Unverified Commit 989ffa2b authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merge pull request #263 from ROCm/develop

Merge from public repo
parents 0dd5d62a cabbacb6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include <thread>
#include <string>
namespace ck_tile {
enum class naive_attention_layout_enum
{
BSHD, // [batch, seqlen, nhead, hdim]
BHSD, // [batch, nhead, seqlen, hdim]
BS3HD, // [batch, nhead, 3, seqlen, hdim], used when qkv are packed
PHSD, // [pages, nhead, page_size, hdim]
// PHSDX, // [pages, nhead, page_size/x, hdim, x], where <# used pages>*page_size = seqlen
PHDSX, // [pages, nhead, hdim/x, page_size, x], where <# used pages>*page_size = seqlen
PHDS, // [pages, nhead, hdim, page_size], where <# used pages>*page_size = seqlen
};
// will used to specialize kernel variation
enum class naive_attention_variation_enum
{
FLASH_BATCHED = 0, // standard flash attention, or xformer/sdpa, used for training
FLASH_GROUPED,
DECODE_PAGED, // decode attn, where kv token from another buffer called kvcache
};
// TODO: for simplicity, this will be used as host/device arg
struct naive_attention_fwd_args
{
void* q_ptr;
void* k_ptr;
void* v_ptr;
void* o_ptr;
void* context_len_ptr; // [batch] used when seqlen kv come from a pointer(each element is a
// number, not cumsum)
void* page_table_ptr; // [batch, max_pages_per_seq] seqlen_kv is in different block(paged attn)
void* kvscale_ptr; // [nhead, 2(kv), hdim] used for kvcache dequant
float scale_s;
int hdim;
int hdim_v; // could be cross-attn, where V and Q/K hdim are different
int batch_q;
int batch_kv;
int batch_ratio_kv; // batch_q / batch_kv
int seqlen_q; // in decode case, this should be 1
int seqlen_kv; // if context_len_ptr is not nullptr, ignore this field
int nhead_q;
int nhead_kv;
int nhead_ratio_kv; // nhead_q / nhead_kv
int page_size; // if paged, the seqlen-kv per each block
int max_pages_per_seq;
};
// this is trait for host API
struct naive_attention_fwd_traits
{
std::string q_type;
std::string k_type;
std::string v_type;
std::string o_type;
std::string q_layout;
std::string k_layout;
std::string v_layout;
std::string o_layout;
int variation; // sync with naive_attention_variation_enum
};
// this is trait for kernel template
template <naive_attention_variation_enum variation_>
struct naive_attention_fwd_kernel_traits
{
static constexpr naive_attention_variation_enum variation = variation_;
};
// for simplicity, please do not use const-reference type for the template type
template <typename QType,
typename KType,
typename VType,
typename OType,
typename AccType,
naive_attention_layout_enum QLayout,
naive_attention_layout_enum KLayout,
naive_attention_layout_enum VLayout,
naive_attention_layout_enum OLayout,
typename Traits>
struct naive_attention_fwd_kernel
{
static constexpr bool is_kvcache_i8 =
std::is_same_v<KType, int8_t> && std::is_same_v<VType, int8_t> && sizeof(QType) != 1;
// kvcache-i8 will have per head scale, we apply this scale to Q/P matrix instead of original
// K/V matrix. This can speed up conversion since Q/P usually is fp16/bf16/fp32
static constexpr bool is_kvcache_i8_forward_quant = is_kvcache_i8;
// TODO: hardcode
using KVScaleType = float;
using SoftmaxType = float;
using PType = VType; // src A of gemm2, same type as V
using p_vec_type = ext_vector_t<PType, 16 / sizeof(PType)>;
static constexpr int p_vec_elem = vector_traits<p_vec_type>::vector_size;
__host__ __device__ naive_attention_fwd_kernel() {}
template <typename T, naive_attention_layout_enum Layout>
struct addresser
{
int b, s, h, d; // batch, seqlen, nhead, hdim
T* base_ptr;
__device__ addresser(int b_, int s_, int h_, int d_, void* base_ptr_)
: b(b_), s(s_), h(h_), d(d_), base_ptr(reinterpret_cast<T*>(base_ptr_))
{
}
// TODO: all the batch/nhead offset will accumulate to the base pointer
__device__ T* get_base(int i_b, int i_h)
{
if constexpr(Layout == naive_attention_layout_enum::BSHD)
return base_ptr + i_b * s * h * d + i_h * d;
else if constexpr(Layout == naive_attention_layout_enum::BHSD)
return base_ptr + i_b * s * h * d + i_h * s * d;
}
__device__ int get_offset(int i_s, int i_d)
{
if constexpr(Layout == naive_attention_layout_enum::BSHD)
return i_s * h * d + i_d;
else if constexpr(Layout == naive_attention_layout_enum::BHSD)
return i_s * d + i_d;
}
// below set of API will directly use pointer inside this struct
__device__ void init(int i_b, int i_h) { base_ptr = get_base(i_b, i_h); }
__device__ T load(int i_s, int i_d) { return base_ptr[get_offset(i_s, i_d)]; }
__device__ void store(T value, int i_s, int i_d) { base_ptr[get_offset(i_s, i_d)] = value; }
};
template <typename T, naive_attention_layout_enum Layout>
struct page_addresser
{
int s, h, d; // page_size, nhead, hdim
static constexpr int x = 16 / sizeof(T); // pack 4 dword
T* base_ptr;
int* page_table_ptr; // TODO: page table always int
int i_h; // store current head
__device__ page_addresser(int s_, int h_, int d_, void* base_ptr_, void* pptr_)
: s(s_),
h(h_),
d(d_),
base_ptr(reinterpret_cast<T*>(base_ptr_)),
page_table_ptr(reinterpret_cast<int*>(pptr_))
{
}
__device__ int64_t get_phy_page_idx(int i_s)
{
// dynamic compute page idx is simple but slow
int page_idx = i_s / s;
int phy = page_table_ptr[page_idx];
return static_cast<int64_t>(phy);
}
__device__ int get_phy_page_offset(int i_s)
{
// dynamic compute page idx is simple but slow
return i_s % s;
}
__device__ int64_t get_offset(int i_s, int i_d)
{
int page_offset = get_phy_page_offset(i_s);
int64_t page_idx = get_phy_page_idx(i_s);
int64_t base_ = page_idx * h * s * d;
if constexpr(Layout == naive_attention_layout_enum::PHSD)
return static_cast<int64_t>(i_h * s * d + page_offset * d + i_d) + base_;
else if constexpr(Layout == naive_attention_layout_enum::PHDSX)
{
int d_r = i_d / x;
int d_x = i_d % x;
return static_cast<int64_t>(i_h * d * s + d_r * s * x + page_offset * x + d_x) +
base_;
}
else if constexpr(Layout == naive_attention_layout_enum::PHDS)
{
return static_cast<int64_t>(i_h * d * s + i_d * s + page_offset) + base_;
}
}
// below set of API will directly use pointer inside this struct
__device__ void init(int /*i_b*/, int i_h_) { i_h = i_h_; }
__device__ T load(int i_s, int i_d) { return base_ptr[get_offset(i_s, i_d)]; }
__device__ void store(T /*value*/, int /*i_s*/, int /*i_d*/) {}
};
template <typename T>
struct kvscale_addresser
{
int h, d; // nhead, hdim
T* base_ptr;
__device__ kvscale_addresser(int h_, int d_, void* p_)
: h(h_), d(d_), base_ptr(reinterpret_cast<T*>(p_))
{
}
__device__ int get_offset(int i_h, int i_d, int i_kv /*0 or 1*/)
{
// [h, 2, d]
return i_h * 2 * d + i_kv * d + i_d;
}
__device__ T load(int i_h, int i_d, int i_kv)
{
return base_ptr[get_offset(i_h, i_d, i_kv)];
}
};
__device__ __host__ static constexpr int get_block_size() { return 256; }
// for simpliciy, 1 WG always compute 1 token along q, compute all token along kv
// compute all hdim from q, compute WG_SIZE hdim from v
// 1) in prefill case, seqlen_q >= 1, seqlen_kv >= 1, batch_q=batch_kv
// 2) in decode case, seqlen_q = 1, batch_q is input num-tokens, batch_kv is 1
// 3) in paged-attn case, we still use 1 WG compute all the seqlen-kv for simplicity
// TODO: could support split-kv to validate intermediate logsum
__host__ static dim3 get_grid_size(naive_attention_fwd_args args)
{
constexpr int wg_size = get_block_size();
auto g =
dim3((args.hdim_v + wg_size - 1) / wg_size, args.seqlen_q, args.batch_q * args.nhead_q);
return g;
}
// reduce single pixel within a wave
template <typename T, typename F>
__device__ constexpr T wave_reduce(T local, F reduce_f)
{
// constexpr int wave_size = 64;
constexpr int reduce_stage = 6; // 1<<6=64
T v_local = local;
#pragma unroll
for(int i_stage = 0; i_stage < reduce_stage; i_stage++)
{
int src_lane = __lane_id() ^ (1 << i_stage);
int32_t v_remote_tmp =
__builtin_amdgcn_ds_bpermute(src_lane << 2, bit_cast<int32_t>(v_local));
T v_remote = bit_cast<T>(v_remote_tmp);
v_local = reduce_f(v_local, v_remote);
}
return v_local;
}
// Note: this function must be called after wave_reduce
// Note: better not use this under if...else... with thread divergence (syncthreads)
template <typename T, typename F>
__device__ constexpr T cross_wave_reduce(T local, F reduce_f, T* smem)
{
constexpr int waves = 4;
constexpr int wave_size = 64;
int lane_id = threadIdx.x % wave_size;
__syncthreads();
smem[threadIdx.x] = local;
__syncthreads();
// the data within single wave is the same
// but for simplicity, we still use data from each lane.
T v_local = smem[lane_id];
#pragma unroll
for(int i_stage = 1; i_stage < waves; i_stage++)
{
T v_remote = smem[i_stage * wave_size + lane_id];
v_local = reduce_f(v_local, v_remote);
}
return v_local;
}
// kernel entry point
__device__ void operator()(naive_attention_fwd_args args)
{
constexpr int wg_size = get_block_size();
__shared__ char smem[wg_size * 4 * sizeof(float)]; // should enough
int i_dv = blockIdx.x * wg_size + threadIdx.x; // index of hdim_v
int i_sq = blockIdx.y; // index of seqlen_q
int i_batch = blockIdx.z; // index of batch_q * nhead_q
int i_bq = i_batch / args.nhead_q; // index of batch_q
int i_hq = i_batch % args.nhead_q; // index of nhead_q
int i_bk = i_bq / args.batch_ratio_kv;
int i_hk = i_hq / args.nhead_ratio_kv;
void* page_table_ptr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return reinterpret_cast<int*>(args.page_table_ptr) + i_bq * args.max_pages_per_seq;
}
else
{
return nullptr;
}
}();
auto q_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<QType, QLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim, args.q_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return addresser<QType, QLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim, args.q_ptr};
}
}();
auto k_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<KType, KLayout>{
args.batch_kv, args.seqlen_kv, args.nhead_kv, args.hdim, args.k_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return page_addresser<KType, KLayout>{
args.page_size, args.nhead_kv, args.hdim, args.k_ptr, page_table_ptr};
}
}();
auto v_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<VType, VLayout>{
args.batch_kv, args.seqlen_kv, args.nhead_kv, args.hdim_v, args.v_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return page_addresser<VType, VLayout>{
args.page_size, args.nhead_kv, args.hdim_v, args.v_ptr, page_table_ptr};
}
}();
auto o_addr = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return addresser<OType, OLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim_v, args.o_ptr};
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return addresser<OType, OLayout>{
args.batch_q, args.seqlen_q, args.nhead_q, args.hdim_v, args.o_ptr};
}
}();
q_addr.init(i_bq, i_hq);
k_addr.init(i_bk, i_hk);
v_addr.init(i_bk, i_hk);
o_addr.init(i_bq, i_hq);
auto f_max = [](auto x_, auto y_) { return max(x_, y_); };
auto f_sum = [](auto x_, auto y_) { return x_ + y_; };
auto f_absmax_f32 = [](float v_0_, float v_1_) {
float rtn;
asm volatile("v_max_f32 %0, abs(%1), abs(%2)" : "=v"(rtn) : "v"(v_0_), "v"(v_1_));
return rtn;
};
int seqlen_kv = [&]() {
if constexpr(Traits::variation == naive_attention_variation_enum::FLASH_BATCHED)
{
return args.seqlen_kv;
}
else if constexpr(Traits::variation == naive_attention_variation_enum::DECODE_PAGED)
{
return reinterpret_cast<int*>(args.context_len_ptr)[i_bq];
}
}();
SoftmaxType row_max = -numeric<SoftmaxType>::infinity();
SoftmaxType l{0};
AccType o_acc = {0};
int sk_loops = (seqlen_kv + wg_size - 1) / wg_size;
float qf_scale = .0f;
kvscale_addresser<KVScaleType> kvscale_addr{args.nhead_kv, args.hdim, args.kvscale_ptr};
if constexpr(is_kvcache_i8_forward_quant)
{
// AccType is i32 now, seqlen_q = 1, hdim up to 256
float q = 0;
float k_s = 0;
if(static_cast<int>(threadIdx.x) < args.hdim)
{
q = type_convert<float>(q_addr.load(0, threadIdx.x));
k_s = type_convert<float>(kvscale_addr.load(i_hk, threadIdx.x, 0));
}
// 1) we apply the k scale to q
float q_forwarded = q * k_s;
// 2) apply smooth-quant
// find absmax
float qf_max = wave_reduce(q_forwarded, f_absmax_f32);
qf_max = cross_wave_reduce(qf_max, f_absmax_f32, reinterpret_cast<float*>(smem));
// per-token scale
qf_scale = qf_max / 127.0;
// devide by scale
q = q / qf_scale;
// fp32->i8
int8_t quantized_q = static_cast<int8_t>(q);
__syncthreads();
reinterpret_cast<int8_t*>(smem)[threadIdx.x] = quantized_q;
__syncthreads();
// after above process, we have 2 data
// 1) int8 q data stored in smem(no need to reload)
// 2) per-token scale qf_scale, to be mul after 1st gemm
}
for(int i_loop1 = 0; i_loop1 < sk_loops; i_loop1++)
{
int i_sk = i_loop1 * wg_size + threadIdx.x;
// gemm-1
SoftmaxType s_softmax = -numeric<SoftmaxType>::infinity();
if(i_sk < seqlen_kv)
{
AccType s_acc{0}; // clear for every loop
for(auto i_dq = 0; i_dq < args.hdim; i_dq++)
{
if constexpr(is_kvcache_i8_forward_quant)
{
int8_t q = reinterpret_cast<int8_t*>(smem)[i_dq];
auto k = k_addr.load(i_sk, i_dq);
s_acc += type_convert<AccType>(q) * type_convert<AccType>(k);
}
else
{
auto q = q_addr.load(i_sq, i_dq); // q will have duplicate load
auto k = k_addr.load(i_sk, i_dq);
s_acc += type_convert<AccType>(q) * type_convert<AccType>(k);
}
}
// scale
s_softmax = type_convert<SoftmaxType>(s_acc);
s_softmax *=
type_convert<SoftmaxType>(args.scale_s * ck_tile::log2e_v<SoftmaxType>);
if constexpr(is_kvcache_i8_forward_quant)
{
s_softmax *= qf_scale; // post scale the per-token factor
}
}
// s->p
float pf_scale = 0.; // used for i8 quant
{
// softmax, find max
SoftmaxType old_max = row_max;
SoftmaxType cur_max = wave_reduce(s_softmax, f_max);
cur_max = cross_wave_reduce(cur_max, f_max, reinterpret_cast<SoftmaxType*>(smem));
row_max = max(old_max, cur_max); // update row_max
// softmax, exp(i_elem - max)
SoftmaxType p_compute = __builtin_amdgcn_exp2f(s_softmax - row_max);
// compute exp_sum
SoftmaxType row_sum = wave_reduce(p_compute, f_sum);
row_sum = cross_wave_reduce(row_sum, f_sum, reinterpret_cast<SoftmaxType*>(smem));
// l, pre-scall o_acc
SoftmaxType tmp = __builtin_amdgcn_exp2f(old_max - row_max);
l = tmp * l + row_sum;
o_acc = type_convert<AccType>(type_convert<SoftmaxType>(o_acc) * tmp);
// prepare the p_compute into smem, to let every thread read same p_compute and do
// 2nd gemm
if constexpr(is_kvcache_i8_forward_quant)
{
float v_s = 0;
if(static_cast<int>(threadIdx.x) < args.hdim_v)
{
v_s = type_convert<float>(kvscale_addr.load(i_hk, threadIdx.x, 1));
}
// 1) we apply the v scale to p
float p_forwarded = p_compute * v_s;
// 2) apply smooth-quant
// find absmax
float pf_max = wave_reduce(p_forwarded, f_absmax_f32);
pf_max =
cross_wave_reduce(pf_max, f_absmax_f32, reinterpret_cast<float*>(smem));
// per-token scale
pf_scale = pf_max / 127.0;
// devide by scale
p_compute = p_compute / pf_scale;
// fp32->i8
int8_t quantized_p = static_cast<int8_t>(p_compute);
__syncthreads();
reinterpret_cast<int8_t*>(smem)[threadIdx.x] = quantized_p;
__syncthreads();
// after above process, we have 2 data
// 1) int8 p data stored in smem(no need to reload)
// 2) per-token scale pf_scale, to be mul after 2nd gemm
}
else
{
__syncthreads();
reinterpret_cast<PType*>(smem)[threadIdx.x] = type_convert<PType>(p_compute);
__syncthreads();
}
}
// gemm-2, simple loop over vector by vector
constexpr int gemm_2_loop = wg_size / p_vec_elem;
{
AccType o_acc_local = {0};
int sk_start = i_loop1 * wg_size; // we start from the first seqlen_kv element
for(int i_loop2 = 0; i_loop2 < gemm_2_loop; i_loop2++)
{
p_vec_type p_vec = reinterpret_cast<p_vec_type*>(smem)[i_loop2];
#pragma unroll
for(int i_j = 0; i_j < p_vec_elem; i_j++)
{
int sv_offset = i_loop2 * p_vec_elem + i_j;
int i_sv = sk_start + sv_offset;
VType v = 0.f;
if(i_dv < args.hdim_v && i_sv < seqlen_kv)
{
v = v_addr.load(i_sv, i_dv);
}
o_acc_local += type_convert<AccType>(p_vec[i_j]) * type_convert<AccType>(v);
}
}
if constexpr(is_kvcache_i8_forward_quant)
{
// apply pr scale to local acc
o_acc_local =
type_convert<AccType>(type_convert<float>(o_acc_local) * pf_scale);
}
o_acc += o_acc_local;
}
}
// post scale o_acc
{
SoftmaxType tmp = l == 0.f ? 0.f : 1.f / l; // in case masking
o_acc = type_convert<AccType>(type_convert<SoftmaxType>(o_acc) * tmp);
}
// store O
if(i_dv < args.hdim_v)
o_addr.store(type_convert<OType>(o_acc), i_sq, i_dv);
}
};
#define CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_() \
{ \
using ktraits_ = \
naive_attention_fwd_kernel_traits<static_cast<naive_attention_variation_enum>( \
variation_)>; \
using k_ = naive_attention_fwd_kernel<q_type_, \
k_type_, \
v_type_, \
o_type_, \
acc_type_, \
q_layout_, \
k_layout_, \
v_layout_, \
o_layout_, \
ktraits_>; \
dim3 grids = k_::get_grid_size(a); \
r = ck_tile::launch_kernel(s, \
ck_tile::make_kernel(k_{}, grids, k_::get_block_size(), 0, a)); \
}
#define CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_() \
if(t.variation == 0 && t.q_layout == "bshd" && t.k_layout == "bshd" && t.v_layout == "bshd" && \
t.o_layout == "bshd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto k_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto v_layout_ = naive_attention_layout_enum::BSHD; \
constexpr auto o_layout_ = naive_attention_layout_enum::BSHD; \
constexpr int variation_ = 0; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
} \
else if(t.variation == 0 && t.q_layout == "bhsd" && t.k_layout == "bhsd" && \
t.v_layout == "bhsd" && t.o_layout == "bhsd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto k_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto v_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto o_layout_ = naive_attention_layout_enum::BHSD; \
constexpr int variation_ = 0; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
} \
else if(t.variation == 2 && t.q_layout == "bhsd" && t.k_layout == "phdsx" && \
t.v_layout == "phds" && t.o_layout == "bhsd") \
{ \
constexpr auto q_layout_ = naive_attention_layout_enum::BHSD; \
constexpr auto k_layout_ = naive_attention_layout_enum::PHDSX; \
constexpr auto v_layout_ = naive_attention_layout_enum::PHDS; \
constexpr auto o_layout_ = naive_attention_layout_enum::BHSD; \
constexpr int variation_ = 2; \
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_(); \
}
//
CK_TILE_HOST float naive_attention_fwd(naive_attention_fwd_traits t,
naive_attention_fwd_args a,
ck_tile::stream_config s)
{
float r = -1;
// TODO: do not explicitly create too much instance!
if(t.q_type == "fp16" && t.k_type == "fp16" && t.v_type == "fp16" && t.o_type == "fp16")
{
using q_type_ = fp16_t;
using k_type_ = fp16_t;
using v_type_ = fp16_t;
using o_type_ = fp16_t;
using acc_type_ = float;
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "bf16" && t.k_type == "bf16" && t.v_type == "bf16" && t.o_type == "bf16")
{
using q_type_ = bf16_t;
using k_type_ = bf16_t;
using v_type_ = bf16_t;
using o_type_ = bf16_t;
using acc_type_ = float;
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "bf16" && t.k_type == "int8" && t.v_type == "int8" && t.o_type == "bf16")
{
using q_type_ = bf16_t;
using k_type_ = int8_t;
using v_type_ = int8_t;
using o_type_ = bf16_t;
using acc_type_ = int32_t; // NOTE!
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
else if(t.q_type == "fp16" && t.k_type == "int8" && t.v_type == "int8" && t.o_type == "fp16")
{
using q_type_ = fp16_t;
using k_type_ = int8_t;
using v_type_ = int8_t;
using o_type_ = fp16_t;
using acc_type_ = int32_t; // NOTE!
CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_();
}
return r;
}
#undef CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_LAOYUT_
#undef CK_TILE_DISPATCH_NAIVE_ATTEN_FWD_INTERNAL_
} // namespace ck_tile
...@@ -7,6 +7,7 @@ import copy ...@@ -7,6 +7,7 @@ import copy
NS = 'ck_tile' NS = 'ck_tile'
OPS = 'ops' OPS = 'ops'
REF = 'ref'
OPS_COMMON = 'common' # common header will be duplicated into ops/* other module OPS_COMMON = 'common' # common header will be duplicated into ops/* other module
HEADER_COMMON = f"""// SPDX-License-Identifier: MIT HEADER_COMMON = f"""// SPDX-License-Identifier: MIT
...@@ -29,6 +30,9 @@ class submodule_t: ...@@ -29,6 +30,9 @@ class submodule_t:
def push(self, f): def push(self, f):
if len(f.parents) != 1: # ignore ./xxx.hpp if len(f.parents) != 1: # ignore ./xxx.hpp
mod = get_module(f) mod = get_module(f)
# ref is supposed to include one header on demand
if mod == REF:
return
if mod == OPS: if mod == OPS:
if mod not in self.m.keys(): if mod not in self.m.keys():
self.m[mod] = dict() self.m[mod] = dict()
......
...@@ -52,6 +52,9 @@ using device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_instances = ...@@ -52,6 +52,9 @@ using device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_instances =
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 2, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 2, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 8, 8, 16, 16, 8, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 8, 8, 16, 16, 8, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 160, 64, 8, 8, 16, 16, 8, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 160, 64, 8, 8, 32, 32, 1, 5, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 64, 1, 4>, S<8>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 160, 128, 64, 8, 8, 32, 32, 5, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1> DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, BF16, BF16, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, S<4>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
......
...@@ -42,6 +42,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_comp_instances = std ...@@ -42,6 +42,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_comp_instances = std
//##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline| //##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision| //##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#ifdef __gfx94__ #ifdef __gfx94__
// Compute friendly // Compute friendly
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 64, 16, 16, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4, F8>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 64, 16, 16, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4, F8>,
...@@ -72,6 +73,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_instances = std: ...@@ -72,6 +73,7 @@ using device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_instances = std:
//##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline| //##################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision| //##################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH) #if defined(__gfx94__) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<2>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<2>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>,
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, S<4>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>, DeviceBatchedGemmMultiD_Xdl_CShuffle_V3< Row, Col, DsLayout, Row, F8, F8, DsDataType, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 16, 16, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 4>, S<4>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1, F8>,
......
...@@ -48,6 +48,7 @@ bool profile_gemm_universal_batched_impl(int do_verification, ...@@ -48,6 +48,7 @@ bool profile_gemm_universal_batched_impl(int do_verification,
int StrideB, int StrideB,
int StrideC, int StrideC,
int BatchCount, int BatchCount,
int KBatch,
int n_warmup, int n_warmup,
int n_iter, int n_iter,
uint64_t rotating = 0) uint64_t rotating = 0)
...@@ -147,89 +148,100 @@ bool profile_gemm_universal_batched_impl(int do_verification, ...@@ -147,89 +148,100 @@ bool profile_gemm_universal_batched_impl(int do_verification,
float best_ave_time = 0; float best_ave_time = 0;
float best_tflops = 0; float best_tflops = 0;
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
float best_kbatch = 0;
// profile device op instances // profile device op instances
for(auto& op_ptr : op_ptrs) for(auto& op_ptr : op_ptrs)
{ {
std::unique_ptr<tensor_operation::device::BaseArgument> argument_ptr; std::vector<int> kbatch_list = {1, 2, 4, 8, 16, 19, 32, 38};
// false branch for multi d dl kernel
argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
BatchCount,
StrideA,
StrideB,
{},
StrideC,
BatchStrideA,
BatchStrideB,
{},
BatchStrideC,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run( if(KBatch > 0)
argument_ptr.get(), {
StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter, true, rotating_count}); kbatch_list = {KBatch};
}
std::size_t flop = std::size_t(2) * BatchCount * M * N * K; for(std::size_t i = 0; i < kbatch_list.size(); i++)
{
auto kbatch_curr = kbatch_list[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
BatchCount,
StrideA,
StrideB,
{},
StrideC,
BatchStrideA,
BatchStrideB,
{},
BatchStrideC,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
kbatch_curr);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string op_name = op_ptr->GetTypeString();
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + float ave_time = invoker_ptr->Run(
sizeof(CDataType) * M * N) * argument_ptr.get(),
BatchCount; StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter, true, rotating_count});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; std::size_t flop = std::size_t(2) * BatchCount * M * N * K;
float gb_per_sec = num_btype / 1.E6 / ave_time; std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N) *
BatchCount;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops) float gb_per_sec = num_btype / 1.E6 / ave_time;
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification) std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
{ << " GB/s, " << op_name << ", KBatch " << kbatch_curr << std::endl;
c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result); if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
if(do_log) if(do_verification)
{ {
LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl; c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",") pass = pass & ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result);
<< std::endl;
LogRangeAsType<float>( if(do_log)
std::cout << "c_device: ", c_g_m_n_device_result.mData, ",") {
<< std::endl; LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
<< std::endl;
}
} }
} }
} else
else {
{ std::cout << op_ptr->GetTypeString() << " does not support this problem"
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl; << std::endl;
}
} }
} }
...@@ -270,8 +282,8 @@ bool profile_gemm_universal_batched_impl(int do_verification, ...@@ -270,8 +282,8 @@ bool profile_gemm_universal_batched_impl(int do_verification,
std::cout << " B = " << BatchCount << " M = " << M << " N = " << N << " K = " << K std::cout << " B = " << BatchCount << " M = " << M << " N = " << N << " K = " << K
<< " StrideA = " << StrideA << " StrideB = " << StrideB << " StrideC = " << StrideC << " StrideA = " << StrideA << " StrideB = " << StrideB << " StrideC = " << StrideC
<< ": " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " KBatch = " << best_kbatch << ": " << best_ave_time << " ms, " << best_tflops
<< " GB/s, " << best_op_name << std::endl; << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass; return pass;
} }
......
...@@ -144,6 +144,7 @@ bool profile_gemm_universal_impl(int do_verification, ...@@ -144,6 +144,7 @@ bool profile_gemm_universal_impl(int do_verification,
} }
std::string best_op_name; std::string best_op_name;
std::optional<std::string> best_op_object_name;
float best_ave_time = 0; float best_ave_time = 0;
float best_tflops = 0; float best_tflops = 0;
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
...@@ -225,7 +226,8 @@ bool profile_gemm_universal_impl(int do_verification, ...@@ -225,7 +226,8 @@ bool profile_gemm_universal_impl(int do_verification,
} }
} }
std::string op_name = op_ptr->GetTypeString(); std::string op_name = op_ptr->GetTypeString();
std::optional<std::string> op_obj_name = op_ptr->GetObjectName();
float ave_time = invoker_ptr->Run(argument_ptr.get(), float ave_time = invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, StreamConfig{nullptr,
...@@ -251,11 +253,12 @@ bool profile_gemm_universal_impl(int do_verification, ...@@ -251,11 +253,12 @@ bool profile_gemm_universal_impl(int do_verification,
if(tflops > best_tflops && ave_time > 1e-10) if(tflops > best_tflops && ave_time > 1e-10)
{ {
best_op_name = op_name; best_op_name = op_name;
best_tflops = tflops; best_op_object_name = op_obj_name;
best_ave_time = ave_time; best_tflops = tflops;
best_gb_per_sec = gb_per_sec; best_ave_time = ave_time;
best_kbatch = kbatch_curr; best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
} }
} }
else else
...@@ -306,6 +309,9 @@ bool profile_gemm_universal_impl(int do_verification, ...@@ -306,6 +309,9 @@ bool profile_gemm_universal_impl(int do_verification,
<< " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl; << " GB/s, " << best_op_name << std::endl;
if(best_op_object_name)
std::cout << best_op_object_name.value() << std::endl;
return pass; return pass;
} }
......
...@@ -31,7 +31,7 @@ enum struct GemmDataType ...@@ -31,7 +31,7 @@ enum struct GemmDataType
int profile_batched_gemm_universal(int argc, char* argv[]) int profile_batched_gemm_universal(int argc, char* argv[])
{ {
if(argc != 18 && argc != 21) if(argc != 19 && argc != 22)
{ {
// clang-format off // clang-format off
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
...@@ -44,11 +44,11 @@ int profile_batched_gemm_universal(int argc, char* argv[]) ...@@ -44,11 +44,11 @@ int profile_batched_gemm_universal(int argc, char* argv[])
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"); printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n"); printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=n0, 1=yes)\n"); printf("arg7: time kernel (0=n0, 1=yes)\n");
printf("arg8 to 17: M, N, K, StrideA, StrideB, StrideC, BatchStrideA, BatchStrideB, BatchStrideC, BatchCount\n"); printf("arg8 to 18: M, N, K, StrideA, StrideB, StrideC, BatchStrideA, BatchStrideB, BatchStrideC, BatchCount, KBatch\n");
printf("optional:\n"); printf("optional:\n");
printf("arg18: number of warm-up cycles (default 1)\n"); printf("arg19: number of warm-up cycles (default 1)\n");
printf("arg19: number of iterations (default 10)\n"); printf("arg20: number of iterations (default 10)\n");
printf("arg20: memory for rotating buffer (default 0, size in MB)\n"); printf("arg21: memory for rotating buffer (default 0, size in MB)\n");
// clang-format on // clang-format on
exit(1); exit(1);
} }
...@@ -56,11 +56,11 @@ int profile_batched_gemm_universal(int argc, char* argv[]) ...@@ -56,11 +56,11 @@ int profile_batched_gemm_universal(int argc, char* argv[])
int n_warmup = 1; int n_warmup = 1;
int n_iter = 10; int n_iter = 10;
uint64_t rotating = 0; uint64_t rotating = 0;
if(argc == 21) if(argc == 22)
{ {
n_warmup = std::stoi(argv[18]); n_warmup = std::stoi(argv[19]);
n_iter = std::stoi(argv[19]); n_iter = std::stoi(argv[20]);
rotating = std::stoull(argv[20]) * 1024 * 1024; rotating = std::stoull(argv[21]) * 1024 * 1024;
} }
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2])); const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
...@@ -83,6 +83,7 @@ int profile_batched_gemm_universal(int argc, char* argv[]) ...@@ -83,6 +83,7 @@ int profile_batched_gemm_universal(int argc, char* argv[])
const int BatchStrideC = std::stoi(argv[16]); const int BatchStrideC = std::stoi(argv[16]);
const int BatchCount = std::stoi(argv[17]); const int BatchCount = std::stoi(argv[17]);
const int KBatch = std::stoi(argv[18]);
#if defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH) || defined(CK_USE_GFX94) #if defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH) || defined(CK_USE_GFX94)
using F8 = ck::f8_t; using F8 = ck::f8_t;
...@@ -159,6 +160,7 @@ int profile_batched_gemm_universal(int argc, char* argv[]) ...@@ -159,6 +160,7 @@ int profile_batched_gemm_universal(int argc, char* argv[])
StrideB_, StrideB_,
StrideC_, StrideC_,
BatchCount, BatchCount,
KBatch,
n_warmup, n_warmup,
n_iter, n_iter,
rotating); rotating);
......
...@@ -332,7 +332,7 @@ def main(): ...@@ -332,7 +332,7 @@ def main():
table_name="ck_fmha_bwd_tflops" table_name="ck_fmha_bwd_tflops"
tflops_base = get_baseline(table_name,conn) tflops_base = get_baseline(table_name,conn)
store_new_test_result(table_name, results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, conn) store_new_test_result(table_name, results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, sqlEngine)
conn.close() conn.close()
#compare the results to the baseline if baseline exists #compare the results to the baseline if baseline exists
......
# Currently ck_tile is only built on gfx9 # Currently ck_tile is only built on gfx9
if(GPU_TARGETS MATCHES "gfx9") if(GPU_TARGETS MATCHES "gfx9")
add_gtest_executable(test_ck_tile_gemm_mem_pipeline test_gemm_mem_pipeline.cpp) add_gtest_executable(test_ck_tile_gemm_pipeline test_gemm_pipeline.cpp)
endif() endif()
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "ck_tile/host.hpp" #include "ck_tile/host.hpp"
#include "test_gemm_mem_pipeline_util.hpp" #include "test_gemm_pipeline_util.hpp"
using F16 = ck_tile::half_t; using F16 = ck_tile::half_t;
using F32 = float; using F32 = float;
...@@ -16,21 +16,27 @@ using Intrawave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler, ...@@ -16,21 +16,27 @@ using Intrawave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
ck_tile::GemmPipelineScheduler::Intrawave>; ck_tile::GemmPipelineScheduler::Intrawave>;
using Interwave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler, using Interwave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
ck_tile::GemmPipelineScheduler::Interwave>; ck_tile::GemmPipelineScheduler::Interwave>;
using Mem = ck_tile::integral_constant<GemmPipelineType, GemmPipelineType::Mem>;
using Comp = ck_tile::integral_constant<GemmPipelineType, GemmPipelineType::Comp>;
// clang-format off // clang-format off
using KernelTypes = ::testing::Types< using KernelTypes = ::testing::Types<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType, GemmPipelineScheduler // ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType, GemmPipelineScheduler, PipelineType
std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave>, std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Row, Row, Row, F16, F16, F32, F16, Interwave>, std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave>, std::tuple< Row, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Row, Col, Row, F16, F16, F32, F16, Interwave>, std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave>, std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Interwave>, std::tuple< Row, Col, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave>, std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Interwave> std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Interwave, Mem>
>; >;
// clang-format on // clang-format on
TYPED_TEST_SUITE(TestCkTileGemmMemPipeline, KernelTypes); TYPED_TEST_SUITE(TestCkTileGemmPipeline, KernelTypes);
#include "test_gemm_mem_pipeline_ut_cases.inc" #include "test_gemm_pipeline_ut_cases.inc"
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#pragma once #pragma once
TYPED_TEST(TestCkTileGemmMemPipeline, SmallM) TYPED_TEST(TestCkTileGemmPipeline, SmallM)
{ {
std::vector<int> Ms{1, 2, 3, 4, 5, 6}; std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 1024; constexpr int N = 1024;
...@@ -13,7 +13,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, SmallM) ...@@ -13,7 +13,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, SmallM)
this->Run(M, N, K); this->Run(M, N, K);
} }
TYPED_TEST(TestCkTileGemmMemPipeline, MidLargeM) TYPED_TEST(TestCkTileGemmPipeline, MidLargeM)
{ {
std::vector<int> Ms{127, 255, 312, 799, 1573}; std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 1024; constexpr int N = 1024;
...@@ -23,7 +23,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, MidLargeM) ...@@ -23,7 +23,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, MidLargeM)
this->Run(M, N, K); this->Run(M, N, K);
} }
TYPED_TEST(TestCkTileGemmMemPipeline, PaddK) TYPED_TEST(TestCkTileGemmPipeline, PaddK)
{ {
std::vector<int> Ms{127}; std::vector<int> Ms{127};
constexpr int N = 1024; constexpr int N = 1024;
...@@ -33,7 +33,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, PaddK) ...@@ -33,7 +33,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, PaddK)
this->Run(M, N, K); this->Run(M, N, K);
} }
TYPED_TEST(TestCkTileGemmMemPipeline, Regular) TYPED_TEST(TestCkTileGemmPipeline, Regular)
{ {
std::vector<int> Ms{512}; std::vector<int> Ms{512};
constexpr int N = 1024; constexpr int N = 1024;
...@@ -43,7 +43,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, Regular) ...@@ -43,7 +43,7 @@ TYPED_TEST(TestCkTileGemmMemPipeline, Regular)
this->Run(M, N, K); this->Run(M, N, K);
} }
TYPED_TEST(TestCkTileGemmMemPipeline, NotSupportedArgument) TYPED_TEST(TestCkTileGemmPipeline, NotSupportedArgument)
{ {
constexpr int M = 512; constexpr int M = 512;
constexpr int N = 1025; constexpr int N = 1025;
......
...@@ -11,18 +11,24 @@ ...@@ -11,18 +11,24 @@
#include "ck_tile/ops/epilogue.hpp" #include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp" #include "ck_tile/ops/gemm.hpp"
enum struct GemmPipelineType
{
Mem,
Comp
};
template <typename Tuple> template <typename Tuple>
class TestCkTileGemmMemPipeline : public ::testing::Test class TestCkTileGemmPipeline : public ::testing::Test
{ {
protected: protected:
using ALayout = std::tuple_element_t<0, Tuple>; using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>; using BLayout = std::tuple_element_t<1, Tuple>;
using CLayout = std::tuple_element_t<2, Tuple>; using CLayout = std::tuple_element_t<2, Tuple>;
using ADataType = std::tuple_element_t<3, Tuple>; using ADataType = std::tuple_element_t<3, Tuple>;
using BDataType = std::tuple_element_t<4, Tuple>; using BDataType = std::tuple_element_t<4, Tuple>;
using AccDataType = std::tuple_element_t<5, Tuple>; using AccDataType = std::tuple_element_t<5, Tuple>;
using CDataType = std::tuple_element_t<6, Tuple>; using CDataType = std::tuple_element_t<6, Tuple>;
static constexpr auto Scheduler = std::tuple_element_t<7, Tuple>::value; static constexpr auto Scheduler = std::tuple_element_t<7, Tuple>::value;
static constexpr auto PipelineType = std::tuple_element_t<8, Tuple>::value;
// TODO: expose tile size through test t-param ? // TODO: expose tile size through test t-param ?
struct gemm_args struct gemm_args
...@@ -74,8 +80,13 @@ class TestCkTileGemmMemPipeline : public ::testing::Test ...@@ -74,8 +80,13 @@ class TestCkTileGemmMemPipeline : public ::testing::Test
using Traits = ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>; using Traits = ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using BaseGemmPipeline = ck_tile::BaseGemmPipelineAgBgCrMem< using BaseGemmPipeline = std::conditional_t<
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>; PipelineType == GemmPipelineType::Mem,
ck_tile::BaseGemmPipelineAgBgCrMem<
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>,
ck_tile::BaseGemmPipelineAgBgCrCompV3<
ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>>;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K); const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K);
const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop); const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop);
...@@ -85,15 +96,26 @@ class TestCkTileGemmMemPipeline : public ::testing::Test ...@@ -85,15 +96,26 @@ class TestCkTileGemmMemPipeline : public ::testing::Test
constexpr bool has_hot_loop_v = has_hot_loop_.value; constexpr bool has_hot_loop_v = has_hot_loop_.value;
constexpr auto tail_number_v = tail_number_.value; constexpr auto tail_number_v = tail_number_.value;
using GemmPipeline = ck_tile::GemmPipelineAgBgCrMem< using GemmPipeline =
ck_tile::UniversalGemmPipelineProblem<ADataType, std::conditional_t<PipelineType == GemmPipelineType::Mem,
BDataType, ck_tile::GemmPipelineAgBgCrMem<
AccDataType, ck_tile::UniversalGemmPipelineProblem<ADataType,
GemmShape, BDataType,
Traits, AccDataType,
Scheduler, GemmShape,
has_hot_loop_v, Traits,
tail_number_v>>; Scheduler,
has_hot_loop_v,
tail_number_v>>,
ck_tile::GemmPipelineAgBgCrCompV3<
ck_tile::UniversalGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
GemmShape,
Traits,
Scheduler,
has_hot_loop_v,
tail_number_v>>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>; using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a, auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b, args.p_b,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment