Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
a11cf2c6
Unverified
Commit
a11cf2c6
authored
Jan 24, 2025
by
arai713
Committed by
GitHub
Jan 24, 2025
Browse files
Merge branch 'develop' into codegen_hiprtc
parents
a72e9efa
64d5c4d6
Changes
156
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
796 additions
and
453 deletions
+796
-453
include/ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
...s/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
+98
-36
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
+6
-3
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
+39
-36
include/ck_tile/ops/gemm/kernel/gemm_tile_partitioner.hpp
include/ck_tile/ops/gemm/kernel/gemm_tile_partitioner.hpp
+115
-28
include/ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp
include/ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp
+68
-187
include/ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
...ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
+19
-19
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_one_pass.hpp
...ayernorm2d/pipeline/layernorm2d_fwd_pipeline_one_pass.hpp
+4
-4
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_problem.hpp
...layernorm2d/pipeline/layernorm2d_fwd_pipeline_problem.hpp
+13
-13
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_two_pass.hpp
...ayernorm2d/pipeline/layernorm2d_fwd_pipeline_two_pass.hpp
+3
-3
include/ck_tile/ops/rmsnorm2d.hpp
include/ck_tile/ops/rmsnorm2d.hpp
+1
-0
include/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
...ude/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
+169
-28
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
...norm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
+5
-5
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
...ps/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
+66
-15
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
...ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
+13
-13
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
...ps/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
+73
-18
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp
...e/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp
+54
-0
include/ck_tile/ops/smoothquant/kernel/moe_smoothquant_kernel.hpp
...ck_tile/ops/smoothquant/kernel/moe_smoothquant_kernel.hpp
+15
-13
include/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
...ude/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
+15
-15
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_default_policy.hpp
...othquant/pipeline/smoothquant_pipeline_default_policy.hpp
+2
-2
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
...ps/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
+18
-15
No files found.
include/ck_tile/ops/fused_moe/pipeline/fused_moegemm_pipeline_flatmm_uk.hpp
View file @
a11cf2c6
...
...
@@ -70,11 +70,16 @@ struct FusedMoeGemmPipeline_FlatmmUk
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSize
()
{
#if 1
constexpr
index_t
smem_0
=
Policy
::
template
GetUK_0
<
Problem
>().
GetSmemSize
();
constexpr
index_t
smem_1
=
Policy
::
template
GetUK_1
<
Problem
>().
GetSmemSize
();
constexpr
index_t
smem_bridge
=
BlockShape
::
Block_M0
*
BlockShape
::
Block_N0
*
sizeof
(
YDataType
);
return
max
(
smem_0
,
max
(
smem_1
,
smem_bridge
));
return
max
(
smem_0
+
smem_1
,
smem_bridge
);
#else
// keep it here purposely in case we have regression
return
65536
;
#endif
}
// this is the thread-offset along row/col
...
...
@@ -125,6 +130,9 @@ struct FusedMoeGemmPipeline_FlatmmUk
array
<
index_t
,
n_size
>
row_ids
;
static_for
<
0
,
n_size
,
1
>
{}([
&
](
auto
i
)
{
row_ids
.
at
(
i
)
=
sorted_token_ids_ptr
[
coords
[
i
]];
// base_coord + i * MLans;
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
row_ids
.
at
(
i
)
&=
0xffffff
;
#endif
});
return
row_ids
;
...
...
@@ -164,9 +172,12 @@ struct FusedMoeGemmPipeline_FlatmmUk
index_t
sorted_tile_id
,
index_t
intermediate_tile_id
)
{
constexpr
index_t
hidden_radio_0
=
IsGateOnly
?
1
:
2
;
ck_tile
::
index_t
shared_intermediate_size_0
=
kargs
.
intermediate_size
;
ck_tile
::
index_t
shared_intermediate_size_1
=
kargs
.
intermediate_size
/
hidden_radio_0
;
constexpr
index_t
hidden_radio_0
=
IsGateOnly
?
1
:
2
;
ck_tile
::
index_t
shared_intermediate_size_0
=
kargs
.
intermediate_size
*
hidden_radio_0
;
// total gate+up
ck_tile
::
index_t
shared_intermediate_size_1
=
kargs
.
intermediate_size
;
// after weight shuffling, gate-only: [nr0, kr0, w0], gate+up: [nr0_gate + nr0_up, kr0, w0]
index_t
nr_0
=
shared_intermediate_size_0
/
BlockShape
::
Warp_N0
;
// divide N in W
index_t
kr_0
=
kargs
.
hidden_size
/
BlockShape
::
Warp_K0
;
// divide K in W
...
...
@@ -200,29 +211,35 @@ struct FusedMoeGemmPipeline_FlatmmUk
make_wave_buffer_resource
(
reinterpret_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
),
kargs
.
num_tokens
*
kargs
.
stride_token
*
sizeof
(
ADataType
));
auto
g_win
=
[
&
]()
{
const
GDataType
*
g_ptr
=
reinterpret_cast
<
const
GDataType
*>
(
kargs
.
g_ptr
)
+
static_cast
<
long_index_t
>
(
expert_id
)
*
expert_stride_0
+
interm_idx_nr0
*
kr_0
*
BlockShape
::
Block_W0
;
auto
g_view_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
g_ptr
,
auto
make_gu_win
=
[
&
](
const
auto
*
ptr_
)
{
auto
view_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
ptr_
,
make_tuple
(
nr_0
,
kr_0
,
number
<
BlockShape
::
Block_W0
>
{}),
make_tuple
(
kr_0
*
BlockShape
::
Block_W0
,
number
<
BlockShape
::
Block_W0
>
{},
1
),
number
<
kAlignmentG
>
{},
number
<
1
>
{});
auto
g_
win
dow
_
=
make_tile_window_linear_raw
(
g_
view_
,
auto
win_
=
make_tile_window_linear_raw
(
view_
,
make_tuple
(
number
<
BlockShape
::
Block_Nr0
>
{},
number
<
BlockShape
::
Block_Kr0
>
{},
number
<
BlockShape
::
Block_W0
>
{}),
{
0
,
0
,
0
},
Policy
::
template
MakeGlobalTileDistribution_G
<
Problem
>(),
sequence
<
0
,
1
,
1
>
{});
return
g_window_
;
}();
return
win_
;
};
const
GDataType
*
gu_ptr
=
reinterpret_cast
<
const
GDataType
*>
(
kargs
.
g_ptr
)
+
static_cast
<
long_index_t
>
(
expert_id
)
*
expert_stride_0
+
interm_idx_nr0
*
kr_0
*
BlockShape
::
Block_W0
;
auto
g_win
=
make_gu_win
(
gu_ptr
);
// Note: gu swizzled, [nr_u+nr_g, kr, w], hence base offset to up is just interm*hidden
auto
u_win
=
make_gu_win
(
gu_ptr
+
kargs
.
intermediate_size
*
kargs
.
hidden_size
);
auto
g_res
=
g_win
.
get_bottom_tensor_view
().
get_buffer_view
().
cached_buf_res_
;
auto
u_res
=
u_win
.
get_bottom_tensor_view
().
get_buffer_view
().
cached_buf_res_
;
auto
g_coords
=
generate_tuple
([
&
](
auto
i
)
{
return
g_win
.
cached_coords_
[
i
].
get_offset
();
},
number
<
decltype
(
g_win
)
::
NumAccess_NonLinear
>
{});
...
...
@@ -309,28 +326,73 @@ struct FusedMoeGemmPipeline_FlatmmUk
auto
w_scale
=
GetWeightScale
(
row_coords_o
,
reinterpret_cast
<
const
TopkWeightDataType
*>
(
kargs
.
sorted_weight_ptr
));
auto
uk_0
=
Policy
::
template
GetUK_0
<
Problem
>();
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
g_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
);
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
,
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
(
idx0
),
acc_0
(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
(
idx0
)
=
v_
.
x
;
acc_0
(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
auto
y_pre
=
cast_tile
<
YDataType
>
(
acc_0
);
auto
uk_0
=
Policy
::
template
GetUK_0
<
Problem
>();
auto
y_pre
=
[
&
]()
{
if
constexpr
(
IsGateOnly
)
{
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
g_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
);
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
,
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
(
idx0
),
acc_0
(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
(
idx0
)
=
v_
.
x
;
acc_0
(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
return
cast_tile
<
YDataType
>
(
acc_0
);
}
else
{
uint32x8_t
gu_res
;
gu_res
[
0
]
=
g_res
[
0
];
gu_res
[
1
]
=
g_res
[
1
];
gu_res
[
2
]
=
g_res
[
2
];
gu_res
[
3
]
=
g_res
[
3
];
gu_res
[
4
]
=
u_res
[
0
];
gu_res
[
5
]
=
u_res
[
1
];
gu_res
[
6
]
=
u_res
[
2
];
gu_res
[
7
]
=
u_res
[
3
];
auto
acc_0
=
uk_0
(
a_res
,
a_coords
,
gu_res
,
g_coords
,
smem
,
kargs
.
hidden_size
,
BlockShape
::
Block_K0
,
// tile offset for B matrix each unroll
BlockShape
::
Block_Kr0
*
BlockShape
::
Block_W0
,
bool_constant
<
true
>
{});
// tile offset for B matrix each unroll
sweep_tile
(
acc_0
.
at
(
number
<
0
>
{}),
[
&
](
auto
idx0
,
auto
idx1
)
{
fp32x2_t
v_
{
acc_0
.
at
(
number
<
0
>
{})(
idx0
),
acc_0
.
at
(
number
<
0
>
{})(
idx1
)};
typename
Problem
::
GateActivation
{}(
v_
,
v_
);
acc_0
.
at
(
number
<
0
>
{})(
idx0
)
=
v_
.
x
;
acc_0
.
at
(
number
<
0
>
{})(
idx1
)
=
v_
.
y
;
},
sequence
<
1
,
2
>
{});
auto
reduced_acc_0
=
tile_elementwise_in
([
&
](
const
auto
&
a_
,
const
auto
&
b_
)
{
return
a_
*
b_
;
},
acc_0
.
at
(
number
<
0
>
{}),
acc_0
.
at
(
number
<
1
>
{}));
return
cast_tile
<
YDataType
>
(
reduced_acc_0
);
}
}();
block_sync_lds
();
...
...
include/ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp
View file @
a11cf2c6
...
...
@@ -101,9 +101,12 @@ struct BatchedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
CK_TILE_DEVICE
void
operator
()(
BatchedGemmKernelArgs
kargs
)
const
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}();
const
auto
i_batch
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
/
kargs
.
KBatch
);
const
auto
i_k
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
-
i_batch
*
kargs
.
KBatch
);
const
auto
[
iM
,
iN
]
=
TilePartitioner
::
GetOutputTileIndex
(
blockIdx
.
x
,
blockIdx
.
y
);
const
index_t
i_m
=
__builtin_amdgcn_readfirstlane
(
iM
*
TilePartitioner
::
MPerBlock
);
const
index_t
i_n
=
__builtin_amdgcn_readfirstlane
(
iN
*
TilePartitioner
::
NPerBlock
);
const
auto
i_batch
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
/
kargs
.
KBatch
);
const
auto
i_k
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
-
i_batch
*
kargs
.
KBatch
);
const
typename
Base
::
SplitKBatchOffset
splitk_batch_offset
(
kargs
,
i_k
);
...
...
include/ck_tile/ops/gemm/kernel/gemm_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -174,7 +174,7 @@ struct GemmKernel
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
if
(
kargs
.
K
%
TilePartitioner
::
k
K
!=
0
&&
GemmPipeline
::
kPadK
==
false
)
if
(
kargs
.
K
%
TilePartitioner
::
K
PerBlock
!=
0
&&
GemmPipeline
::
kPadK
==
false
)
{
return
false
;
}
...
...
@@ -185,7 +185,7 @@ struct GemmKernel
}
else
{
if
(
kargs
.
M
%
TilePartitioner
::
k
M
!=
0
&&
GemmPipeline
::
kPadM
==
false
)
if
(
kargs
.
M
%
TilePartitioner
::
M
PerBlock
!=
0
&&
GemmPipeline
::
kPadM
==
false
)
{
return
false
;
}
...
...
@@ -197,7 +197,7 @@ struct GemmKernel
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
if
(
kargs
.
N
%
TilePartitioner
::
k
N
!=
0
&&
GemmPipeline
::
kPadN
==
false
)
if
(
kargs
.
N
%
TilePartitioner
::
N
PerBlock
!=
0
&&
GemmPipeline
::
kPadN
==
false
)
{
return
false
;
}
...
...
@@ -208,7 +208,7 @@ struct GemmKernel
}
else
{
if
(
kargs
.
K
%
TilePartitioner
::
k
K
!=
0
&&
GemmPipeline
::
kPadK
==
false
)
if
(
kargs
.
K
%
TilePartitioner
::
K
PerBlock
!=
0
&&
GemmPipeline
::
kPadK
==
false
)
{
return
false
;
}
...
...
@@ -220,7 +220,7 @@ struct GemmKernel
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
if
(
kargs
.
N
%
TilePartitioner
::
k
N
!=
0
&&
GemmPipeline
::
kPadN
==
false
)
if
(
kargs
.
N
%
TilePartitioner
::
N
PerBlock
!=
0
&&
GemmPipeline
::
kPadN
==
false
)
{
return
false
;
}
...
...
@@ -231,7 +231,7 @@ struct GemmKernel
}
else
{
if
(
kargs
.
M
%
TilePartitioner
::
k
M
!=
0
&&
GemmPipeline
::
kPadM
==
false
)
if
(
kargs
.
M
%
TilePartitioner
::
M
PerBlock
!=
0
&&
GemmPipeline
::
kPadM
==
false
)
{
return
false
;
}
...
...
@@ -323,17 +323,17 @@ struct GemmKernel
const
auto
&
a_tensor_view
=
views
.
at
(
I0
);
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{}
,
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{}
,
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
...
...
@@ -341,17 +341,17 @@ struct GemmKernel
const
auto
&
b_tensor_view
=
views
.
at
(
I1
);
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
)
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
NPerBlock
>
{}
,
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kN
>
{},
number
<
TilePartitioner
::
kK
>
{}),
sequence
<
GemmPipeline
::
kPadN
,
false
>
{});
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
NPerBlock
>
{}
,
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadN
,
false
>
{});
}
}();
...
...
@@ -359,17 +359,17 @@ struct GemmKernel
const
auto
&
c_tensor_view
=
views
.
at
(
I2
);
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadN
>
{});
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{}
,
number
<
TilePartitioner
::
NPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadN
>
{});
}
else
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
kM
>
{},
number
<
TilePartitioner
::
kN
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{}
,
number
<
TilePartitioner
::
NPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
...
...
@@ -383,19 +383,19 @@ struct GemmKernel
const
auto
&
a_pad_view
=
views
.
at
(
I0
);
const
auto
&
a_block_window
=
make_tile_window
(
a_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
k
M
>
{},
number
<
TilePartitioner
::
k
K
>
{}),
make_tuple
(
number
<
TilePartitioner
::
M
PerBlock
>
{},
number
<
TilePartitioner
::
K
PerBlock
>
{}),
{
i_m
,
0
});
const
auto
&
b_pad_view
=
views
.
at
(
I1
);
const
auto
&
b_block_window
=
make_tile_window
(
b_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
k
N
>
{},
number
<
TilePartitioner
::
k
K
>
{}),
make_tuple
(
number
<
TilePartitioner
::
N
PerBlock
>
{},
number
<
TilePartitioner
::
K
PerBlock
>
{}),
{
i_n
,
0
});
const
auto
&
c_pad_view
=
views
.
at
(
I2
);
auto
c_block_window
=
make_tile_window
(
c_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
k
M
>
{},
number
<
TilePartitioner
::
k
N
>
{}),
make_tuple
(
number
<
TilePartitioner
::
M
PerBlock
>
{},
number
<
TilePartitioner
::
N
PerBlock
>
{}),
{
i_m
,
i_n
});
return
make_tuple
(
a_block_window
,
b_block_window
,
c_block_window
);
...
...
@@ -426,7 +426,7 @@ struct GemmKernel
// Create Gemm tensor views, pad views and tile windows
const
auto
&
gemm_tensor_views_tuple
=
MakeGemmTensorViews
<
DstInMemOp
>
(
a_ptr
,
b_ptr
,
c_ptr
,
kargs
,
splitk_batch_offset
);
;
const
auto
&
gemm_pad_views
=
MakeGemmPadViews
(
gemm_tensor_views_tuple
);
auto
gemm_tile_windows
=
MakeGemmTileWindows
(
gemm_pad_views
,
block_idx_m
,
block_idx_n
);
...
...
@@ -456,7 +456,10 @@ struct GemmKernel
CK_TILE_DEVICE
void
operator
()(
GemmKernelArgs
kargs
)
const
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}();
const
auto
[
iM
,
iN
]
=
TilePartitioner
::
GetOutputTileIndex
(
blockIdx
.
x
,
blockIdx
.
y
);
const
index_t
i_m
=
__builtin_amdgcn_readfirstlane
(
iM
*
TilePartitioner
::
MPerBlock
);
const
index_t
i_n
=
__builtin_amdgcn_readfirstlane
(
iN
*
TilePartitioner
::
NPerBlock
);
const
SplitKBatchOffset
splitk_batch_offset
(
kargs
);
// options
const
ADataType
*
a_ptr
=
...
...
include/ck_tile/ops/gemm/kernel/gemm_tile_partitioner.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace
ck_tile
{
template
<
typename
BlockGemmShape_
>
struct
GemmTilePartitioner
/** @brief Struct representing 2D block index mapping into 3D output tile space. */
template
<
typename
BlockGemmShapeType
>
struct
GemmTile2DPartitioner
{
using
BlockGemmShape
=
remove_cvref_t
<
BlockGemmShape
_
>
;
using
BlockGemmShape
=
remove_cvref_t
<
BlockGemmShape
Type
>
;
static
constexpr
index_t
k
M
=
BlockGemmShape
::
kM
;
static
constexpr
index_t
k
N
=
BlockGemmShape
::
kN
;
static
constexpr
index_t
k
K
=
BlockGemmShape
::
kK
;
static
constexpr
index_t
M
PerBlock
=
BlockGemmShape
::
kM
;
static
constexpr
index_t
N
PerBlock
=
BlockGemmShape
::
kN
;
static
constexpr
index_t
K
PerBlock
=
BlockGemmShape
::
kK
;
CK_TILE_HOST
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
,
index_t
batch_size
)
/** @brief Returns 3D grid size. */
CK_TILE_HOST
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
,
index_t
batch_size
)
noexcept
(
noexcept
(
MPerBlock
!=
0
&&
NPerBlock
!=
0
))
->
dim3
{
index_t
GridDimX
=
(
M
+
kM
-
1
)
/
kM
;
index_t
GridDimY
=
(
N
+
kN
-
1
)
/
kN
;
index_t
GridDimZ
=
batch_size
;
const
index_t
GridDimX
=
(
M
+
MPerBlock
-
1
)
/
MPerBlock
;
const
index_t
GridDimY
=
(
N
+
NPerBlock
-
1
)
/
NPerBlock
;
const
index_t
GridDimZ
=
batch_size
;
return
dim3
(
GridDimX
,
GridDimY
,
GridDimZ
);
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetLoopNum
(
index_t
K
)
/**
* @brief Returns the number of loops.
* @param [in] K is dimension
*/
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetLoopNum
(
index_t
K
)
noexcept
->
index_t
{
return
integer_divide_ceil
(
K
,
k
K
);
return
integer_divide_ceil
(
K
,
K
PerBlock
);
}
CK_TILE_DEVICE
auto
operator
()()
/**
* @brief The function returns 2D output tile space.
* @param [in] blockIdx is blockIdx.x
* @param [in] blockIdy is blockIdx.y
* @return Returns the output tile indexes.
*/
CK_TILE_DEVICE
static
constexpr
auto
GetOutputTileIndex
(
index_t
blockIdx
,
index_t
blockIdy
)
noexcept
->
const
tuple
<
index_t
,
index_t
>
{
const
index_t
iM
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
*
kM
);
const
index_t
iN
=
__builtin_amdgcn_readfirstlane
(
blockId
x
.
y
*
kN
);
const
index_t
iM
=
__builtin_amdgcn_readfirstlane
(
blockIdx
);
const
index_t
iN
=
__builtin_amdgcn_readfirstlane
(
blockId
y
);
return
make_tuple
(
iM
,
iN
);
}
};
template
<
typename
BlockGemmShape_
>
/**
* @brief Struct representing 1D block index mapping into 2D output tile space.
*/
template
<
typename
BlockGemmShapeType
>
struct
GemmTile1DPartitioner
{
using
BlockGemmShape
=
remove_cvref_t
<
BlockGemmShape
_
>
;
using
BlockGemmShape
=
remove_cvref_t
<
BlockGemmShape
Type
>
;
static
constexpr
index_t
MPerBlock
=
BlockGemmShape
::
kM
;
static
constexpr
index_t
NPerBlock
=
BlockGemmShape
::
kN
;
static
constexpr
index_t
KPerBlock
=
BlockGemmShape
::
kK
;
CK_TILE_HOST
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
)
/** @brief delete default ctr with no any object */
constexpr
GemmTile1DPartitioner
()
noexcept
=
delete
;
/** @brief constructs an object that does contain a N value. */
constexpr
GemmTile1DPartitioner
(
index_t
N
)
noexcept
{
N_
=
N
;
}
/** @brief Returns 1D grid size. */
CK_TILE_HOST
static
constexpr
auto
GridSize
(
index_t
M
,
index_t
N
)
noexcept
(
noexcept
(
MPerBlock
!=
0
&&
NPerBlock
!=
0
))
->
dim3
{
index_t
GridDimX
=
(
M
+
MPerBlock
-
1
)
/
MPerBlock
;
index_t
GridDimY
=
(
N
+
NPerBlock
-
1
)
/
NPerBlock
;
const
index_t
GridDimX
=
(
M
+
MPerBlock
-
1
)
/
MPerBlock
;
const
index_t
GridDimY
=
(
N
+
NPerBlock
-
1
)
/
NPerBlock
;
return
dim3
(
GridDimX
*
GridDimY
,
1
,
1
);
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetNBlock
(
index_t
N
)
/**
* @brief Returns the number of blocks in N.
* @param [in] N is dimension
*/
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetNBlock
(
index_t
N
)
noexcept
->
index_t
{
return
integer_divide_ceil
(
N
,
NPerBlock
);
}
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetLoopNum
(
index_t
K
)
/**
* @brief Returns the number of loops.
* @param [in] K is dimension
*/
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetLoopNum
(
index_t
K
)
noexcept
->
index_t
{
return
integer_divide_ceil
(
K
,
KPerBlock
);
}
CK_TILE_DEVICE
auto
operator
()(
index_t
blockOffset
,
index_t
NBlockSize
)
/**
* @brief The function returns 2D output tile space.
* @param [in] blockIdx is blockIdx.x - block_start.
* */
CK_TILE_DEVICE
static
constexpr
auto
GetOutputTileIndex
(
index_t
blockIdx
)
noexcept
->
const
tuple
<
index_t
,
index_t
>
{
const
index_t
NBlock
=
GetNBlock
(
N_
);
const
index_t
iM
=
__builtin_amdgcn_readfirstlane
(
blockIdx
/
NBlock
);
const
index_t
iN
=
__builtin_amdgcn_readfirstlane
(
blockIdx
-
(
iM
)
*
NBlock
);
return
make_tuple
(
iM
,
iN
);
}
private:
CK_TILE_DEVICE
static
index_t
N_
;
};
/**
* @brief `GemmTile1DPartitioner::GetOutputTileIndex`'s std::false specialization,
* checking expression validity in-place for ill-formed.
*/
template
<
typename
,
typename
=
void
>
struct
HasFnOneArgImpl
:
std
::
false_type
{
};
/**
* @brief `GemmTile1DPartitioner::GetOutputTileIndex`'s std::true specialization,
* checking expression validity in-place for well-formed.
* @note: `1` - a constant value indicating the number of parameters in the function.
*/
template
<
typename
T
>
struct
HasFnOneArgImpl
<
T
,
std
::
void_t
<
decltype
(
std
::
declval
<
T
>
().
GetOutputTileIndex
(
1
))
>>
:
std
::
true_type
{
};
/**
* @brief Struct used to calculate offseted tile indexes.
* @note: The struct supports the 1D-Partitioner mechanism,
* enable-if `GetOutputTileIndex`-fn is std::true_type when `GetOutputTileIndex`-fn is well-formed,
* otherwise std::false_type.
*/
template
<
typename
PartitionerFn
,
typename
=
typename
std
::
enable_if_t
<
HasFnOneArgImpl
<
PartitionerFn
>{}
>>
struct
OffsettedTile1DPartitioner
{
/**
* @brief The function subtracts the block's start (offset) from 1D raw-indexes.
* @param [in] block_start is `blockIdx.x - block_start`.
* @return Returns a `tuple` [Im, In] shifted index, used to shift 1d-tile index.
*/
[[
nodiscard
]]
CK_TILE_DEVICE
static
constexpr
auto
GetOffsetedTileIndex
(
index_t
block_start
,
index_t
N
)
noexcept
->
const
tuple
<
index_t
,
index_t
>
{
index_t
iM
=
__builtin_amdgcn_readfirstlane
((
blockIdx
.
x
-
blockOffset
)
/
GetNBlock
(
NBlockSize
)
*
MPerBlock
);
index_t
iN
=
__builtin_amdgcn_readfirstlane
((
blockIdx
.
x
-
blockOffset
)
%
GetNBlock
(
NBlockSize
)
*
NPerBlock
);
const
auto
[
iM
,
iN
]
=
PartitionerFn
(
N
).
GetOutputTileIndex
(
blockIdx
.
x
-
block_start
);
return
make_tuple
(
iM
,
iN
);
}
};
...
...
include/ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024
-2025
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <string>
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/utility/literals.hpp"
#include "ck_tile/core/utility/amd_address_space.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
#include "ck_tile/host.hpp"
namespace
ck_tile
{
struct
GroupedGemmHostArgs
struct
GroupedGemmHostArgs
:
public
ck_tile
::
GemmHostArgs
{
const
void
*
a_ptr
;
const
void
*
b_ptr
;
void
*
c_ptr
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
stride_A
;
index_t
stride_B
;
index_t
stride_C
;
CK_TILE_HOST
GroupedGemmHostArgs
()
noexcept
=
default
;
CK_TILE_HOST
GroupedGemmHostArgs
(
const
void
*
a_ptr_
,
const
void
*
b_ptr_
,
void
*
c_ptr_
,
ck_tile
::
index_t
M_
,
ck_tile
::
index_t
N_
,
ck_tile
::
index_t
K_
,
ck_tile
::
index_t
stride_A_
,
ck_tile
::
index_t
stride_B_
,
ck_tile
::
index_t
stride_C_
)
:
GemmHostArgs
(
a_ptr_
,
b_ptr_
,
c_ptr_
,
KBatch
,
M_
,
N_
,
K_
,
stride_A_
,
stride_B_
,
stride_C_
)
{
}
private:
static
constexpr
index_t
KBatch
=
1
;
};
template
<
typename
TilePartitioner_
,
typename
GemmPipeline_
,
typename
EpiloguePipeline_
>
struct
GroupedGemmKernel
struct
GroupedGemmKernel
:
public
GemmKernel
<
TilePartitioner_
,
GemmPipeline_
,
EpiloguePipeline_
>
{
using
TilePartitioner
=
remove_cvref_t
<
TilePartitioner_
>
;
using
GemmPipeline
=
remove_cvref_t
<
GemmPipeline_
>
;
using
EpiloguePipeline
=
remove_cvref_t
<
EpiloguePipeline_
>
;
using
ALayout
=
remove_cvref_t
<
typename
GemmPipeline
::
ALayout
>
;
using
BLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
BLayout
>
;
using
CLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
CLayout
>
;
static
constexpr
index_t
KernelBlockSize
=
GemmPipeline
::
BlockSize
;
using
TilePartitioner
=
remove_cvref_t
<
TilePartitioner_
>
;
using
GemmPipeline
=
remove_cvref_t
<
GemmPipeline_
>
;
using
EpiloguePipeline
=
remove_cvref_t
<
EpiloguePipeline_
>
;
using
ALayout
=
remove_cvref_t
<
typename
GemmPipeline
::
ALayout
>
;
using
BLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
BLayout
>
;
using
CLayout
=
remove_cvref_t
<
typename
GemmPipeline
::
CLayout
>
;
using
ADataType
=
remove_cvref_t
<
typename
GemmPipeline
::
ADataType
>
;
using
BDataType
=
remove_cvref_t
<
typename
GemmPipeline
::
BDataType
>
;
using
CDataType
=
remove_cvref_t
<
typename
EpiloguePipeline
::
ODataType
>
;
using
OffsetTile1DPartitioner
=
OffsettedTile1DPartitioner
<
TilePartitioner
>
;
using
Base
=
GemmKernel
<
TilePartitioner_
,
GemmPipeline_
,
EpiloguePipeline_
>
;
using
GemmKernelArgs
=
typename
Base
::
GemmKernelArgs
;
static
constexpr
index_t
KernelBlockSize
=
GemmPipeline
::
BlockSize
;
static
constexpr
index_t
KBatch
=
1
;
struct
GemmTransKernelArg
{
G
roupedGemmHost
Args
group_karg
;
G
emmKernel
Args
group_karg
;
ck_tile
::
index_t
block_start
;
ck_tile
::
index_t
block_end
;
GemmTransKernelArg
()
=
default
;
GemmTransKernelArg
(
G
roupedGemmHost
Args
&&
karg
,
index_t
bl_start
,
index_t
bl_end
)
GemmTransKernelArg
(
G
emmKernel
Args
&&
karg
,
index_t
bl_start
,
index_t
bl_end
)
:
group_karg
{
karg
},
block_start
{
bl_start
},
block_end
{
bl_end
}
{
}
};
__host__
static
size_t
GetWorkSpaceSize
(
const
std
::
vector
<
GroupedGemmHostArgs
>&
gemm_descs
)
__host__
static
auto
GetWorkSpaceSize
(
const
std
::
vector
<
GroupedGemmHostArgs
>&
gemm_descs
)
->
std
::
size_t
{
return
gemm_descs
.
size
()
*
sizeof
(
GemmTransKernelArg
);
}
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
KernelBlockSize
);
}
using
Hargs
=
GroupedGemmHostArgs
;
__host__
static
constexpr
auto
BlockSize
()
->
dim3
{
return
dim3
(
KernelBlockSize
);
}
__host__
static
constexpr
auto
GridSize
(
const
std
::
vector
<
Ha
rgs
>&
gemm_descs
)
__host__
static
constexpr
auto
GridSize
(
const
std
::
vector
<
GroupedGemmHostA
rgs
>&
gemm_descs
)
{
index_t
grid_size
=
0
;
for
(
const
auto
&
it_desc
:
gemm_descs
)
...
...
@@ -77,7 +84,8 @@ struct GroupedGemmKernel
return
dim3
(
grid_size
,
1
,
1
);
}
CK_TILE_HOST
static
auto
MakeKargs
(
const
std
::
vector
<
Hargs
>&
gemm_descs
)
CK_TILE_HOST
static
auto
MakeKargs
(
const
std
::
vector
<
GroupedGemmHostArgs
>&
gemm_descs
)
->
std
::
vector
<
GemmTransKernelArg
>
{
std
::
vector
<
GemmTransKernelArg
>
gemm_kernel_args_
;
index_t
group_count
=
ck_tile
::
type_convert
<
ck_tile
::
index_t
>
(
gemm_descs
.
size
());
...
...
@@ -100,22 +108,23 @@ struct GroupedGemmKernel
const
index_t
stride_c
=
gemm_descs
[
i
].
stride_C
;
const
auto
dim3
=
TilePartitioner
::
GridSize
(
M
,
N
);
const
index_t
grid_size_grp
=
dim3
.
x
*
1
*
1
;
const
index_t
grid_size_grp
=
dim3
.
x
;
const
index_t
block_start
=
grid_size
;
const
index_t
block_end
=
grid_size
+
grid_size_grp
;
grid_size
+=
grid_size_grp
;
auto
karg
=
GroupedGemmHostArgs
{
type_convert
<
const
ADataType
*>
(
gemm_descs
[
i
].
a_ptr
),
type_convert
<
const
BDataType
*>
(
gemm_descs
[
i
].
b_ptr
),
type_convert
<
CDataType
*>
(
gemm_descs
[
i
].
c_ptr
),
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
};
auto
karg
=
GemmKernelArgs
{
type_convert
<
const
ADataType
*>
(
gemm_descs
[
i
].
a_ptr
),
type_convert
<
const
BDataType
*>
(
gemm_descs
[
i
].
b_ptr
),
type_convert
<
CDataType
*>
(
gemm_descs
[
i
].
c_ptr
),
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
,
KBatch
};
gemm_kernel_args_
.
emplace_back
(
std
::
move
(
karg
),
block_start
,
block_end
);
}
...
...
@@ -123,162 +132,34 @@ struct GroupedGemmKernel
return
gemm_kernel_args_
;
}
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetSmemSize
()
->
index_t
{
return
max
(
GemmPipeline
::
GetSmemSize
(),
EpiloguePipeline
::
GetSmemSize
());
}
CK_TILE_DEVICE
void
Run
(
const
Hargs
&
kargs
,
const
index_t
block_start
)
const
CK_TILE_DEVICE
void
Run
(
const
GemmTransKernelArg
&
kargs
)
const
{
const
auto
[
i_m
,
i_n
]
=
TilePartitioner
{}(
block_start
,
kargs
.
N
);
// options
const
ADataType
*
a_start
=
static_cast
<
const
ADataType
*>
(
kargs
.
a_ptr
);
const
BDataType
*
b_start
=
static_cast
<
const
BDataType
*>
(
kargs
.
b_ptr
);
// Convert pointers to tensor views
auto
a_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_start
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
make_tuple
(
kargs
.
stride_A
,
1
),
number
<
GemmPipeline
::
VectorSizeA
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
a_start
,
make_tuple
(
kargs
.
M
,
kargs
.
K
),
make_tuple
(
1
,
kargs
.
stride_A
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
const
auto
[
iM
,
iN
]
=
OffsetTile1DPartitioner
::
GetOffsetedTileIndex
(
kargs
.
block_start
,
kargs
.
group_karg
.
N
);
auto
b_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_start
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
make_tuple
(
1
,
kargs
.
stride_B
),
number
<
1
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
b_start
,
make_tuple
(
kargs
.
N
,
kargs
.
K
),
make_tuple
(
kargs
.
stride_B
,
1
),
number
<
GemmPipeline
::
VectorSizeB
>
{},
number
<
1
>
{});
}
}();
const
index_t
i_m
=
__builtin_amdgcn_readfirstlane
(
iM
*
TilePartitioner
::
MPerBlock
);
const
index_t
i_n
=
__builtin_amdgcn_readfirstlane
(
iN
*
TilePartitioner
::
NPerBlock
);
auto
a_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
a_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
// clang-format on
const
typename
Base
::
SplitKBatchOffset
splitk_batch_offset
(
kargs
.
group_karg
,
blockIdx
.
z
);
auto
a_block_window
=
make_tile_window
(
a_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
{
i_m
,
0
});
auto
b_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>
)
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
NPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadK
>
{});
}
else
{
return
pad_tensor_view
(
b_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
NPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadN
,
false
>
{});
}
}();
auto
b_block_window
=
make_tile_window
(
b_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
NPerBlock
>
{},
number
<
TilePartitioner
::
KPerBlock
>
{}),
{
i_n
,
0
});
const
ADataType
*
a_ptr
=
static_cast
<
const
ADataType
*>
(
kargs
.
group_karg
.
a_ptr
);
const
BDataType
*
b_ptr
=
static_cast
<
const
BDataType
*>
(
kargs
.
group_karg
.
b_ptr
);
CDataType
*
c_ptr
=
static_cast
<
CDataType
*>
(
kargs
.
group_karg
.
c_ptr
);
// allocate LDS
__shared__
char
smem_ptr
[
GetSmemSize
()];
const
index_t
num_loop
=
TilePartitioner
::
GetLoopNum
(
kargs
.
K
);
// Run GEMM cooperatively by whole wokrgroup.
auto
c_block_tile
=
GemmPipeline
{}.
template
operator
()(
a_block_window
,
b_block_window
,
num_loop
,
smem_ptr
);
CDataType
*
c_start
=
static_cast
<
CDataType
*>
(
kargs
.
c_ptr
);
auto
c_tensor_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
stride_C
,
1
),
number
<
GemmPipeline
::
VectorSizeC
>
{},
number
<
1
>
{});
}
else
{
return
make_naive_tensor_view
<
address_space_enum
::
global
>
(
c_start
,
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
1
,
kargs
.
stride_C
),
number
<
1
>
{},
number
<
1
>
{});
}
}();
auto
c_pad_view
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
NPerBlock
>
{}),
sequence
<
false
,
GemmPipeline
::
kPadN
>
{});
}
else
{
return
pad_tensor_view
(
c_tensor_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
NPerBlock
>
{}),
sequence
<
GemmPipeline
::
kPadM
,
false
>
{});
}
}();
auto
CBlockWindow_pad
=
make_tile_window
(
c_pad_view
,
make_tuple
(
number
<
TilePartitioner
::
MPerBlock
>
{},
number
<
TilePartitioner
::
NPerBlock
>
{}),
{
i_m
,
i_n
});
EpiloguePipeline
{}(
CBlockWindow_pad
,
c_block_tile
);
this
->
RunGemm
(
a_ptr
,
b_ptr
,
c_ptr
,
smem_ptr
,
kargs
.
group_karg
,
splitk_batch_offset
,
i_m
,
i_n
);
}
CK_TILE_DEVICE
void
operator
()(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
int
group_count
)
const
in
dex_
t
group_count
)
const
{
const
index_t
block_id
=
ck_tile
::
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmTransKernelArg
*>
(
...
...
@@ -286,7 +167,7 @@ struct GroupedGemmKernel
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
index_t
group_id
=
index_t
((
left
+
right
)
>>
1
);
while
((
!
(
block_id
>=
gemm_desc_ptr
[
group_id
].
block_start
&&
block_id
<
gemm_desc_ptr
[
group_id
].
block_end
))
&&
...
...
@@ -300,10 +181,10 @@ struct GroupedGemmKernel
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
group_id
=
index_t
((
left
+
right
)
>>
1
);
}
Run
(
gemm_desc_ptr
[
group_id
]
.
group_karg
,
gemm_desc_ptr
[
group_id
].
block_start
);
Run
(
gemm_desc_ptr
[
group_id
]);
}
};
...
...
include/ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -14,7 +14,7 @@ struct Layernorm2dFwdHostArgs
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_x_residual
;
// [m ,n], shortcut input, prec same as input, nullptr if not used
const
void
*
p_
x
_scale
;
// [1 ,n], smooth scale input, fp32, nullptr if not used
const
void
*
p_
sm
_scale
;
// [1 ,n], smooth scale input, fp32, nullptr if not used
const
void
*
p_x_bias
;
// [1, n], bias, prec same as input
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
const
void
*
p_beta
;
// [1, n], beta, prec same as input
...
...
@@ -43,16 +43,16 @@ struct Layernorm2dFwd
using
Epilogue
=
remove_cvref_t
<
Epilogue_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
XBiasDataType
=
remove_cvref_t
<
typename
Problem
::
XBiasDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
BetaDataType
=
remove_cvref_t
<
typename
Problem
::
BetaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
MeanDataType
=
remove_cvref_t
<
typename
Problem
::
MeanDataType
>
;
using
InvStdDataType
=
remove_cvref_t
<
typename
Problem
::
InvStdDataType
>
;
using
X
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
X
ScaleDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
XBiasDataType
=
remove_cvref_t
<
typename
Problem
::
XBiasDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
BetaDataType
=
remove_cvref_t
<
typename
Problem
::
BetaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
MeanDataType
=
remove_cvref_t
<
typename
Problem
::
MeanDataType
>
;
using
InvStdDataType
=
remove_cvref_t
<
typename
Problem
::
InvStdDataType
>
;
using
Smooth
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
Smooth
ScaleDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
// for simplicity, shortcut input/output type is same as X
using
XResidualDataType
=
XDataType
;
...
...
@@ -84,7 +84,7 @@ struct Layernorm2dFwd
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_x_residual
;
// [m ,n], shortcut input, prec same as input, nullptr if not used
const
void
*
p_
x
_scale
;
// [1 ,n], smooth scale input, fp32, nullptr if not used
const
void
*
p_
sm
_scale
;
// [1 ,n], smooth scale input, fp32, nullptr if not used
const
void
*
p_x_bias
;
// [1, n], bias, prec same as input
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
const
void
*
p_beta
;
// [1, n], beta, prec same as input
...
...
@@ -111,7 +111,7 @@ struct Layernorm2dFwd
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_x_residual
,
hargs
.
p_
x
_scale
,
hargs
.
p_
sm
_scale
,
hargs
.
p_x_bias
,
hargs
.
p_gamma
,
hargs
.
p_beta
,
...
...
@@ -171,7 +171,7 @@ struct Layernorm2dFwd
base_str
+=
_SS_
(
"_"
)
+
_SS_
(
t2s
<
YDataType
>::
name
);
}
if
(
kFusedQuant
==
Layernorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
base_str
+=
_SS_
(
"_sx"
)
+
_SS_
(
t2s
<
X
ScaleDataType
>::
name
);
base_str
+=
_SS_
(
"_sx"
)
+
_SS_
(
t2s
<
Smooth
ScaleDataType
>::
name
);
base_str
+=
_SS_
(
"_sy"
)
+
_SS_
(
t2s
<
YScaleDataType
>::
name
);
}
if
(
kFusedQuant
==
Layernorm2dFusedQuantEnum
::
DYNAMIC_QUANT
)
{
...
...
@@ -356,18 +356,18 @@ struct Layernorm2dFwd
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{}));
}();
auto
x
_scale_window
=
[
&
]()
{
auto
sm
_scale_window
=
[
&
]()
{
if
constexpr
(
kFusedQuant
==
Layernorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
const
auto
win_
=
[
&
]()
{
const
auto
tmp_0_
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
const
X
ScaleDataType
*>
(
kargs
.
p_
x
_scale
),
static_cast
<
const
Smooth
ScaleDataType
*>
(
kargs
.
p_
sm
_scale
),
make_tuple
(
kargs
.
n
),
number
<
Vector_N
>
{});
return
pad_tensor_view
(
tmp_0_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
false
>
{});
//
x
_scale no need pad
sequence
<
false
>
{});
//
sm
_scale no need pad
}();
return
make_tile_window
(
win_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}
...
...
@@ -405,7 +405,7 @@ struct Layernorm2dFwd
y_residual_window
,
mean_window
,
inv_std_window
,
x
_scale_window
,
sm
_scale_window
,
y_scale_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
n
,
...
...
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_one_pass.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -64,7 +64,7 @@ struct Layernorm2dFwdPipelineOnePass
typename
YResidualWindow
,
typename
MeanWindow
,
typename
InvStdWindow
,
typename
X
ScaleWindow
,
typename
Smooth
ScaleWindow
,
typename
YScaleWindow
,
typename
Epilogue
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
...
...
@@ -76,7 +76,7 @@ struct Layernorm2dFwdPipelineOnePass
const
YResidualWindow
&
y_residual_window_
,
MeanWindow
&
mean_window
,
InvStdWindow
&
inv_std_window
,
const
X
ScaleWindow
&
x
_scale_window_
,
const
Smooth
ScaleWindow
&
sm
_scale_window_
,
YScaleWindow
&
y_scale_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
...
...
@@ -190,7 +190,7 @@ struct Layernorm2dFwdPipelineOnePass
if
constexpr
(
kFusedQuant
==
Layernorm2dFusedQuantEnum
::
DYNAMIC_QUANT
||
kFusedQuant
==
Layernorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
Epilogue
{}(
y_window_
,
x
_scale_window_
,
y_scale_window
,
ln
,
smem
);
Epilogue
{}(
y_window_
,
sm
_scale_window_
,
y_scale_window
,
ln
,
smem
);
}
else
Epilogue
{}(
y_window_
,
ln
);
...
...
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_problem.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -15,23 +15,23 @@ template <typename XDataType_,
typename
YDataType_
,
typename
MeanDataType_
,
typename
InvStdDataType_
,
typename
X
ScaleDataType_
,
typename
Smooth
ScaleDataType_
,
typename
YScaleDataType_
,
typename
BlockShape_
,
typename
Traits_
>
struct
Layernorm2dFwdPipelineProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
XBiasDataType
=
remove_cvref_t
<
XBiasDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
BetaDataType
=
remove_cvref_t
<
BetaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
MeanDataType
=
remove_cvref_t
<
MeanDataType_
>
;
using
InvStdDataType
=
remove_cvref_t
<
InvStdDataType_
>
;
using
X
ScaleDataType
=
remove_cvref_t
<
X
ScaleDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
XBiasDataType
=
remove_cvref_t
<
XBiasDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
BetaDataType
=
remove_cvref_t
<
BetaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
MeanDataType
=
remove_cvref_t
<
MeanDataType_
>
;
using
InvStdDataType
=
remove_cvref_t
<
InvStdDataType_
>
;
using
Smooth
ScaleDataType
=
remove_cvref_t
<
Smooth
ScaleDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kNeedCrossLaneSync
=
BlockShape
::
ThreadPerWarp_N
>
1
;
static
constexpr
bool
kNeedCrossWarpSync
=
BlockShape
::
WarpPerBlock_N
>
1
;
...
...
include/ck_tile/ops/layernorm2d/pipeline/layernorm2d_fwd_pipeline_two_pass.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -63,7 +63,7 @@ struct Layernorm2dFwdPipelineTwoPass
typename
YResidualWindow
,
typename
MeanWindow
,
typename
InvStdWindow
,
typename
X
ScaleWindow
,
typename
Smooth
ScaleWindow
,
typename
YScaleWindow
,
typename
Epilogue
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
...
...
@@ -75,7 +75,7 @@ struct Layernorm2dFwdPipelineTwoPass
const
YResidualWindow
&
y_residual_window_
,
MeanWindow
&
mean_window
,
InvStdWindow
&
inv_std_window
,
const
X
ScaleWindow
&
/*
x
_scale_window*/
,
const
Smooth
ScaleWindow
&
/*
sm
_scale_window*/
,
YScaleWindow
&
/*y_scale_window*/
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
...
...
include/ck_tile/ops/rmsnorm2d.hpp
View file @
a11cf2c6
...
...
@@ -8,5 +8,6 @@
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
include/ck_tile/ops/rmsnorm2d/kernel/rmsnorm2d_fwd_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp"
namespace
ck_tile
{
// host side args
struct
Rmsnorm2dFwdHostArgs
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_x_residual
;
// [m ,n], shortcut input, prec same as input, nullptr if not used
const
void
*
p_sm_scale
;
// [1 ,n], smooth scale input, fp32, nullptr if not used
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
void
*
p_y
;
// [m, n], output, fp16/bf16
void
*
p_invRms
;
// [m, 1], output inv-rms, prec same as input, nullptr if not used
void
*
p_y
;
// [m, n], output, fp16/bf16
void
*
p_y_residual
;
// [m, n], shortcut output, prec same as input, nullptr if not used
void
*
p_y_scale
;
// [m, 1], output a dynamic quant per row, nullptr if not used
void
*
p_invRms
;
// [m, 1], output inv-rms, prec same as input, nullptr if not used
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
index_t
x_stride
;
// x row_stride
index_t
xr_stride
;
// x residule row stride
index_t
y_stride
;
// y row stride
index_t
yr_stride
;
// y residule row stride
};
// TODO: Extract some type to wrapper class
template
<
typename
Pipeline_
>
template
<
typename
Pipeline_
,
typename
Epilogue_
>
struct
Rmsnorm2dFwd
{
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Epilogue
=
remove_cvref_t
<
Epilogue_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
GammaDataType
=
remove_cvref_t
<
typename
Problem
::
GammaDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YDataType
=
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
using
SmoothScaleDataType
=
remove_cvref_t
<
typename
Problem
::
SmoothScaleDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
// for simplicity, shortcut input/output type is same as X
using
XResidualDataType
=
XDataType
;
using
YResidualDataType
=
XDataType
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
Traits
::
kSaveInvRms
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
static
constexpr
bool
kPadM
=
false
;
// always no need to pad along M
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kTwoPass
=
Problem
::
kTwoPass
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
static
constexpr
bool
kPadM
=
false
;
// always no need to pad along M
static
constexpr
bool
kPadN
=
Problem
::
Traits
::
kPadN
;
static
constexpr
bool
kTwoPass
=
Problem
::
Traits
::
kTwoPass
;
static
constexpr
auto
kFusedAdd
=
Problem
::
Traits
::
kFusedAdd
;
static
constexpr
auto
kFusedQuant
=
Problem
::
Traits
::
kFusedQuant
;
static
constexpr
index_t
ThreadPerWarp_N
=
Problem
::
BlockShape
::
ThreadPerWarp_N
;
static
constexpr
index_t
Vector_N
=
Problem
::
BlockShape
::
Vector_N
;
...
...
@@ -56,29 +73,43 @@ struct Rmsnorm2dFwd
struct
Kargs
{
const
void
*
p_x
;
const
void
*
p_x_residual
;
const
void
*
p_sm_scale
;
const
void
*
p_gamma
;
void
*
p_y
;
void
*
p_y_residual
;
void
*
p_y_scale
;
void
*
p_invRms
;
float
epsilon
;
index_t
m
;
index_t
n
;
index_t
stride
;
// row_stride
index_t
x_stride
;
// x row_stride
index_t
xr_stride
;
// x residule row stride
index_t
y_stride
;
// y row stride
index_t
yr_stride
;
// y residule row stride
};
using
Hargs
=
Rmsnorm2dFwdHostArgs
;
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_x_residual
,
hargs
.
p_sm_scale
,
hargs
.
p_gamma
,
hargs
.
p_y
,
hargs
.
p_y_residual
,
hargs
.
p_y_scale
,
hargs
.
p_invRms
,
hargs
.
epsilon
,
hargs
.
m
,
hargs
.
n
,
hargs
.
stride
};
hargs
.
x_stride
,
hargs
.
xr_stride
,
hargs
.
y_stride
,
hargs
.
yr_stride
};
}
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
...
...
@@ -95,6 +126,7 @@ struct Rmsnorm2dFwd
template
<
>
struct
t2s
<
ck_tile
::
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
int8_t
>
{
static
constexpr
const
char
*
name
=
"int8"
;
};
// clang-format on
// in byte
...
...
@@ -102,24 +134,41 @@ struct Rmsnorm2dFwd
CK_TILE_HOST
static
std
::
string
GetName
()
{
#define _SS_ std::string
#define _TS_ std::to_string
// clang-format off
using
S_
=
typename
Problem
::
BlockShape
;
auto
surfix
=
[
&
]
()
{
std
::
string
n
;
if
(
kFusedAdd
!=
Rmsnorm2dFusedAddEnum
::
NO_ADD
)
n
+=
_SS_
(
"_"
)
+
Rmsnorm2dFusedAddEnumName
<
kFusedAdd
>::
name
;
if
(
kFusedQuant
!=
Rmsnorm2dFusedQuantEnum
::
NO_SWEEP
)
n
+=
_SS_
(
"_"
)
+
Rmsnorm2dFusedQuantEnumName
<
kFusedQuant
>::
name
;
if
(
kPadN
)
n
+=
"_pn"
;
if
(
kSaveInvRms
)
n
+=
"_rms"
;
if
(
kTwoPass
)
n
+=
"_2p"
;
return
n
;
}();
#define _SS_ std::string
#define _TS_ std::to_string
return
_SS_
(
"rmsnorm2d_fwd_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
auto
prec_str
=
[
&
]
()
{
std
::
string
base_str
=
_SS_
(
t2s
<
XDataType
>::
name
);
if
(
!
std
::
is_same_v
<
XDataType
,
YDataType
>
)
{
base_str
+=
_SS_
(
"_"
)
+
_SS_
(
t2s
<
YDataType
>::
name
);
}
if
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
base_str
+=
_SS_
(
"_sx"
)
+
_SS_
(
t2s
<
SmoothScaleDataType
>::
name
);
base_str
+=
_SS_
(
"_sy"
)
+
_SS_
(
t2s
<
YScaleDataType
>::
name
);
}
if
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
DYNAMIC_QUANT
)
{
base_str
+=
_SS_
(
"_sy"
)
+
_SS_
(
t2s
<
YScaleDataType
>::
name
);
}
return
base_str
;
}();
return
_SS_
(
"rmsnorm2d_fwd_"
)
+
_SS_
(
prec_str
)
+
"_"
+
_TS_
(
S_
::
Block_M
)
+
"x"
+
_TS_
(
S_
::
Block_N
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N
)
+
"_"
+
_TS_
(
S_
::
Warp_M
)
+
"x"
+
_TS_
(
S_
::
Warp_N
)
+
"_"
+
_TS_
(
S_
::
Vector_M
)
+
"x"
+
_TS_
(
S_
::
Vector_N
)
+
"_"
+
_SS_
(
Pipeline
::
name
)
+
surfix
;
#undef _SS_
#undef _TS_
// clang-format on
#undef _SS_
#undef _TS_
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
...
...
@@ -130,7 +179,7 @@ struct Rmsnorm2dFwd
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XDataType
*>
(
kargs
.
p_x
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
make_tuple
(
kargs
.
x_
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
...
...
@@ -140,6 +189,29 @@ struct Rmsnorm2dFwd
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
x_residual_window
=
[
&
]()
{
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD
||
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XResidualDataType
*>
(
kargs
.
p_x_residual
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
xr_stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}
else
{
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}));
}
}();
const
auto
gamma_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
GammaDataType
*>
(
kargs
.
p_gamma
),
...
...
@@ -158,7 +230,7 @@ struct Rmsnorm2dFwd
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YDataType
*>
(
kargs
.
p_y
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
stride
,
1
),
make_tuple
(
kargs
.
y_
stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
...
...
@@ -168,6 +240,28 @@ struct Rmsnorm2dFwd
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
auto
y_residual_window
=
[
&
]()
{
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YResidualDataType
*>
(
kargs
.
p_y_residual
),
make_tuple
(
kargs
.
m
,
kargs
.
n
),
make_tuple
(
kargs
.
yr_stride
,
1
),
number
<
Vector_N
>
{},
number
<
1
>
{});
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}
else
{
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}));
}
}();
auto
inv_rms_window
=
[
&
]()
{
if
constexpr
(
kSaveInvRms
)
{
...
...
@@ -187,15 +281,62 @@ struct Rmsnorm2dFwd
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{}));
}();
auto
sm_scale_window
=
[
&
]()
{
if
constexpr
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
const
auto
win_
=
[
&
]()
{
const
auto
tmp_0_
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
const
SmoothScaleDataType
*>
(
kargs
.
p_sm_scale
),
make_tuple
(
kargs
.
n
),
number
<
Vector_N
>
{});
return
pad_tensor_view
(
tmp_0_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
false
>
{});
// sm_scale no need pad
}();
return
make_tile_window
(
win_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}
else
{
return
make_null_tile_window
(
make_tuple
(
number
<
Block_N
>
{}));
}
}();
auto
y_scale_window
=
[
&
]()
{
if
constexpr
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
||
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
DYNAMIC_QUANT
)
{
const
auto
win_
=
[
&
]()
{
const
auto
tmp_0_
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
YScaleDataType
*>
(
kargs
.
p_y_scale
),
make_tuple
(
kargs
.
m
),
number
<
1
>
{});
return
pad_tensor_view
(
tmp_0_
,
make_tuple
(
number
<
Block_M
>
{}),
sequence
<
kPadM
>
{});
}();
return
make_tile_window
(
win_
,
make_tuple
(
number
<
Block_M
>
{}),
{
iM
});
}
else
{
return
make_null_tile_window
(
make_tuple
(
number
<
Block_M
>
{}));
}
}();
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
x_window
,
x_residual_window
,
gamma_window
,
y_window
,
y_residual_window
,
inv_rms_window
,
sm_scale_window
,
y_scale_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
n
,
smem
);
smem
,
Epilogue
{});
}
};
...
...
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_default_policy.hpp
View file @
a11cf2c6
...
...
@@ -45,7 +45,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2d
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
X
DataType
,
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
Compute
DataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2d
<
P_
>
{};
...
...
@@ -54,7 +54,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
X
DataType
,
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
Compute
DataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dSync
<
P_
>
{};
...
...
@@ -63,7 +63,7 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetBlockReduce2dCrossWarpSync
()
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
X
DataType
,
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
Compute
DataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
return
BlockReduce2dCrossWarpSync
<
P_
>
{};
...
...
@@ -74,13 +74,13 @@ struct Rmsnorm2dFwdPipelineDefaultPolicy
{
if
constexpr
(
Problem
::
kNeedCrossWarpSync
)
{
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
X
DataType
,
using
P_
=
BlockReduce2dProblem
<
typename
Problem
::
Compute
DataType
,
typename
Problem
::
ComputeDataType
,
typename
Problem
::
BlockShape
>
;
using
block_reduce2d
=
BlockReduce2d
<
P_
>
;
using
x_block_tile
=
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
X
DataType
>
(
decltype
(
make_static_distributed_tensor
<
typename
Problem
::
Compute
DataType
>
(
MakeXBlockTileDistribution
<
Problem
>
()));
using
y_block_tile
=
decltype
(
block_reduce2d
::
template
MakeYBlockTile
<
x_block_tile
>());
...
...
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_one_pass.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -22,12 +22,17 @@ struct Rmsnorm2dFwdPipelineOnePass
using
YDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
using
XResidualDataType
=
XDataType
;
using
YResidualDataType
=
XDataType
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
Traits
::
kSaveInvRms
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockRmsnorm2dFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kPadN
=
Problem
::
Traits
::
kPadN
;
static
constexpr
auto
kFusedAdd
=
Problem
::
Traits
::
kFusedAdd
;
static
constexpr
auto
kFusedQuant
=
Problem
::
Traits
::
kFusedQuant
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
...
...
@@ -41,19 +46,36 @@ struct Rmsnorm2dFwdPipelineOnePass
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
InvRmsWindow
>
template
<
typename
XWindow
,
typename
XResidualWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
YResidualWindow
,
typename
InvRmsWindow
,
typename
SmoothScaleWindow
,
typename
YScaleWindow
,
typename
Epilogue
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
XResidualWindow
&
x_residual_window_
,
const
GammaWindow
&
gamma_window_
,
YWindow
&
y_window
,
YWindow
&
y_window_
,
const
YResidualWindow
&
y_residual_window_
,
InvRmsWindow
&
inv_rms_window
,
const
SmoothScaleWindow
&
sm_scale_window_
,
YScaleWindow
&
y_scale_window_
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
void
*
smem
,
Epilogue
)
const
{
const
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
const
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
const
auto
x_residual_window
=
make_tile_window
(
x_residual_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
y_residual_window
=
make_tile_window
(
y_residual_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
reduce_square_sum_func
=
ReduceOp
::
SquareAdd
{};
auto
reduce_sum_func
=
ReduceOp
::
Add
{};
...
...
@@ -62,13 +84,31 @@ struct Rmsnorm2dFwdPipelineOnePass
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
const
auto
x
=
load_tile
(
x_window
);
auto
x
=
load_tile
(
x_window
);
auto
x_resi
=
load_tile
(
x_residual_window
);
// load gamma (TODO: support no gamma?)
const
auto
gamma
=
load_tile
(
gamma_window
);
auto
acc
=
cast_tile
<
ComputeDataType
>
(
x
);
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD
||
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
sweep_tile
(
x_resi
,
[
&
](
auto
idx
)
{
// compute x = x_resi + x
acc
(
idx
)
=
type_convert
<
ComputeDataType
>
(
x_resi
(
idx
))
+
acc
(
idx
);
});
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
store_tile
(
y_residual_window
,
cast_tile
<
YResidualDataType
>
(
acc
));
}
}
// compute mean square each-thread->cross-lane->cross-warp
auto
square_sum
=
block_reduce2d
(
x
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_square_sum_func
);
auto
square_sum
=
block_reduce2d
(
acc
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
(),
reduce_square_sum_func
);
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
block_reduce2d_cross_warp_sync
(
square_sum
,
smem
,
reduce_sum_func
);
...
...
@@ -83,19 +123,30 @@ struct Rmsnorm2dFwdPipelineOnePass
store_tile
(
inv_rms_window
,
cast_tile
<
InvRmsDataType
>
(
inv_rms
));
// rmsnorm computation
auto
y
=
make_static_distributed_tensor
<
Y
DataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
auto
rmsn
=
make_static_distributed_tensor
<
Compute
DataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
rmsn
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms_
[
i_idx
]
*
gamma_
;
auto
rmsn_
=
acc
[
idx
]
*
inv_rms_
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
YDataType
>
(
y_
)
;
rmsn
(
idx
)
=
rmsn_
;
});
store_tile
(
y_window
,
y
);
if
constexpr
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
)
{
Epilogue
{}(
y_window_
,
sm_scale_window_
,
y_scale_window_
,
rmsn
,
smem
);
}
else
if
constexpr
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
DYNAMIC_QUANT
)
{
Epilogue
{}(
y_window_
,
y_scale_window_
,
rmsn
,
smem
);
}
else
{
Epilogue
{}(
y_window_
,
rmsn
);
}
}
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_problem.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -12,25 +12,25 @@ template <typename XDataType_,
typename
ComputeDataType_
,
typename
YDataType_
,
typename
InvRmsDataType_
,
typename
SmoothScaleDataType_
,
typename
YScaleDataType_
,
typename
BlockShape_
,
bool
kPadN_
,
bool
kSaveInvRms_
,
bool
kTwoPass_
>
typename
Traits_
>
struct
Rmsnorm2dFwdPipelineProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
InvRmsDataType
=
remove_cvref_t
<
InvRmsDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
InvRmsDataType
=
remove_cvref_t
<
InvRmsDataType_
>
;
using
SmoothScaleDataType
=
remove_cvref_t
<
SmoothScaleDataType_
>
;
using
YScaleDataType
=
remove_cvref_t
<
YScaleDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kNeedCrossLaneSync
=
BlockShape
::
ThreadPerWarp_N
>
1
;
static
constexpr
bool
kNeedCrossWarpSync
=
BlockShape
::
WarpPerBlock_N
>
1
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kSaveInvRms
=
kSaveInvRms_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
using
Traits
=
remove_cvref_t
<
Traits_
>
;
};
}
// namespace ck_tile
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_pipeline_two_pass.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -22,12 +22,17 @@ struct Rmsnorm2dFwdPipelineTwoPass
using
YDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YDataType
>
;
using
InvRmsDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
InvRmsDataType
>
;
using
XResidualDataType
=
XDataType
;
using
YResidualDataType
=
XDataType
;
static
constexpr
bool
kHasGamma
=
!
std
::
is_same_v
<
GammaDataType
,
ck_tile
::
null_type
>
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
kSaveInvRms
;
static
constexpr
bool
kSaveInvRms
=
Problem
::
Traits
::
kSaveInvRms
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockRmsnorm2dFwdProblem::kPadM
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
bool
kPadN
=
Problem
::
Traits
::
kPadN
;
static
constexpr
auto
kFusedAdd
=
Problem
::
Traits
::
kFusedAdd
;
static
constexpr
auto
kFusedQuant
=
Problem
::
Traits
::
kFusedQuant
;
static
constexpr
const
char
*
name
=
[]()
{
if
constexpr
(
kNeedCrossWarpSync
)
...
...
@@ -41,19 +46,36 @@ struct Rmsnorm2dFwdPipelineTwoPass
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
InvRmsWindow
>
template
<
typename
XWindow
,
typename
XResidualWindow
,
typename
GammaWindow
,
typename
YWindow
,
typename
YResidualWindow
,
typename
InvRmsWindow
,
typename
SmoothScaleWindow
,
typename
YScaleWindow
,
typename
Epilogue
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
XResidualWindow
&
x_residual_window_
,
const
GammaWindow
&
gamma_window_
,
YWindow
&
y_window
,
const
YResidualWindow
&
y_residual_window_
,
InvRmsWindow
&
inv_rms_window
,
const
SmoothScaleWindow
&
/*sm_scale_window_*/
,
YScaleWindow
&
/*y_scale_window*/
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
row_size
,
void
*
smem
)
const
void
*
smem
,
Epilogue
)
const
{
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
gamma_window
=
make_tile_window
(
gamma_window_
,
Policy
::
template
MakeGammaBlockTileDistribution
<
Problem
>());
auto
x_residual_window
=
make_tile_window
(
x_residual_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
y_residual_window
=
make_tile_window
(
y_residual_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
// Problem::BlockShape
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
...
...
@@ -67,15 +89,34 @@ struct Rmsnorm2dFwdPipelineTwoPass
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
using
X
TensorType
=
decltype
(
load_tile
(
x_window
));
auto
square_sum
=
block_reduce2d
.
template
MakeYBlockTile
<
X
TensorType
>();
using
Compute
TensorType
=
decltype
(
cast_tile
<
ComputeDataType
>
(
load_tile
(
x_window
))
)
;
auto
square_sum
=
block_reduce2d
.
template
MakeYBlockTile
<
Compute
TensorType
>();
set_tile
(
square_sum
,
reduce_square_sum_func
.
GetIdentityValue
<
ComputeDataType
>
());
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
block_reduce2d
(
x
,
square_sum
,
reduce_square_sum_func
);
auto
x
=
load_tile
(
x_window
);
auto
x_resi
=
load_tile
(
x_residual_window
);
move_tile_window
(
x_window
,
{
0
,
Block_N
});
move_tile_window
(
x_residual_window
,
{
0
,
Block_N
});
auto
acc
=
cast_tile
<
ComputeDataType
>
(
x
);
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD
||
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
sweep_tile
(
x_resi
,
[
&
](
auto
idx
)
{
// compute x = x_resi + x
acc
(
idx
)
=
type_convert
<
ComputeDataType
>
(
x_resi
(
idx
))
+
acc
(
idx
);
});
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
)
{
store_tile
(
y_residual_window
,
cast_tile
<
YResidualDataType
>
(
acc
));
move_tile_window
(
y_residual_window
,
{
0
,
Block_N
});
}
}
block_reduce2d
(
acc
,
square_sum
,
reduce_square_sum_func
);
}
block_reduce2d_sync
(
square_sum
,
reduce_sum_func
);
...
...
@@ -96,33 +137,47 @@ struct Rmsnorm2dFwdPipelineTwoPass
row_size
%
Block_N
==
0
?
row_size
-
Block_N
:
row_size
-
row_size
%
Block_N
;
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
x_residual_window
,
{
0
,
-
Block_N
});
move_tile_window
(
gamma_window
,
{
stride_to_right_most_window
});
move_tile_window
(
y_window
,
{
0
,
stride_to_right_most_window
});
// rmsnorm computation
for
(
int
iN
=
__builtin_amdgcn_readfirstlane
(
0
);
iN
<
num_n_tile_iteration
;
++
iN
)
{
const
auto
x
=
load_tile
(
x_window
);
// load gamma/beta (TODO: support no gamma/beta?)
auto
x
=
load_tile
(
x_window
);
auto
x_resi
=
load_tile
(
x_residual_window
);
auto
acc
=
cast_tile
<
ComputeDataType
>
(
x
);
if
constexpr
(
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
||
kFusedAdd
==
Rmsnorm2dFusedAddEnum
::
PRE_ADD
)
{
sweep_tile
(
x_resi
,
[
&
](
auto
idx
)
{
// compute x = x_resi + x
acc
(
idx
)
=
type_convert
<
ComputeDataType
>
(
x_resi
(
idx
))
+
acc
(
idx
);
});
}
// load gamma (TODO: support no gamma?)
const
auto
gamma
=
load_tile
(
gamma_window
);
auto
y
=
make_static_distributed_tensor
<
YDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
y
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
// rmsnorm computation
auto
rmsn
=
make_static_distributed_tensor
<
ComputeDataType
>
(
x
.
get_tile_distribution
());
sweep_tile
(
rmsn
,
[
&
,
inv_rms_
=
inv_rms
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
constexpr
auto
j_idx
=
make_tuple
(
idx
[
number
<
1
>
{}]);
const
auto
gamma_
=
type_convert
<
ComputeDataType
>
(
gamma
[
j_idx
]);
const
auto
x_
=
type_convert
<
ComputeDataType
>
(
x
[
idx
]);
auto
y_
=
x_
*
inv_rms_
[
i_idx
]
*
gamma_
;
auto
rmsn_
=
acc
(
idx
)
*
inv_rms_
[
i_idx
]
*
gamma_
;
y
(
idx
)
=
type_convert
<
YDataType
>
(
y_
)
;
rmsn
(
idx
)
=
rmsn_
;
});
store_tile
(
y_window
,
y
);
static_assert
(
kFusedQuant
==
Rmsnorm2dFusedQuantEnum
::
NO_SWEEP
);
Epilogue
{}(
y_window
,
rmsn
);
move_tile_window
(
x_window
,
{
0
,
-
Block_N
});
move_tile_window
(
x_residual_window
,
{
0
,
-
Block_N
});
move_tile_window
(
gamma_window
,
{
-
Block_N
});
move_tile_window
(
y_window
,
{
0
,
-
Block_N
});
}
...
...
include/ck_tile/ops/rmsnorm2d/pipeline/rmsnorm2d_fwd_traits.hpp
0 → 100644
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/utility/type_traits.hpp"
namespace
ck_tile
{
enum
class
Rmsnorm2dFusedAddEnum
{
NO_ADD
=
0
,
// fused add before RMSNorm and store result to global
PRE_ADD_STORE
=
1
,
// fused add before RMSNorm, but not store result
PRE_ADD
=
2
,
};
// clang-format off
template
<
Rmsnorm2dFusedAddEnum
>
struct
Rmsnorm2dFusedAddEnumName
;
template
<
>
struct
Rmsnorm2dFusedAddEnumName
<
Rmsnorm2dFusedAddEnum
::
NO_ADD
>
{
static
constexpr
const
char
*
name
=
"no"
;
};
template
<
>
struct
Rmsnorm2dFusedAddEnumName
<
Rmsnorm2dFusedAddEnum
::
PRE_ADD_STORE
>
{
static
constexpr
const
char
*
name
=
"pras"
;
};
template
<
>
struct
Rmsnorm2dFusedAddEnumName
<
Rmsnorm2dFusedAddEnum
::
PRE_ADD
>
{
static
constexpr
const
char
*
name
=
"pra"
;
};
// clang-format on
enum
class
Rmsnorm2dFusedQuantEnum
{
NO_SWEEP
=
0
,
SMOOTH_DYNAMIC_QUANT
=
1
,
// smooth oulier + rowwise quant, need input x-scale and store y_scale
DYNAMIC_QUANT
=
2
,
// rowwise quant, store out a y-scale
};
// clang-format off
template
<
Rmsnorm2dFusedQuantEnum
>
struct
Rmsnorm2dFusedQuantEnumName
;
template
<
>
struct
Rmsnorm2dFusedQuantEnumName
<
Rmsnorm2dFusedQuantEnum
::
NO_SWEEP
>
{
static
constexpr
const
char
*
name
=
"no"
;
};
template
<
>
struct
Rmsnorm2dFusedQuantEnumName
<
Rmsnorm2dFusedQuantEnum
::
DYNAMIC_QUANT
>
{
static
constexpr
const
char
*
name
=
"dqt"
;
};
template
<
>
struct
Rmsnorm2dFusedQuantEnumName
<
Rmsnorm2dFusedQuantEnum
::
SMOOTH_DYNAMIC_QUANT
>
{
static
constexpr
const
char
*
name
=
"smdqt"
;
};
// clang-format on
template
<
bool
kPadN_
,
bool
kSaveInvRms_
,
bool
kTwoPass_
,
Rmsnorm2dFusedAddEnum
kFusedAdd_
,
Rmsnorm2dFusedQuantEnum
kFusedQuant_
>
struct
Rmsnorm2dFwdTraits
{
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kSaveInvRms
=
kSaveInvRms_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
static
constexpr
Rmsnorm2dFusedAddEnum
kFusedAdd
=
kFusedAdd_
;
static
constexpr
Rmsnorm2dFusedQuantEnum
kFusedQuant
=
kFusedQuant_
;
};
}
// namespace ck_tile
include/ck_tile/ops/smoothquant/kernel/moe_smoothquant_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -12,7 +12,7 @@ namespace ck_tile {
struct
MoeSmoothquantHostArgs
{
const
void
*
p_x
;
// [tokens ,hidden_size], input, fp16/bf16
const
void
*
p_
x
scale
;
// [experts, hidden_size], input, columnwise scale, fp32
const
void
*
p_
sm
scale
;
// [experts, hidden_size], input, columnwise scale, fp32
const
void
*
p_topk_ids
;
// [tokens, topk]
void
*
p_yscale
;
// [topk * tokens, 1], output, rowwise quant scale
...
...
@@ -33,11 +33,11 @@ struct MoeSmoothquant
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
X
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
X
ScaleDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
Smooth
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
Smooth
ScaleDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
...
...
@@ -57,7 +57,7 @@ struct MoeSmoothquant
struct
Kargs
{
const
void
*
p_x
;
// [tokens ,hidden_size], input, fp16/bf16
const
void
*
p_
x
scale
;
// [experts, hidden_size], input, columnwise scale, fp32
const
void
*
p_
sm
scale
;
// [experts, hidden_size], input, columnwise scale, fp32
const
void
*
p_topk_ids
;
// [tokens, topk]
void
*
p_yscale
;
// [topk, tokens, 1], output, rowwise quant scale
...
...
@@ -75,7 +75,7 @@ struct MoeSmoothquant
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_
x
scale
,
hargs
.
p_
sm
scale
,
hargs
.
p_topk_ids
,
hargs
.
p_yscale
,
hargs
.
p_qy
,
...
...
@@ -101,6 +101,7 @@ struct MoeSmoothquant
template
<
>
struct
t2s
<
ck_tile
::
bf16_t
>
{
static
constexpr
const
char
*
name
=
"bf16"
;
};
template
<
>
struct
t2s
<
ck_tile
::
fp8_t
>
{
static
constexpr
const
char
*
name
=
"fp8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
bf8_t
>
{
static
constexpr
const
char
*
name
=
"bf8"
;
};
template
<
>
struct
t2s
<
ck_tile
::
int8_t
>
{
static
constexpr
const
char
*
name
=
"i8"
;
};
// clang-format on
// in byte
...
...
@@ -118,7 +119,7 @@ struct MoeSmoothquant
#define _SS_ std::string
#define _TS_ std::to_string
return
_SS_
(
"moe_smoothquant_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
return
_SS_
(
"moe_smoothquant_"
)
+
_SS_
(
t2s
<
XDataType
>::
name
)
+
"_"
+
_SS_
(
t2s
<
QYDataType
>::
name
)
+
"_"
+
_TS_
(
S_
::
Block_M
)
+
"x"
+
_TS_
(
S_
::
Block_N
)
+
"_"
+
_TS_
(
S_
::
WarpPerBlock_M
)
+
"x"
+
_TS_
(
S_
::
WarpPerBlock_N
)
+
"_"
+
_TS_
(
S_
::
Warp_M
)
+
"x"
+
_TS_
(
S_
::
Warp_N
)
+
"_"
+
_TS_
(
S_
::
Vector_M
)
+
"x"
+
_TS_
(
S_
::
Vector_N
)
+
"_"
+
_SS_
(
Pipeline
::
name
)
+
surfix
;
...
...
@@ -153,9 +154,10 @@ struct MoeSmoothquant
}();
// [experts, hidden_size],
const
auto
x
scale_window
=
[
&
]()
{
const
auto
sm
scale_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XScaleDataType
*>
(
kargs
.
p_xscale
)
+
i_expert
*
kargs
.
hidden_size
,
static_cast
<
const
SmoothScaleDataType
*>
(
kargs
.
p_smscale
)
+
i_expert
*
kargs
.
hidden_size
,
make_tuple
(
kargs
.
hidden_size
),
make_tuple
(
1
),
number
<
Vector_N
>
{},
...
...
@@ -198,7 +200,7 @@ struct MoeSmoothquant
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
x_window
,
x
scale_window
,
yscale_window
,
qy_window
,
kargs
.
hidden_size
,
smem
);
Pipeline
{}(
x_window
,
sm
scale_window
,
yscale_window
,
qy_window
,
kargs
.
hidden_size
,
smem
);
}
};
...
...
include/ck_tile/ops/smoothquant/kernel/smoothquant_kernel.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -11,11 +11,11 @@ namespace ck_tile {
// host side args
struct
SmoothquantHostArgs
{
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_
x
scale
;
// [1, n], input, columnwise scale, fp32
const
void
*
p_x
;
// [m ,n], input, fp16/bf16
const
void
*
p_
sm
scale
;
// [1, n], input, columnwise scale, fp32
void
*
p_yscale
;
// [m, 1], output, rowwise quant scale (amax / 127) of (p_x * p_
x
scale)
void
*
p_qy
;
// [m, n], output, p_x * p_
x
scale / p_yscale
void
*
p_yscale
;
// [m, 1], output, rowwise quant scale (amax / 127) of (p_x * p_
sm
scale)
void
*
p_qy
;
// [m, n], output, p_x * p_
sm
scale / p_yscale
index_t
m
;
index_t
n
;
...
...
@@ -30,11 +30,11 @@ struct Smoothquant
using
Pipeline
=
remove_cvref_t
<
Pipeline_
>
;
using
Problem
=
typename
Pipeline
::
Problem
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
X
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
X
ScaleDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
XDataType
=
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
Smooth
ScaleDataType
=
remove_cvref_t
<
typename
Problem
::
Smooth
ScaleDataType
>
;
using
ComputeDataType
=
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
YScaleDataType
=
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
QYDataType
=
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
static
constexpr
index_t
Block_M
=
Problem
::
BlockShape
::
Block_M
;
static
constexpr
index_t
Block_N
=
Problem
::
BlockShape
::
Block_N
;
...
...
@@ -52,7 +52,7 @@ struct Smoothquant
struct
Kargs
{
const
void
*
p_x
;
const
void
*
p_
x
scale
;
const
void
*
p_
sm
scale
;
void
*
p_yscale
;
void
*
p_qy
;
...
...
@@ -67,7 +67,7 @@ struct Smoothquant
CK_TILE_HOST
static
constexpr
Kargs
MakeKargs
(
const
Hargs
&
hargs
)
{
return
Kargs
{
hargs
.
p_x
,
hargs
.
p_
x
scale
,
hargs
.
p_
sm
scale
,
hargs
.
p_yscale
,
hargs
.
p_qy
,
hargs
.
m
,
...
...
@@ -134,9 +134,9 @@ struct Smoothquant
tmp2_
,
make_tuple
(
number
<
Block_M
>
{},
number
<
Block_N
>
{}),
{
iM
,
0
});
}();
const
auto
x
scale_window
=
[
&
]()
{
const
auto
sm
scale_window
=
[
&
]()
{
const
auto
tmp_
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
X
ScaleDataType
*>
(
kargs
.
p_
x
scale
),
static_cast
<
const
Smooth
ScaleDataType
*>
(
kargs
.
p_
sm
scale
),
make_tuple
(
kargs
.
n
),
make_tuple
(
1
),
number
<
Vector_N
>
{},
...
...
@@ -177,7 +177,7 @@ struct Smoothquant
__shared__
char
smem
[
GetSmemSize
()];
Pipeline
{}(
x_window
,
x
scale_window
,
yscale_window
,
qy_window
,
kargs
.
n
,
smem
);
Pipeline
{}(
x_window
,
sm
scale_window
,
yscale_window
,
qy_window
,
kargs
.
n
,
smem
);
}
};
...
...
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_default_policy.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -28,7 +28,7 @@ struct SmoothquantPipelineDefaultPolicy
}
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
Make
X
ScaleBlockTileDistribution
()
CK_TILE_DEVICE
static
constexpr
auto
Make
Smooth
ScaleBlockTileDistribution
()
{
using
S
=
typename
Problem
::
BlockShape
;
...
...
include/ck_tile/ops/smoothquant/pipeline/smoothquant_pipeline_one_pass.hpp
View file @
a11cf2c6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -16,11 +16,11 @@ struct SmoothquantPipelineOnePass
using
Problem
=
ck_tile
::
remove_cvref_t
<
Problem_
>
;
using
Policy
=
ck_tile
::
remove_cvref_t
<
Policy_
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
X
ScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
X
ScaleDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
using
XDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
XDataType
>
;
using
Smooth
ScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
Smooth
ScaleDataType
>
;
using
ComputeDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
ComputeDataType
>
;
using
QYDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
QYDataType
>
;
using
YScaleDataType
=
ck_tile
::
remove_cvref_t
<
typename
Problem
::
YScaleDataType
>
;
static
constexpr
bool
kNeedCrossWarpSync
=
Problem
::
kNeedCrossWarpSync
;
static
constexpr
bool
kPadM
=
false
;
// TODO - BlockSmoothquantProblem::kPadM
...
...
@@ -39,9 +39,12 @@ struct SmoothquantPipelineOnePass
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
XWindow
,
typename
XScaleWindow
,
typename
QYWindow
,
typename
YScaleWindow
>
template
<
typename
XWindow
,
typename
SmoothScaleWindow
,
typename
QYWindow
,
typename
YScaleWindow
>
CK_TILE_DEVICE
auto
operator
()(
const
XWindow
&
x_window_
,
const
X
ScaleWindow
&
x
scale_window_
,
const
Smooth
ScaleWindow
&
sm
scale_window_
,
YScaleWindow
&
yscale_window
,
QYWindow
&
qy_window
,
ck_tile
::
index_t
,
...
...
@@ -49,8 +52,8 @@ struct SmoothquantPipelineOnePass
{
auto
x_window
=
make_tile_window
(
x_window_
,
Policy
::
template
MakeXBlockTileDistribution
<
Problem
>());
auto
x
scale_window
=
make_tile_window
(
x
scale_window_
,
Policy
::
template
Make
X
ScaleBlockTileDistribution
<
Problem
>());
auto
sm
scale_window
=
make_tile_window
(
sm
scale_window_
,
Policy
::
template
Make
Smooth
ScaleBlockTileDistribution
<
Problem
>());
auto
reduce_absmax_func
=
ReduceOp
::
AbsMax
{};
auto
reduce_absmax3_func
=
[](
auto
acc_
,
auto
v_0_
,
auto
v_1_
)
{
...
...
@@ -67,14 +70,14 @@ struct SmoothquantPipelineOnePass
auto
block_reduce2d_cross_warp_sync
=
Policy
::
template
GetBlockReduce2dCrossWarpSync
<
Problem
>();
const
auto
x
=
load_tile
(
x_window
);
const
auto
x
scale
=
load_tile
(
x
scale_window
);
auto
y
=
tile_elementwise_in
(
const
auto
x
=
load_tile
(
x_window
);
const
auto
sm
scale
=
load_tile
(
sm
scale_window
);
auto
y
=
tile_elementwise_in
(
[
&
](
const
auto
&
a
,
const
auto
&
b
)
{
return
type_convert
<
ComputeDataType
>
(
a
)
*
type_convert
<
ComputeDataType
>
(
b
);
},
x
,
x
scale
);
sm
scale
);
// compute absmax, cross-lane->cross-warp
auto
absmax
=
[
&
]()
{
...
...
@@ -110,7 +113,7 @@ struct SmoothquantPipelineOnePass
sweep_tile
(
qy
,
[
&
](
auto
idx
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx
[
number
<
0
>
{}]);
auto
qy_
=
y
[
idx
]
/
yscale
[
i_idx
];
qy
(
idx
)
=
saturates
<
QYDataType
>
{}(
qy_
);
qy
(
idx
)
=
type_convert
<
QYDataType
>
(
saturates
<
QYDataType
>
{}(
qy_
)
)
;
});
store_tile
(
qy_window
,
qy
);
}
...
...
Prev
1
…
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment