unary_op_ptr_ = new PassThrough; break;
case(UnaryOpType::Logistic): unary_op_ptr_ = new Logistic(alpha); break;
case(UnaryOpType::TanH): unary_op_ptr_ = new TanH; break;
case(UnaryOpType::Relu): unary_op_ptr_ = new Relu; break;
case(UnaryOpType::SoftRelu): unary_op_ptr_ = new SoftRelu(alpha); break;
case(UnaryOpType::UnaryAbs): unary_op_ptr_ = new UnaryAbs; break;
case(UnaryOpType::Power): unary_op_ptr_ = new Power(alpha, beta, gamma); break;
case(UnaryOpType::ClippedRelu): unary_op_ptr_ = new ClippedRelu(alpha, beta); break;
case(UnaryOpType::LeakyRelu): unary_op_ptr_ = new LeakyRelu(alpha); break;
case(UnaryOpType::Elu): unary_op_ptr_ = new Elu(alpha); break;
default: unary_op_ptr_ = nullptr; break;
}
}
template <typename Y, typename X>
__device__ void operator()(Y& y, const X& x) const
{
isSupported<X, Y>();
unary_op_ptr_->operator()(y, x);
}
template <typename Y, typename X>
__host__ void operator()(Y& y, const X& x) const
{
isSupported<X, Y>();
switch(unary_op_type_)
{
case(UnaryOpType::Swish): Swish{}.operator()(y, x); break;
case(UnaryOpType::Sigmoid): Sigmoid{}.operator()(y, x); break;
case(UnaryOpType::PassThrough): PassThrough{}.operator()(y, x); break;
case(UnaryOpType::Logistic): Logistic{}.operator()(y, x); break;
case(UnaryOpType::TanH): TanH{}.operator()(y, x); break;
case(UnaryOpType::Relu): Relu{}.operator()(y, x); break;
case(UnaryOpType::SoftRelu): SoftRelu{}.operator()(y, x); break;
case(UnaryOpType::UnaryAbs): UnaryAbs{}.operator()(y, x); break;
case(UnaryOpType::Power): Power{}.operator()(y, x); break;
case(UnaryOpType::ClippedRelu): ClippedRelu{}.operator()(y, x); break;
case(UnaryOpType::LeakyRelu): LeakyRelu{}.operator()(y, x); break;
case(UnaryOpType::Elu): Elu{}.operator()(y, x); break;
default: break;
}
}
template <typename X, typename Y>
__device__ __host__ constexpr void isSupported() const
{
static_assert(std::is_same<X, Y>::value, "X and Y must be of the same type");
static_assert(is_same<X, float>::value || is_same<X, double>::value ||
is_same<X, bhalf_t>::value || is_same<X, half_t>::value ||
is_same<X, int32_t>::value || is_same<X, int8_t>::value,
"Data type is not supported by this operation!");
}
private:
enum class UnaryOpType
{
Swish,
Sigmoid,
PassThrough,
Logistic,
TanH,
Relu,
SoftRelu,
UnaryAbs,
Power,
ClippedRelu,
LeakyRelu,
Elu
};
public:
UnaryOpType unary_op_type_;
UnaryOpBase* unary_op_ptr_ = nullptr;
float alpha;
float beta;
float gamma;
};
#pragma clang diagnostic pop
} // namespace element_wise
} // namespace tensor_operation
} // namespace ck
......@@ -60,12 +60,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -155,12 +155,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -121,10 +121,10 @@ struct GridwiseTensorRearrange
__builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
// Global Memory
const index_t a_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const index_t c_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx));
const index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx)));
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global + a_batch_offset, in_grid_desc.GetElementSpaceSize());
......
......@@ -327,12 +327,12 @@ struct intrin_mfma_i32_16x16x32i8<16, 16>
__device__ static void Run(const int8x8_t& reg_a, const int8x8_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<int32x4_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_i32_16x16x32i8(bit_cast<int64_t>(reg_a),
bit_cast<int64_t>(reg_b),
reg_c.template AsType<int32x4_t>()[Number<0>{}],
0,
0,
0);
__builtin_amdgcn_mfma_i32_16x16x32_i8(bit_cast<int64_t>(reg_a),
bit_cast<int64_t>(reg_b),
reg_c.template AsType<int32x4_t>()[Number<0>{}],
0,
0,
0);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -13,8 +13,24 @@ using int4_t = _BitInt(4);
using f8_t = _BitInt(8);
using bf8_t = unsigned _BitInt(8);
inline constexpr auto next_pow2(uint32_t x)
{
// Precondition: x > 1.
return x > 1u ? (1u << (32u - __builtin_clz(x - 1u))) : x;
}
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_t, bf8_t, bool
template <typename T>
inline constexpr bool is_native_type()
{
return is_same<T, double>::value || is_same<T, float>::value || is_same<T, half_t>::value ||
is_same<T, bhalf_t>::value || is_same<T, int32_t>::value || is_same<T, int8_t>::value ||
is_same<T, uint8_t>::value || is_same<T, f8_t>::value || is_same<T, bf8_t>::value ||
is_same<T, bool>::value;
}
// vector_type
template <typename T, index_t N>
template <typename T, index_t N, typename Enable = void>
struct vector_type;
// Caution: DO NOT REMOVE
......@@ -171,7 +187,7 @@ struct scalar_type<bool>
};
template <typename T>
struct vector_type<T, 1>
struct vector_type<T, 1, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
using type = d1_t;
......@@ -189,7 +205,8 @@ struct vector_type<T, 1>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
......@@ -197,7 +214,8 @@ struct vector_type<T, 1>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
......@@ -205,7 +223,7 @@ struct vector_type<T, 1>
__device__ int static err = 0;
template <typename T>
struct vector_type<T, 2>
struct vector_type<T, 2, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -226,7 +244,8 @@ struct vector_type<T, 2>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -245,7 +264,8 @@ struct vector_type<T, 2>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value, "wrong!");
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -263,7 +283,7 @@ struct vector_type<T, 2>
};
template <typename T>
struct vector_type<T, 4>
struct vector_type<T, 4, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -287,7 +307,7 @@ struct vector_type<T, 4>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -311,7 +331,7 @@ struct vector_type<T, 4>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -333,7 +353,7 @@ struct vector_type<T, 4>
};
template <typename T>
struct vector_type<T, 8>
struct vector_type<T, 8, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -360,7 +380,7 @@ struct vector_type<T, 8>
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -389,7 +409,7 @@ struct vector_type<T, 8>
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -415,7 +435,7 @@ struct vector_type<T, 8>
};
template <typename T>
struct vector_type<T, 16>
struct vector_type<T, 16, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -445,7 +465,7 @@ struct vector_type<T, 16>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -479,7 +499,7 @@ struct vector_type<T, 16>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -509,7 +529,7 @@ struct vector_type<T, 16>
};
template <typename T>
struct vector_type<T, 32>
struct vector_type<T, 32, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -541,7 +561,7 @@ struct vector_type<T, 32>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -579,7 +599,7 @@ struct vector_type<T, 32>
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -613,7 +633,7 @@ struct vector_type<T, 32>
};
template <typename T>
struct vector_type<T, 64>
struct vector_type<T, 64, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -648,7 +668,7 @@ struct vector_type<T, 64>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -691,7 +711,7 @@ struct vector_type<T, 64>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -729,7 +749,7 @@ struct vector_type<T, 64>
};
template <typename T>
struct vector_type<T, 128>
struct vector_type<T, 128, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -766,7 +786,7 @@ struct vector_type<T, 128>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -813,7 +833,7 @@ struct vector_type<T, 128>
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -855,7 +875,7 @@ struct vector_type<T, 128>
};
template <typename T>
struct vector_type<T, 256>
struct vector_type<T, 256, typename std::enable_if_t<is_native_type<T>()>>
{
using d1_t = T;
typedef T d2_t __attribute__((ext_vector_type(2)));
......@@ -894,7 +914,7 @@ struct vector_type<T, 256>
is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value || is_same<X, d256_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -945,7 +965,7 @@ struct vector_type<T, 256>
is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value || is_same<X, d128_t>::value || is_same<X, d256_t>::value,
"wrong!");
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
......@@ -990,177 +1010,752 @@ struct vector_type<T, 256>
}
};
using int64_t = long;
// fp64
using double2_t = typename vector_type<double, 2>::type;
using double4_t = typename vector_type<double, 4>::type;
// fp32
using float2_t = typename vector_type<float, 2>::type;
using float4_t = typename vector_type<float, 4>::type;
using float8_t = typename vector_type<float, 8>::type;
using float16_t = typename vector_type<float, 16>::type;
using float32_t = typename vector_type<float, 32>::type;
using float64_t = typename vector_type<float, 64>::type;
// fp16
using half2_t = typename vector_type<half_t, 2>::type;
using half4_t = typename vector_type<half_t, 4>::type;
using half8_t = typename vector_type<half_t, 8>::type;
using half16_t = typename vector_type<half_t, 16>::type;
using half32_t = typename vector_type<half_t, 32>::type;
using half64_t = typename vector_type<half_t, 64>::type;
// bfp16
using bhalf2_t = typename vector_type<bhalf_t, 2>::type;
using bhalf4_t = typename vector_type<bhalf_t, 4>::type;
using bhalf8_t = typename vector_type<bhalf_t, 8>::type;
using bhalf16_t = typename vector_type<bhalf_t, 16>::type;
using bhalf32_t = typename vector_type<bhalf_t, 32>::type;
using bhalf64_t = typename vector_type<bhalf_t, 64>::type;
// i32
using int32x2_t = typename vector_type<int32_t, 2>::type;
using int32x4_t = typename vector_type<int32_t, 4>::type;
using int32x8_t = typename vector_type<int32_t, 8>::type;
using int32x16_t = typename vector_type<int32_t, 16>::type;
using int32x32_t = typename vector_type<int32_t, 32>::type;
using int32x64_t = typename vector_type<int32_t, 64>::type;
// i8
using int8x2_t = typename vector_type<int8_t, 2>::type;
using int8x4_t = typename vector_type<int8_t, 4>::type;
using int8x8_t = typename vector_type<int8_t, 8>::type;
using int8x16_t = typename vector_type<int8_t, 16>::type;
using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type;
template <typename T, index_t N>
struct non_native_vector_base
{
using type = non_native_vector_base<T, N>;
// f8
using f8x2_t = typename vector_type<f8_t, 2>::type;
using f8x4_t = typename vector_type<f8_t, 4>::type;
using f8x8_t = typename vector_type<f8_t, 8>::type;
using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
using f8x64_t = typename vector_type<f8_t, 64>::type;
__host__ __device__ non_native_vector_base() = default;
__host__ __device__ non_native_vector_base(const type&) = default;
__host__ __device__ non_native_vector_base(type&&) = default;
__host__ __device__ ~non_native_vector_base() = default;
// bf8
using bf8x2_t = typename vector_type<bf8_t, 2>::type;
using bf8x4_t = typename vector_type<bf8_t, 4>::type;
using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using bf8x16_t = typename vector_type<bf8_t, 16>::type;
using bf8x32_t = typename vector_type<bf8_t, 32>::type;
using bf8x64_t = typename vector_type<bf8_t, 64>::type;
// u8
// i8
using uint8x2_t = typename vector_type<uint8_t, 2>::type;
using uint8x4_t = typename vector_type<uint8_t, 4>::type;
using uint8x8_t = typename vector_type<uint8_t, 8>::type;
using uint8x16_t = typename vector_type<uint8_t, 16>::type;
using uint8x32_t = typename vector_type<uint8_t, 32>::type;
using uint8x64_t = typename vector_type<uint8_t, 64>::type;
T d[N];
};
// non-native vector_type implementation
template <typename T>
struct NumericLimits
struct vector_type<T, 1, typename std::enable_if_t<!is_native_type<T>()>>
{
__host__ __device__ static constexpr T Min() { return std::numeric_limits<T>::min(); }
using d1_t = T;
using type = d1_t;
__host__ __device__ static constexpr T Max() { return std::numeric_limits<T>::max(); }
union alignas(next_pow2(1 * sizeof(T)))
{
d1_t d1_;
StaticallyIndexedArray<d1_t, 1> d1x1_;
} data_;
__host__ __device__ static constexpr T Lowest() { return std::numeric_limits<T>::lowest(); }
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ static constexpr T QuietNaN()
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
return std::numeric_limits<T>::quiet_NaN();
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
__host__ __device__ static constexpr T Infinity() { return std::numeric_limits<T>::infinity(); }
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
}
};
template <>
struct NumericLimits<half_t>
template <typename T>
struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
{
static constexpr unsigned short binary_min = 0x0400;
static constexpr unsigned short binary_max = 0x7BFF;
static constexpr unsigned short binary_lowest = 0xFBFF;
static constexpr unsigned short binary_qnan = 0x7FFF;
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
__host__ __device__ static constexpr half_t Min() { return bit_cast<half_t>(binary_min); }
using type = d2_t;
__host__ __device__ static constexpr half_t Max() { return bit_cast<half_t>(binary_max); }
union alignas(next_pow2(2 * sizeof(T)))
{
d2_t d2_;
StaticallyIndexedArray<d1_t, 2> d1x2_;
StaticallyIndexedArray<d2_t, 1> d2x1_;
} data_;
__host__ __device__ static constexpr half_t Lowest() { return bit_cast<half_t>(binary_lowest); }
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ static constexpr half_t QuietNaN() { return bit_cast<half_t>(binary_qnan); }
};
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<int4_t>
{
__host__ __device__ static constexpr int4_t Min() { return int4_t(-8); }
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
__host__ __device__ static constexpr int4_t Max() { return int4_t(7); }
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x2_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x1_;
}
else
{
return err;
}
}
__host__ __device__ static constexpr int4_t Lowest() { return int4_t(-8); }
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x2_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x1_;
}
else
{
return err;
}
}
};
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<f8_t>
template <typename T>
struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
{
// negative zero nan mode with exp bias = 8
static constexpr uint8_t binary_min = 0x08; // 0b00001000
static constexpr uint8_t binary_max = 0x7F; // 0b01111111
static constexpr uint8_t binary_lowest = 0xFF; // 0b11111111
static constexpr uint8_t binary_qnan = 0x80; // 0b10000000
// ieee mode with exp bias = 7
// static constexpr uint8_t binary_min = 0x08; // 0b00001000
// static constexpr uint8_t binary_max = 0x77; // 0b01110111
// static constexpr uint8_t binary_lowest = 0xF7; // 0b11110111
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=0
__host__ __device__ static constexpr f8_t Min() { return f8_t(binary_min); }
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
__host__ __device__ static constexpr f8_t Max() { return f8_t(binary_max); }
using type = d4_t;
__host__ __device__ static constexpr f8_t Lowest() { return f8_t(binary_lowest); }
union alignas(next_pow2(4 * sizeof(T)))
{
d4_t d4_;
StaticallyIndexedArray<d1_t, 4> d1x4_;
StaticallyIndexedArray<d2_t, 2> d2x2_;
StaticallyIndexedArray<d4_t, 1> d4x1_;
} data_;
__host__ __device__ static constexpr f8_t QuietNaN() { return f8_t(binary_qnan); }
};
__host__ __device__ constexpr vector_type() : data_{type{}} {}
template <>
struct NumericLimits<bf8_t>
{
// negative zero nan mode with exp bias = 16
static constexpr uint8_t binary_min = 0x04; // 0b00000100
static constexpr uint8_t binary_max = 0x7F; // 0b01111111
static constexpr uint8_t binary_lowest = 0xFF; // 0b11111111
static constexpr uint8_t binary_qnan = 0x80; // 0b10000000
// ieee mode with exp bias = 15
// static constexpr uint8_t binary_min = 0x04; // 0b00000100
// static constexpr uint8_t binary_max = 0x7B; // 0b01111011
// static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
__host__ __device__ static constexpr bf8_t Min() { return bf8_t(binary_min); }
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
__host__ __device__ static constexpr bf8_t Max() { return bf8_t(binary_max); }
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x4_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x2_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x1_;
}
else
{
return err;
}
}
__host__ __device__ static constexpr bf8_t Lowest() { return bf8_t(binary_lowest); }
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
__host__ __device__ static constexpr bf8_t QuietNaN() { return bf8_t(binary_qnan); }
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x4_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x2_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct NumericUtils
struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
{
};
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
template <>
struct NumericUtils<float>
{
static constexpr int exp = 8;
using type = d8_t;
union alignas(next_pow2(8 * sizeof(T)))
{
d8_t d8_;
StaticallyIndexedArray<d1_t, 8> d1x8_;
StaticallyIndexedArray<d2_t, 4> d2x4_;
StaticallyIndexedArray<d4_t, 2> d4x2_;
StaticallyIndexedArray<d8_t, 1> d8x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x8_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x4_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x2_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x8_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x4_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x2_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using type = d16_t;
union alignas(next_pow2(16 * sizeof(T)))
{
d16_t d16_;
StaticallyIndexedArray<d1_t, 16> d1x16_;
StaticallyIndexedArray<d2_t, 8> d2x8_;
StaticallyIndexedArray<d4_t, 4> d4x4_;
StaticallyIndexedArray<d8_t, 2> d8x2_;
StaticallyIndexedArray<d16_t, 1> d16x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x16_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x8_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x4_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x2_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x16_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x8_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x4_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x2_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 32, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d32_t = non_native_vector_base<T, 32>;
using type = d32_t;
union alignas(next_pow2(32 * sizeof(T)))
{
d32_t d32_;
StaticallyIndexedArray<d1_t, 32> d1x32_;
StaticallyIndexedArray<d2_t, 16> d2x16_;
StaticallyIndexedArray<d4_t, 8> d4x8_;
StaticallyIndexedArray<d8_t, 4> d8x4_;
StaticallyIndexedArray<d16_t, 2> d16x2_;
StaticallyIndexedArray<d32_t, 1> d32x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x32_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x16_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x8_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x4_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x2_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x32_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x16_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x8_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x4_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x2_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 64, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d32_t = non_native_vector_base<T, 32>;
using d64_t = non_native_vector_base<T, 64>;
using type = d64_t;
union alignas(next_pow2(64 * sizeof(T)))
{
d64_t d64_;
StaticallyIndexedArray<d1_t, 64> d1x64_;
StaticallyIndexedArray<d2_t, 32> d2x32_;
StaticallyIndexedArray<d4_t, 16> d4x16_;
StaticallyIndexedArray<d8_t, 8> d8x8_;
StaticallyIndexedArray<d16_t, 4> d16x4_;
StaticallyIndexedArray<d32_t, 2> d32x2_;
StaticallyIndexedArray<d64_t, 1> d64x1_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x64_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x32_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x16_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x8_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x4_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x2_;
}
else if constexpr(is_same<X, d64_t>::value)
{
return data_.d64x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value || is_same<X, d32_t>::value ||
is_same<X, d64_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
{
return data_.d1x64_;
}
else if constexpr(is_same<X, d2_t>::value)
{
return data_.d2x32_;
}
else if constexpr(is_same<X, d4_t>::value)
{
return data_.d4x16_;
}
else if constexpr(is_same<X, d8_t>::value)
{
return data_.d8x8_;
}
else if constexpr(is_same<X, d16_t>::value)
{
return data_.d16x4_;
}
else if constexpr(is_same<X, d32_t>::value)
{
return data_.d32x2_;
}
else if constexpr(is_same<X, d64_t>::value)
{
return data_.d64x1_;
}
else
{
return err;
}
}
};
using int64_t = long;
// fp64
using double2_t = typename vector_type<double, 2>::type;
using double4_t = typename vector_type<double, 4>::type;
// fp32
using float2_t = typename vector_type<float, 2>::type;
using float4_t = typename vector_type<float, 4>::type;
using float8_t = typename vector_type<float, 8>::type;
using float16_t = typename vector_type<float, 16>::type;
using float32_t = typename vector_type<float, 32>::type;
using float64_t = typename vector_type<float, 64>::type;
// fp16
using half2_t = typename vector_type<half_t, 2>::type;
using half4_t = typename vector_type<half_t, 4>::type;
using half8_t = typename vector_type<half_t, 8>::type;
using half16_t = typename vector_type<half_t, 16>::type;
using half32_t = typename vector_type<half_t, 32>::type;
using half64_t = typename vector_type<half_t, 64>::type;
// bfp16
using bhalf2_t = typename vector_type<bhalf_t, 2>::type;
using bhalf4_t = typename vector_type<bhalf_t, 4>::type;
using bhalf8_t = typename vector_type<bhalf_t, 8>::type;
using bhalf16_t = typename vector_type<bhalf_t, 16>::type;
using bhalf32_t = typename vector_type<bhalf_t, 32>::type;
using bhalf64_t = typename vector_type<bhalf_t, 64>::type;
// i32
using int32x2_t = typename vector_type<int32_t, 2>::type;
using int32x4_t = typename vector_type<int32_t, 4>::type;
using int32x8_t = typename vector_type<int32_t, 8>::type;
using int32x16_t = typename vector_type<int32_t, 16>::type;
using int32x32_t = typename vector_type<int32_t, 32>::type;
using int32x64_t = typename vector_type<int32_t, 64>::type;
// i8
using int8x2_t = typename vector_type<int8_t, 2>::type;
using int8x4_t = typename vector_type<int8_t, 4>::type;
using int8x8_t = typename vector_type<int8_t, 8>::type;
using int8x16_t = typename vector_type<int8_t, 16>::type;
using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type;
// f8
using f8x2_t = typename vector_type<f8_t, 2>::type;
using f8x4_t = typename vector_type<f8_t, 4>::type;
using f8x8_t = typename vector_type<f8_t, 8>::type;
using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
using f8x64_t = typename vector_type<f8_t, 64>::type;
// bf8
using bf8x2_t = typename vector_type<bf8_t, 2>::type;
using bf8x4_t = typename vector_type<bf8_t, 4>::type;
using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using bf8x16_t = typename vector_type<bf8_t, 16>::type;
using bf8x32_t = typename vector_type<bf8_t, 32>::type;
using bf8x64_t = typename vector_type<bf8_t, 64>::type;
// u8
using uint8x2_t = typename vector_type<uint8_t, 2>::type;
using uint8x4_t = typename vector_type<uint8_t, 4>::type;
using uint8x8_t = typename vector_type<uint8_t, 8>::type;
using uint8x16_t = typename vector_type<uint8_t, 16>::type;
using uint8x32_t = typename vector_type<uint8_t, 32>::type;
using uint8x64_t = typename vector_type<uint8_t, 64>::type;
template <typename T>
struct NumericLimits
{
__host__ __device__ static constexpr T Min() { return std::numeric_limits<T>::min(); }
__host__ __device__ static constexpr T Max() { return std::numeric_limits<T>::max(); }
__host__ __device__ static constexpr T Lowest() { return std::numeric_limits<T>::lowest(); }
__host__ __device__ static constexpr T QuietNaN()
{
return std::numeric_limits<T>::quiet_NaN();
}
__host__ __device__ static constexpr T Infinity() { return std::numeric_limits<T>::infinity(); }
};
template <>
struct NumericLimits<half_t>
{
static constexpr unsigned short binary_min = 0x0400;
static constexpr unsigned short binary_max = 0x7BFF;
static constexpr unsigned short binary_lowest = 0xFBFF;
static constexpr unsigned short binary_qnan = 0x7FFF;
__host__ __device__ static constexpr half_t Min() { return bit_cast<half_t>(binary_min); }
__host__ __device__ static constexpr half_t Max() { return bit_cast<half_t>(binary_max); }
__host__ __device__ static constexpr half_t Lowest() { return bit_cast<half_t>(binary_lowest); }
__host__ __device__ static constexpr half_t QuietNaN() { return bit_cast<half_t>(binary_qnan); }
};
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<int4_t>
{
__host__ __device__ static constexpr int4_t Min() { return int4_t(-8); }
__host__ __device__ static constexpr int4_t Max() { return int4_t(7); }
__host__ __device__ static constexpr int4_t Lowest() { return int4_t(-8); }
};
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<f8_t>
{
// negative zero nan mode with exp bias = 8
static constexpr uint8_t binary_min = 0x08; // 0b00001000
static constexpr uint8_t binary_max = 0x7F; // 0b01111111
static constexpr uint8_t binary_lowest = 0xFF; // 0b11111111
static constexpr uint8_t binary_qnan = 0x80; // 0b10000000
// ieee mode with exp bias = 7
// static constexpr uint8_t binary_min = 0x08; // 0b00001000
// static constexpr uint8_t binary_max = 0x77; // 0b01110111
// static constexpr uint8_t binary_lowest = 0xF7; // 0b11110111
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=0
__host__ __device__ static constexpr f8_t Min() { return f8_t(binary_min); }
__host__ __device__ static constexpr f8_t Max() { return f8_t(binary_max); }
__host__ __device__ static constexpr f8_t Lowest() { return f8_t(binary_lowest); }
__host__ __device__ static constexpr f8_t QuietNaN() { return f8_t(binary_qnan); }
};
template <>
struct NumericLimits<bf8_t>
{
// negative zero nan mode with exp bias = 16
static constexpr uint8_t binary_min = 0x04; // 0b00000100
static constexpr uint8_t binary_max = 0x7F; // 0b01111111
static constexpr uint8_t binary_lowest = 0xFF; // 0b11111111
static constexpr uint8_t binary_qnan = 0x80; // 0b10000000
// ieee mode with exp bias = 15
// static constexpr uint8_t binary_min = 0x04; // 0b00000100
// static constexpr uint8_t binary_max = 0x7B; // 0b01111011
// static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=
__host__ __device__ static constexpr bf8_t Min() { return bf8_t(binary_min); }
__host__ __device__ static constexpr bf8_t Max() { return bf8_t(binary_max); }
__host__ __device__ static constexpr bf8_t Lowest() { return bf8_t(binary_lowest); }
__host__ __device__ static constexpr bf8_t QuietNaN() { return bf8_t(binary_qnan); }
};
template <typename T>
struct NumericUtils
{
};
template <>
struct NumericUtils<float>
{
static constexpr int exp = 8;
static constexpr int mant = 23;
static constexpr int bias = 127;
static constexpr uint32_t nan_mask = 0x7F800000;
......@@ -1208,4 +1803,13 @@ struct NumericUtils<bf8_t>
static constexpr int bias = 16; // negative zero nan mode
// static constexpr int bias = 15; // ieee mode
};
template <>
struct NumericUtils<bhalf_t>
{
static constexpr int exp = 8;
static constexpr int mant = 7;
static constexpr int bias = 128; // negative zero nan mode
// static constexpr int bias = 127; // ieee mode
};
} // namespace ck
......@@ -80,6 +80,8 @@ static inline __host__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __host__ bool isnan(f8_t x) { return (x & 0x80); };
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static inline __host__ bool isnan(int4_t x)
{
......@@ -529,6 +531,8 @@ static inline __device__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __device__ bool isnan(f8_t x) { return (x & 0x80); };
static inline __device__ half_t sqrt(half_t x)
{
return static_cast<half_t>(__builtin_amdgcn_sqrtf(static_cast<float>(x)));
......@@ -649,7 +653,7 @@ inline __device__ double sin<double>(double x)
template <>
inline __device__ half_t sin<half_t>(half_t x)
{
return ::hsin(x);
return hsin(static_cast<__half>(x));
};
template <typename T>
......@@ -781,7 +785,7 @@ inline __device__ double ceil<double>(double x)
template <>
inline __device__ half_t ceil<half_t>(half_t x)
{
return ::hceil(x);
return hceil(static_cast<__half>(x));
};
template <typename T>
......@@ -823,7 +827,7 @@ inline __device__ double floor<double>(double x)
template <>
inline __device__ half_t floor<half_t>(half_t x)
{
return ::hfloor(x);
return hfloor(static_cast<__half>(x));
};
template <typename T>
......@@ -845,7 +849,7 @@ inline __device__ T exp(T x)
template <>
inline __device__ half_t exp<half_t>(half_t x)
{
return hexp(x);
return hexp(static_cast<__half>(x));
};
template <>
......@@ -869,7 +873,7 @@ inline __device__ T log(T x)
template <>
inline __device__ half_t log<half_t>(half_t x)
{
return hlog(x);
return hlog(static_cast<__half>(x));
};
template <>
......
......@@ -5,6 +5,7 @@
#include "ck_tile/core/algorithm/cluster_descriptor.hpp"
#include "ck_tile/core/algorithm/coordinate_transform.hpp"
#include "ck_tile/core/algorithm/indexing_adaptor.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/arch/amd_buffer_addressing.hpp"
#include "ck_tile/core/arch/arch.hpp"
......@@ -24,6 +25,7 @@
#include "ck_tile/core/numeric/bfloat16.hpp"
#include "ck_tile/core/numeric/float8.hpp"
#include "ck_tile/core/numeric/half.hpp"
#include "ck_tile/core/numeric/int8.hpp"
#include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/numeric/math.hpp"
......@@ -49,13 +51,17 @@
#include "ck_tile/core/tensor/tile_distribution_encoding.hpp"
#include "ck_tile/core/tensor/tile_elementwise.hpp"
#include "ck_tile/core/tensor/tile_window.hpp"
#include "ck_tile/core/tensor/tile_window_linear.hpp"
#include "ck_tile/core/tensor/update_tile.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/functional_with_tuple.hpp"
#include "ck_tile/core/utility/ignore.hpp"
#include "ck_tile/core/utility/literals.hpp"
#include "ck_tile/core/utility/magic_div.hpp"
#include "ck_tile/core/utility/philox_rand.hpp"
#include "ck_tile/core/utility/random.hpp"
#include "ck_tile/core/utility/reduce_operator.hpp"
#include "ck_tile/core/utility/to_sequence.hpp"
#include "ck_tile/core/utility/transpose_vectors.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment