Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
9afc4a0b
Commit
9afc4a0b
authored
Feb 04, 2025
by
coderfeli
Browse files
perf ok
parent
f8d15f2a
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
390 additions
and
4 deletions
+390
-4
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp
...y_multiply/gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp
+4
-4
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
+385
-0
No files found.
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
9afc4a0b
...
...
@@ -5,3 +5,4 @@ add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_m
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_moe_gemm_fp16 moe_gemm_fp16.cpp
)
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp
View file @
9afc4a0b
...
...
@@ -135,8 +135,8 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
8
,
8
,
32
,
32
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
...
...
@@ -158,8 +158,8 @@ int main(int argc, char* argv[])
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
32
;
...
...
example/65_gemm_multiply_multiply/moe_gemm_fp16.cpp
0 → 100644
View file @
9afc4a0b
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
// using BF16 = ck::bhalf_t;
// using F16 = ck::f8_t;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
F16
;
using
B0DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
struct
MultiplyMultiply
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
F16
,
float
,
float
,
float
>
(
F16
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
// const float x0_f = c * d0 * d1;
const
float
x0_f
=
c
;
// printf("epi %f\n", c);
e
=
ck
::
type_convert
<
F16
>
(
x0_f
);
}
// template <>
// __host__ __device__ constexpr void operator()<BF16, float, float, float>(BF16& e,
// const float& c,
// const float& d0,
// const float& d1) const
// {
// const float x0_f = c;
// // const float x0_f = c * d0 * d1;
// e = ck::type_convert<BF16>(x0_f);
// }
};
void
preShuffleBuffer
(
const
F16
*
src
,
F16
*
dst
,
int
N
,
int
K
,
int
NXdl
)
{
int
KPack
=
8
;
int
NLane
=
NXdl
;
int
KLane
=
64
/
NLane
;
int
K0
=
K
/
(
KLane
*
KPack
);
// K -> K0 KLane KPack
// N -> N0 NLane
// N, K -> N0 K0 KLane NLane KPack
int
tempk
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
int
n0
=
n
/
NLane
;
int
n1
=
n
%
NLane
;
int
k0
=
k
/
(
KLane
*
KPack
);
tempk
=
k
%
(
KLane
*
KPack
);
int
k1
=
tempk
/
KPack
;
int
k2
=
tempk
%
KPack
;
int
outputIndex
=
n0
*
KPack
*
NLane
*
KLane
*
K0
+
k0
*
KPack
*
NLane
*
KLane
+
k1
*
KPack
*
NLane
+
n1
*
KPack
+
k2
;
dst
[
outputIndex
]
=
src
[
n
*
K
+
k
];
}
}
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RCR
// kernel 1: 256->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 128, 16, 16, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, F16>;
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, F16>;
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
256
,
32
,
128
,
128
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
8
,
8
,
1
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
F16
>
;
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, F16>;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// tokens = 1
// topk = 1
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
32
;
ck
::
index_t
SORTED_SIZE
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
32
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 5: N, K
\n
"
);
exit
(
0
);
}
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
KBatch
=
1
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
// const ck::index_t experts = 8;
Tensor
<
ck
::
index_t
>
expert_ids
(
HostTensorDescriptor
({
experts
},
{
1
}));
Tensor
<
ck
::
index_t
>
sorted_token_ids
(
HostTensorDescriptor
({
SORTED_SIZE
},
{
1
}));
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorted_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
SORTED_SIZE
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
else
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
tokens
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
// Tensor<B0DataType> b0_e_n_k(f_host_tensor_descriptor(K, N * experts, StrideB, B0Layout{}));
// Tensor<B0DataType> b0_preshuffled(
// f_host_tensor_descriptor(K, N, StrideB, B0Layout{})); // use laout only for size
Tensor
<
D0DataType
>
d0_t_n
(
f_host_tensor_descriptor
(
tokens
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_t_n
(
f_host_tensor_descriptor
(
tokens
,
N
,
StrideD
,
D1Layout
{}));
Tensor
<
B0DataType
>
e_m_n_host_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
B0DataType
>
e_m_n_device_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_t_n: "
<<
d1_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
break
;
default:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_t_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_t_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_t_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
int
NPerXdl
=
device_op
.
GetPreShuffleParameters
();
preShuffleBuffer
(
b0_e_n_k
.
mData
.
data
(),
b0_preshuffled
.
mData
.
data
(),
N
*
experts
,
K
,
NPerXdl
);
b0_device_buf
.
ToDevice
(
b0_preshuffled
.
mData
.
data
());
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
sorted_token_ids_dev
.
GetDeviceBuffer
(),
expert_ids_dev
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
SORTED_SIZE
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
I0
,
I0
},
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
SORTED_SIZE
*
N
*
K
*
experts
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
SORTED_SIZE
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
SORTED_SIZE
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
,
0
,
1
});
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_m_n
({
SORTED_SIZE
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
a0_t_k
,
b0_e_n_k
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
SORTED_SIZE
;
++
m
)
{
const
int
t
=
sorted_token_ids
(
m
);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_t_n
(
t
,
n
),
d1_t_n
(
t
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_m_n_device_result
.
savetxt
(
"out.txt"
);
e_m_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
:
1
;
}
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment