Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
9533a172
Unverified
Commit
9533a172
authored
Dec 02, 2024
by
Illia Silin
Committed by
GitHub
Dec 02, 2024
Browse files
Merge branch 'develop' into codegen-enable-hiprtc
parents
c2cf0733
50ee4267
Changes
503
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1368 additions
and
64 deletions
+1368
-64
include/ck_tile/core/numeric/bfloat16.hpp
include/ck_tile/core/numeric/bfloat16.hpp
+36
-0
include/ck_tile/core/tensor/buffer_view.hpp
include/ck_tile/core/tensor/buffer_view.hpp
+80
-6
include/ck_tile/core/tensor/load_tile.hpp
include/ck_tile/core/tensor/load_tile.hpp
+45
-9
include/ck_tile/core/tensor/shuffle_tile.hpp
include/ck_tile/core/tensor/shuffle_tile.hpp
+1
-1
include/ck_tile/core/tensor/static_distributed_tensor.hpp
include/ck_tile/core/tensor/static_distributed_tensor.hpp
+26
-0
include/ck_tile/core/tensor/tensor_view.hpp
include/ck_tile/core/tensor/tensor_view.hpp
+42
-0
include/ck_tile/core/tensor/tile_window.hpp
include/ck_tile/core/tensor/tile_window.hpp
+72
-2
include/ck_tile/core/tensor/tile_window_linear.hpp
include/ck_tile/core/tensor/tile_window_linear.hpp
+142
-17
include/ck_tile/core/tensor/tile_window_utils.hpp
include/ck_tile/core/tensor/tile_window_utils.hpp
+54
-0
include/ck_tile/core/tensor/update_tile.hpp
include/ck_tile/core/tensor/update_tile.hpp
+53
-3
include/ck_tile/core/utility/static_counter.hpp
include/ck_tile/core/utility/static_counter.hpp
+116
-0
include/ck_tile/host.hpp
include/ck_tile/host.hpp
+3
-0
include/ck_tile/host/device_memory.hpp
include/ck_tile/host/device_memory.hpp
+35
-0
include/ck_tile/host/fill.hpp
include/ck_tile/host/fill.hpp
+107
-6
include/ck_tile/host/host_tensor.hpp
include/ck_tile/host/host_tensor.hpp
+103
-18
include/ck_tile/host/joinable_thread.hpp
include/ck_tile/host/joinable_thread.hpp
+27
-0
include/ck_tile/host/reference/reference_fused_moe.hpp
include/ck_tile/host/reference/reference_fused_moe.hpp
+196
-0
include/ck_tile/host/reference/reference_gemm.hpp
include/ck_tile/host/reference/reference_gemm.hpp
+112
-0
include/ck_tile/host/reference/reference_moe_sorting.hpp
include/ck_tile/host/reference/reference_moe_sorting.hpp
+97
-0
include/ck_tile/host/reference/reference_permute.hpp
include/ck_tile/host/reference/reference_permute.hpp
+21
-2
No files found.
include/ck_tile/core/numeric/bfloat16.hpp
View file @
9533a172
...
...
@@ -18,6 +18,7 @@ enum class bf16_rounding_mode
truncate_with_nan
,
truncate
,
standard_asm
,
rta_asm
,
// round to nearest away
};
template
<
bf16_rounding_mode
rounding
=
...
...
@@ -180,6 +181,39 @@ uint16_t float_to_bf16_rtn_asm(float f)
return
uint16_t
(
u
.
int32
);
}
// TODO: do we need this on host?
CK_TILE_HOST
uint16_t
float_to_bf16_rta_asm
(
float
f
)
{
return
float_to_bf16_rtn_raw
(
f
);
}
CK_TILE_DEVICE
uint16_t
float_to_bf16_rta_asm
(
float
f
)
{
union
{
float
fp32
;
struct
{
uint16_t
lo
;
uint16_t
hi
;
};
}
u
=
{
f
};
const
uint32_t
low_nan
=
0x7fff
;
const
uint32_t
hi_nan
=
0x7fff0000
;
using
uint32x2_t
=
uint32_t
__attribute__
((
ext_vector_type
(
2
)));
uint32x2_t
check_nan
;
asm
volatile
(
"v_cmp_u_f32 %[s_cnan], %[v_x], %[v_x]
\n
"
"v_add3_u32 %[v_x], %[v_x], %[v_blo], 1
\n
"
"v_cndmask_b32 %[v_x], %[v_x], %[v_bhi], %[s_cnan]"
:
[
s_cnan
]
"+s"
(
check_nan
),
[
v_x
]
"+v"
(
u
.
fp32
)
:
[
v_blo
]
"v"
(
low_nan
),
[
v_bhi
]
"v"
(
hi_nan
));
// Note: in above code snipet, we use hi 16 bit
return
u
.
hi
;
}
// Truncate instead of rounding, preserving SNaN
CK_TILE_HOST_DEVICE
constexpr
uint16_t
float_to_bf16_truc_nan_raw
(
float
f
)
...
...
@@ -213,6 +247,8 @@ CK_TILE_HOST_DEVICE constexpr uint16_t float_to_bf16_raw(float f, constant<round
return
float_to_bf16_rtn_asm
(
f
);
else
if
constexpr
(
rounding
==
bf16_rounding_mode
::
truncate_with_nan
)
return
float_to_bf16_truc_nan_raw
(
f
);
else
if
constexpr
(
rounding
==
bf16_rounding_mode
::
rta_asm
)
return
float_to_bf16_rta_asm
(
f
);
else
return
float_to_bf16_truc_raw
(
f
);
}
...
...
include/ck_tile/core/tensor/buffer_view.hpp
View file @
9533a172
...
...
@@ -437,34 +437,74 @@ struct buffer_view<address_space_enum::global,
// i is offset of T, not X. i should be aligned to X
template
<
memory_operation_enum
Op
,
typename
X
,
bool
oob_conditional_check
=
true
,
typename
std
::
enable_if
<
std
::
is_same
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
T
>>::
scalar_type
>::
value
,
bool
>::
type
=
false
>
CK_TILE_DEVICE
void
update
(
index_t
i
,
index_t
linear_offset
,
bool
is_valid_element
,
const
X
&
x
)
CK_TILE_DEVICE
void
update
(
index_t
i
,
index_t
linear_offset
,
bool
is_valid_element
,
const
X
&
x
,
bool_constant
<
oob_conditional_check
>
=
{})
{
if
constexpr
(
Op
==
memory_operation_enum
::
set
)
{
this
->
template
set
<
X
>(
i
,
linear_offset
,
is_valid_element
,
x
);
this
->
template
set
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
,
x
);
}
else
if
constexpr
(
Op
==
memory_operation_enum
::
atomic_add
)
{
this
->
template
atomic_add
<
X
>(
i
,
linear_offset
,
is_valid_element
,
x
);
this
->
template
atomic_add
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
,
x
);
}
else
if
constexpr
(
Op
==
memory_operation_enum
::
atomic_max
)
{
this
->
template
atomic_max
<
X
>(
i
,
linear_offset
,
is_valid_element
,
x
);
this
->
template
atomic_max
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
,
x
);
}
// FIXME: remove memory_operation_enum::add
else
if
constexpr
(
Op
==
memory_operation_enum
::
add
)
{
auto
tmp
=
this
->
template
get
<
X
>(
i
,
linear_offset
,
is_valid_element
);
this
->
template
set
<
X
>(
i
,
linear_offset
,
is_valid_element
,
x
+
tmp
);
auto
tmp
=
this
->
template
get
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
);
this
->
template
set
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
,
x
+
tmp
);
// tmp += x;
// this->template set<X>(i, is_valid_element, tmp);
}
}
// i is offset of T, not X. i should be aligned to X
template
<
memory_operation_enum
Op
,
typename
X
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
,
typename
std
::
enable_if
<
std
::
is_same
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
T
>>::
scalar_type
>::
value
,
bool
>::
type
=
false
>
CK_TILE_DEVICE
void
update_raw
(
index_t
i
,
index_t
linear_offset
,
bool
is_valid_element
,
const
X
&
x
,
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
if
constexpr
(
Op
==
memory_operation_enum
::
set
)
{
this
->
template
set_raw
<
X
,
oob_conditional_check
>(
i
,
linear_offset
,
is_valid_element
,
x
);
}
else
if
constexpr
(
Op
==
memory_operation_enum
::
atomic_add
)
{
this
->
template
atomic_add_raw
<
X
,
oob_conditional_check
,
pre_nop
>(
i
,
linear_offset
,
is_valid_element
,
x
);
}
else
if
constexpr
(
Op
==
memory_operation_enum
::
atomic_max
)
{
// this->template atomic_max_raw<X>(i, linear_offset, is_valid_element, x);
}
}
// i is offset of T, not X. i should be aligned to X
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
...
...
@@ -533,6 +573,7 @@ struct buffer_view<address_space_enum::global,
}
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
typename
std
::
enable_if
<
std
::
is_same
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
T
>>::
scalar_type
>::
value
,
...
...
@@ -585,6 +626,39 @@ struct buffer_view<address_space_enum::global,
}
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
true
,
typename
std
::
enable_if
<
std
::
is_same
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
T
>>::
scalar_type
>::
value
,
bool
>::
type
=
false
>
CK_TILE_DEVICE
void
atomic_add_raw
(
index_t
i
,
index_t
linear_offset
,
bool
is_valid_element
,
const
X
&
x
)
{
// using scalar_t = typename vector_traits<remove_cvref_t<T>>::scalar_type;
// X contains multiple T
constexpr
index_t
scalar_per_t_vector
=
vector_traits
<
remove_cvref_t
<
T
>>::
vector_size
;
constexpr
index_t
scalar_per_x_vector
=
vector_traits
<
remove_cvref_t
<
X
>>::
vector_size
;
static_assert
(
scalar_per_x_vector
%
scalar_per_t_vector
==
0
,
"wrong! X should contain multiple T"
);
static_assert
(
get_address_space
()
==
address_space_enum
::
global
,
"only support global mem"
);
constexpr
index_t
t_per_x
=
scalar_per_x_vector
/
scalar_per_t_vector
;
amd_buffer_atomic_add_raw
<
remove_cvref_t
<
T
>
,
t_per_x
,
Coherence
,
oob_conditional_check
,
pre_nop
>
(
x
,
p_data_
,
i
,
linear_offset
,
is_valid_element
,
buffer_size_
);
}
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
typename
std
::
enable_if
<
std
::
is_same
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
T
>>::
scalar_type
>::
value
,
...
...
include/ck_tile/core/tensor/load_tile.hpp
View file @
9533a172
...
...
@@ -22,28 +22,32 @@ template <typename BottomTensorView_,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load_tile
(
const
tile_window_with_static_distribution
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
{
return
tile_window
.
load
(
number
<
-
1
>
{},
bool_constant
<
oob_conditional_check
>
{});
return
tile_window
.
load
(
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{});
}
template
<
typename
BottomTensorView_
,
typename
WindowLengths_
,
typename
TileDistribution_
,
typename
LinearBottomDims_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load_tile
(
const
tile_window_linear
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
LinearBottomDims_
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
{
return
tile_window
.
load
(
number
<
-
1
>
{},
bool_constant
<
oob_conditional_check
>
{});
return
tile_window
.
load
(
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{});
}
template
<
typename
DistributedTensor_
,
...
...
@@ -51,15 +55,35 @@ template <typename DistributedTensor_,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load_tile
(
DistributedTensor_
&
dst_tile
,
const
tile_window_with_static_distribution
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
{
return
tile_window
.
load
(
dst_tile
,
bool_constant
<
oob_conditional_check
>
{});
return
tile_window
.
load
(
dst_tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{});
}
template
<
typename
DistributedTensor_
,
typename
BottomTensorView_
,
typename
WindowLengths_
,
typename
TileDistribution_
,
typename
LinearBottomDims_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load_tile
(
DistributedTensor_
&
dst_tile
,
const
tile_window_linear
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
LinearBottomDims_
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
{
return
tile_window
.
load
(
dst_tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{});
}
/**
...
...
@@ -76,6 +100,7 @@ template <typename T,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
auto
load_tile_raw
(
T
&
tile
,
...
...
@@ -83,11 +108,12 @@ CK_TILE_DEVICE auto load_tile_raw(T& tile,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
tile_window
.
load_raw
(
tile
,
number
<
-
1
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
template
<
typename
T
,
...
...
@@ -95,6 +121,7 @@ template <typename T,
typename
WindowLengths_
,
typename
TileDistribution_
,
typename
LinearBottomDims_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
auto
load_tile_raw
(
T
&
tile
,
...
...
@@ -102,11 +129,12 @@ CK_TILE_DEVICE auto load_tile_raw(T& tile,
WindowLengths_
,
TileDistribution_
,
LinearBottomDims_
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
tile_window
.
load_raw
(
tile
,
number
<
-
1
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
template
<
typename
LdsTileWindow_
,
...
...
@@ -114,6 +142,7 @@ template <typename LdsTileWindow_,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
auto
...
...
@@ -122,11 +151,14 @@ async_load_tile_raw(LdsTileWindow_&& lds_tile,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
return
tile_window
.
async_load_raw
(
lds_tile
,
number
<-
1
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
return
tile_window
.
async_load_raw
(
lds_tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
template
<
typename
LdsTileWindow_
,
...
...
@@ -134,6 +166,7 @@ template <typename LdsTileWindow_,
typename
WindowLengths_
,
typename
TileDistribution_
,
typename
LinearBottomDims_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
auto
async_load_tile_raw
(
LdsTileWindow_
&&
lds_tile
,
...
...
@@ -141,11 +174,14 @@ CK_TILE_DEVICE auto async_load_tile_raw(LdsTileWindow_&& lds_tile,
WindowLengths_
,
TileDistribution_
,
LinearBottomDims_
>&
tile_window
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
return
tile_window
.
async_load_raw
(
lds_tile
,
number
<-
1
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
return
tile_window
.
async_load_raw
(
lds_tile
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
CK_TILE_DEVICE
auto
async_load_fence
(
index_t
cnt
=
0
)
...
...
include/ck_tile/core/tensor/shuffle_tile.hpp
View file @
9533a172
...
...
@@ -170,7 +170,7 @@ CK_TILE_DEVICE void shuffle_tile(OutTensor& out, const InTensor& in)
}
else
{
// NOT implemented
static_assert
(
false
,
"The shuffle should always happen!"
);
}
}
...
...
include/ck_tile/core/tensor/static_distributed_tensor.hpp
View file @
9533a172
...
...
@@ -201,4 +201,30 @@ CK_TILE_HOST_DEVICE constexpr auto get_y_unpacks_from_x_unpacks(YLengths, number
return
unpacks
;
}
namespace
detail
{
// check if 2 static_distributed_tensor has same data type and size of element
// but only difference in distribution
template
<
typename
X
,
typename
Y
>
struct
is_similiar_distributed_tensor
{
static
constexpr
bool
value
=
false
;
};
template
<
typename
TypeX
,
typename
DistX
,
typename
TypeY
,
typename
DistY
>
struct
is_similiar_distributed_tensor
<
static_distributed_tensor
<
TypeX
,
DistX
>
,
static_distributed_tensor
<
TypeY
,
DistY
>>
{
using
Tx
=
static_distributed_tensor
<
TypeX
,
DistX
>
;
using
Ty
=
static_distributed_tensor
<
TypeY
,
DistY
>
;
static
constexpr
bool
value
=
std
::
is_same_v
<
typename
Tx
::
DataType
,
typename
Ty
::
DataType
>
&&
Tx
::
get_thread_buffer_size
()
==
Ty
::
get_thread_buffer_size
();
};
template
<
typename
X
,
typename
Y
>
inline
constexpr
bool
is_similiar_distributed_tensor_v
=
is_similiar_distributed_tensor
<
X
,
Y
>::
value
;
}
// namespace detail
}
// namespace ck_tile
include/ck_tile/core/tensor/tensor_view.hpp
View file @
9533a172
...
...
@@ -333,6 +333,48 @@ struct tensor_view
coord
.
get_offset
(),
linear_offset
,
is_valid_element
,
x
);
}
// X is vector of DataType.
// "coord" is coordinate of DataType, not X. "coord" should be aligned to X
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
,
typename
std
::
enable_if
<
std
::
is_same_v
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
DataType
>>::
scalar_type
>
,
bool
>::
type
=
false
>
CK_TILE_HOST_DEVICE
constexpr
void
update_vectorized_elements_raw
(
const
TensorCoord
&
coord
,
index_t
linear_offset
,
const
X
&
x
,
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
buf_
.
template
update_raw
<
DstInMemOp
,
X
,
oob_conditional_check
,
pre_nop
>(
coord
.
get_offset
(),
linear_offset
,
coordinate_has_valid_offset_assuming_top_index_is_valid
(
desc_
,
coord
),
x
);
}
template
<
typename
X
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
,
typename
std
::
enable_if
<
std
::
is_same_v
<
typename
vector_traits
<
remove_cvref_t
<
X
>
>::
scalar_type
,
typename
vector_traits
<
remove_cvref_t
<
DataType
>>::
scalar_type
>
,
bool
>::
type
=
false
>
CK_TILE_HOST_DEVICE
constexpr
void
update_vectorized_elements_raw
(
const
TensorCoord
&
coord
,
index_t
linear_offset
,
bool
is_valid_element
,
const
X
&
x
,
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
buf_
.
template
update_raw
<
DstInMemOp
,
X
,
oob_conditional_check
,
pre_nop
>(
coord
.
get_offset
(),
linear_offset
,
is_valid_element
,
x
);
}
CK_TILE_HOST_DEVICE
void
print
()
const
{
printf
(
"tensor_view{"
);
...
...
include/ck_tile/core/tensor/tile_window.hpp
View file @
9533a172
...
...
@@ -292,12 +292,15 @@ struct tile_window_with_static_distribution
{
constexpr
auto
tile_dstr
=
TileDstr
{};
auto
dst_tensor
=
make_static_distributed_tensor
<
DataType
>
(
tile_dstr
);
load
(
dst_tensor
,
bool_constant
<
oob_conditional_check
>
{});
load
(
dst_tensor
,
number
<
i_access_unsupport_
>
{},
bool_constant
<
oob_conditional_check
>
{});
return
dst_tensor
;
}
template
<
typename
DistributedTensor
,
bool
oob_conditional_check
=
true
>
template
<
typename
DistributedTensor
,
index_t
i_access_unsupport_
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load
(
DistributedTensor
&
dst_tensor
,
number
<
i_access_unsupport_
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
const
{
using
Traits
=
load_store_traits
;
...
...
@@ -785,6 +788,73 @@ struct tile_window_with_static_distribution
});
}
template
<
index_t
i_access_unsupport_
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
>
CK_TILE_DEVICE
void
update_raw
(
const
static_distributed_tensor
<
DataType
,
TileDstr
>&
dstr_tensor
,
number
<
i_access_unsupport_
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
const
{
using
Traits
=
load_store_traits
;
using
vector_t
=
typename
Traits
::
vector_t
;
using
SFC_Ys
=
typename
Traits
::
SFC_Ys
;
constexpr
auto
tile_dstr
=
TileDstr
{};
// loop over thread tensor space [y0, y1, ...]
static_for
<
0
,
NumCoord
,
1
>
{}([
&
](
auto
iCoord
)
{
/// TODO: use structure binding (to be captured later) if compiled in C++20
auto
window_adaptor_thread_coord
=
pre_computed_coords_
[
iCoord
][
I0
];
auto
bottom_tensor_thread_coord
=
pre_computed_coords_
[
iCoord
][
I1
];
static_for
<
0
,
NumAccessPerCoord
,
1
>
{}([
&
](
auto
iCoordAccess
)
{
constexpr
auto
iAccess
=
number
<
iCoord
*
NumAccessPerCoord
+
iCoordAccess
>
{};
// data index [y0, y1, ...]
constexpr
auto
idx_ys_start
=
SFC_Ys
::
get_index
(
iAccess
);
// read from distributed tensor
vector_t
vec_value
;
static_for
<
0
,
Traits
::
ScalarPerVector
,
1
>
{}([
&
](
auto
j
)
{
constexpr
auto
idx_ys
=
generate_tuple
(
[
&
](
auto
jj
)
{
return
jj
==
Traits
::
VectorDimY
?
(
idx_ys_start
[
jj
]
+
j
)
:
idx_ys_start
[
jj
];
},
number
<
NDimY
>
{});
constexpr
index_t
d
=
tile_dstr
.
get_ys_to_d_descriptor
().
calculate_offset
(
idx_ys
);
vec_value
.
template
get_as
<
DataType
>()(
j
)
=
dstr_tensor
.
get_thread_buffer
().
template
at
<
d
>();
});
// write into bottom tensor
get_bottom_tensor_view
().
template
update_vectorized_elements_raw
<
vector_t
>(
bottom_tensor_thread_coord
,
0
,
vec_value
,
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
// move thread coordinate
if
constexpr
(
iCoordAccess
!=
(
NumAccessPerCoord
-
1
))
{
constexpr
auto
idx_diff_ys
=
SFC_Ys
::
get_forward_step
(
iAccess
);
constexpr
auto
idx_diff_ps_ys
=
container_concat
(
generate_tuple
([
&
](
auto
)
{
return
number
<
0
>
{};
},
number
<
NDimP
>
{}),
idx_diff_ys
);
move_window_adaptor_and_bottom_tensor_thread_coordinate
(
window_adaptor_thread_coord
,
bottom_tensor_thread_coord
,
idx_diff_ps_ys
);
}
});
});
}
// move thread's botom tensor coordiante
// [x0', x1', ... ] ==> [offset]
// also move window-origin
...
...
include/ck_tile/core/tensor/tile_window_linear.hpp
View file @
9533a172
...
...
@@ -432,23 +432,38 @@ struct tile_window_linear
CK_TILE_DEVICE
static
constexpr
index_t
get_bottom_linear_offset
(
number
<
i_access
>
)
{
constexpr
auto
linear_coord
=
get_bottom_linear_coordinate
(
number
<
i_access
>
{});
// since this is linear offset, we assum bottom X tensor is always linear
constexpr
index_t
linear_offset
=
[
&
]()
{
constexpr
auto
x_idx_
=
linear_coord
;
constexpr
auto
x_len_
=
TileDstr
{}.
get_lengths
();
static_assert
(
x_idx_
.
size
()
==
x_len_
.
size
());
constexpr
index_t
x_dims_
=
x_idx_
.
size
();
index_t
cu_stride_
=
1
;
index_t
cu_offset_
=
0
;
static_for
<
0
,
x_dims_
,
1
>
{}([
&
](
auto
i_
)
{
auto
r_i_
=
number
<
x_dims_
-
i_
-
1
>
{};
cu_offset_
+=
x_idx_
[
r_i_
]
*
cu_stride_
;
cu_stride_
*=
x_len_
[
r_i_
];
});
return
cu_offset_
;
}();
return
linear_offset
;
constexpr
auto
is_pure_linear_tensor
=
reduce_on_sequence
(
LinearBottomDims
{},
multiplies
{},
number
<
1
>
{});
if
constexpr
(
is_pure_linear_tensor
)
{
// this case usually is a LDS window, everything is known at compile tile.
// we directly use BottomTensorView transform to compute the offset, in case padding
auto
bottom_tensor_coord
=
make_tensor_coordinate
(
BottomTensorView
{}.
get_tensor_descriptor
(),
linear_coord
);
return
bottom_tensor_coord
.
get_offset
();
}
else
{
// this case usually is a global window, where last dim can be linear
// we hack here, that use the original TileDstr to compute the linear offset
// ... hoping that there is no extra padding between other dims, which make sense
// since that would introduce runtime length (so can't use linear offset)
constexpr
index_t
linear_offset
=
[
&
]()
{
constexpr
auto
x_idx_
=
linear_coord
;
constexpr
auto
x_len_
=
TileDstr
{}.
get_lengths
();
static_assert
(
x_idx_
.
size
()
==
x_len_
.
size
());
constexpr
index_t
x_dims_
=
x_idx_
.
size
();
index_t
cu_stride_
=
1
;
index_t
cu_offset_
=
0
;
static_for
<
0
,
x_dims_
,
1
>
{}([
&
](
auto
i_
)
{
auto
r_i_
=
number
<
x_dims_
-
i_
-
1
>
{};
cu_offset_
+=
x_idx_
[
r_i_
]
*
cu_stride_
;
cu_stride_
*=
x_len_
[
r_i_
];
});
return
cu_offset_
;
}();
return
linear_offset
;
}
}
CK_TILE_DEVICE
constexpr
auto
get_num_of_access
()
const
{
return
traits
::
NumAccess
;
}
...
...
@@ -509,6 +524,64 @@ struct tile_window_linear
return
dst_tensor
;
}
template
<
typename
DstTile
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
auto
load
(
DstTile
&
dst_tensor
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
const
{
using
vector_t
=
typename
traits
::
vector_t
;
using
SFC_Ys
=
typename
traits
::
SFC_Ys
;
constexpr
auto
tile_dstr
=
TileDstr
{};
// auto dst_tensor = make_static_distributed_tensor<DataType>(tile_dstr);
auto
issue
=
[
&
](
auto
i_access_
)
{
constexpr
auto
IAccess
=
number
<
i_access_
>
{};
constexpr
auto
non_linear_id
=
number
<
AccessMap_NonLinear
{}[
IAccess
]
>
{};
auto
bottom_tensor_thread_coord
=
cached_coords_
[
non_linear_id
];
auto
bottom_tensor_flag
=
cached_flags_
[
IAccess
];
constexpr
auto
linear_offset
=
get_bottom_linear_offset
(
IAccess
);
// read from bottom tensor
const
vector_t
vec_value
=
get_bottom_tensor_view
().
template
get_vectorized_elements
<
vector_t
>(
bottom_tensor_thread_coord
,
linear_offset
,
bottom_tensor_flag
,
bool_constant
<
oob_conditional_check
>
{});
#if 1
// data index [y0, y1, ...]
constexpr
auto
idx_diff_ys
=
SFC_Ys
::
get_index
(
IAccess
);
// write into distributed tensor
static_for
<
0
,
traits
::
ScalarPerVector
,
1
>
{}([
&
](
auto
j
)
{
constexpr
auto
idx_ys
=
generate_tuple
(
[
&
](
auto
jj
)
{
return
jj
==
traits
::
VectorDimY
?
(
idx_diff_ys
[
jj
]
+
j
)
:
idx_diff_ys
[
jj
];
},
number
<
NDimY
>
{});
constexpr
index_t
d
=
tile_dstr
.
get_ys_to_d_descriptor
().
calculate_offset
(
idx_ys
);
dst_tensor
.
get_thread_buffer
().
template
at
<
d
>()
=
vec_value
.
template
get_as
<
DataType
>()[
j
];
});
#else
constexpr
index_t
d
=
tile_dstr
.
get_ys_to_d_descriptor
().
calculate_offset
(
idx_ys_start
);
static_assert
(
d
%
traits
::
ScalarPerVector
==
0
);
dst_tensor
.
get_thread_buffer
().
template
get_as
<
vector_t
>()(
number
<
d
/
traits
::
ScalarPerVector
>
{})
=
bit_cast
<
vector_t
>
(
vec_value
);
#endif
};
WINDOW_DISPATCH_ISSUE
();
return
dst_tensor
;
}
template
<
typename
DstTile
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
...
...
@@ -849,6 +922,58 @@ struct tile_window_linear
WINDOW_DISPATCH_ISSUE
();
}
template
<
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
void
update_raw
(
const
static_distributed_tensor
<
DataType
,
TileDstr
>&
dstr_tensor
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
const
{
using
vector_t
=
typename
traits
::
vector_t
;
using
SFC_Ys
=
typename
traits
::
SFC_Ys
;
constexpr
auto
tile_dstr
=
TileDstr
{};
// loop over thread tensor space [y0, y1, ...]
auto
issue
=
[
&
](
auto
i_access_
)
{
constexpr
auto
IAccess
=
number
<
i_access_
>
{};
constexpr
auto
non_linear_id
=
number
<
AccessMap_NonLinear
{}[
IAccess
]
>
{};
auto
bottom_tensor_thread_coord
=
cached_coords_
[
non_linear_id
];
constexpr
auto
linear_offset
=
get_bottom_linear_offset
(
IAccess
);
auto
bottom_tensor_flag
=
cached_flags_
[
IAccess
];
// data index [y0, y1, ...]
constexpr
auto
idx_ys_start
=
SFC_Ys
::
get_index
(
IAccess
);
// read from distributed tensor
vector_t
vec_value
;
static_for
<
0
,
traits
::
ScalarPerVector
,
1
>
{}([
&
](
auto
j
)
{
constexpr
auto
idx_ys
=
generate_tuple
(
[
&
](
auto
jj
)
{
return
jj
==
traits
::
VectorDimY
?
(
idx_ys_start
[
jj
]
+
j
)
:
idx_ys_start
[
jj
];
},
number
<
NDimY
>
{});
constexpr
index_t
d
=
tile_dstr
.
get_ys_to_d_descriptor
().
calculate_offset
(
idx_ys
);
vec_value
.
template
get_as
<
DataType
>()(
j
)
=
dstr_tensor
.
get_thread_buffer
().
template
at
<
d
>();
});
// write into bottom tensor
get_bottom_tensor_view
().
template
update_vectorized_elements_raw
<
vector_t
>(
bottom_tensor_thread_coord
,
linear_offset
,
bottom_tensor_flag
,
vec_value
,
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
};
WINDOW_DISPATCH_ISSUE
();
}
// move thread's botom tensor coordiante
// [x0', x1', ... ] ==> [offset]
// also move window-origin
...
...
include/ck_tile/core/tensor/tile_window_utils.hpp
0 → 100644
View file @
9533a172
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck_tile/core/arch/arch.hpp"
#include "ck_tile/core/arch/utility.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/container/array.hpp"
#include "ck_tile/core/container/sequence.hpp"
#include "ck_tile/core/container/tuple.hpp"
#include "ck_tile/core/container/container_helper.hpp"
#include "ck_tile/core/tensor/static_distributed_tensor.hpp"
#include "ck_tile/core/tensor/tensor_adaptor.hpp"
#include "ck_tile/core/tensor/tile_distribution.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
#pragma once
namespace
ck_tile
{
// input a lds store tile, extract some information from it
// used to set m0 value for gfx9 serious
template
<
typename
LdsTileWindow_
>
CK_TILE_DEVICE
auto
get_async_store_smem_info
(
LdsTileWindow_
&&
lds_tile
)
{
using
LdsTileWindow
=
remove_cvref_t
<
LdsTileWindow_
>
;
using
LdsDataType
=
typename
LdsTileWindow
::
DataType
;
// issues * warps * lanes
static_assert
(
LdsTileWindow
::
get_num_of_dimension
()
==
3
);
// TODO: hard coded
const
index_t
size_per_buf
=
lds_tile
.
get_bottom_tensor_view
().
get_tensor_descriptor
().
calculate_offset
(
make_tuple
(
number
<
0
>
{},
number
<
0
>
{},
number
<
0
>
{}))
*
sizeof
(
LdsDataType
);
const
index_t
size_per_wave
=
lds_tile
.
get_bottom_tensor_view
().
get_tensor_descriptor
().
calculate_offset
(
make_tuple
(
number
<
0
>
{},
number
<
1
>
{},
number
<
0
>
{}))
*
sizeof
(
LdsDataType
)
-
size_per_buf
;
const
index_t
size_per_issue
=
lds_tile
.
get_bottom_tensor_view
().
get_tensor_descriptor
().
calculate_offset
(
make_tuple
(
number
<
1
>
{},
number
<
0
>
{},
number
<
0
>
{}))
*
sizeof
(
LdsDataType
)
-
size_per_buf
;
const
index_t
m0_init_value
=
size_per_buf
+
size_per_wave
*
get_warp_id
();
return
make_tuple
(
m0_init_value
,
size_per_issue
);
}
}
// namespace ck_tile
include/ck_tile/core/tensor/update_tile.hpp
View file @
9533a172
...
...
@@ -41,15 +41,65 @@ template <typename BottomTensorView_,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
typename
DataType_
>
typename
DataType_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
>
CK_TILE_DEVICE
void
update_tile
(
tile_window_with_static_distribution
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
const
static_distributed_tensor
<
DataType_
,
TileDistribution_
>&
dstr_tensor
)
const
static_distributed_tensor
<
DataType_
,
TileDistribution_
>&
dstr_tensor
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{})
{
tile_window
.
update
(
dstr_tensor
);
tile_window
.
update
(
dstr_tensor
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{});
}
template
<
typename
BottomTensorView_
,
typename
WindowLengths_
,
typename
TileDistribution_
,
index_t
NumCoord
,
typename
DataType_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
void
update_tile_raw
(
tile_window_with_static_distribution
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
NumCoord
>&
tile_window
,
const
static_distributed_tensor
<
DataType_
,
TileDistribution_
>&
dstr_tensor
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
tile_window
.
update_raw
(
dstr_tensor
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
template
<
typename
BottomTensorView_
,
typename
WindowLengths_
,
typename
TileDistribution_
,
typename
LinearBottomDims_
,
typename
DataType_
,
index_t
i_access
=
-
1
,
bool
oob_conditional_check
=
true
,
bool
pre_nop
=
false
>
CK_TILE_DEVICE
auto
update_tile_raw
(
tile_window_linear
<
BottomTensorView_
,
WindowLengths_
,
TileDistribution_
,
LinearBottomDims_
>&
tile_window
,
const
static_distributed_tensor
<
DataType_
,
TileDistribution_
>&
dstr_tensor
,
number
<
i_access
>
=
{},
bool_constant
<
oob_conditional_check
>
=
{},
bool_constant
<
pre_nop
>
=
{})
{
tile_window
.
update_raw
(
dstr_tensor
,
number
<
i_access
>
{},
bool_constant
<
oob_conditional_check
>
{},
bool_constant
<
pre_nop
>
{});
}
}
// namespace ck_tile
include/ck_tile/core/utility/static_counter.hpp
0 → 100644
View file @
9533a172
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
namespace
ck_tile
{
template
<
typename
Context
,
index_t
Start
=
0
,
index_t
Step
=
1
>
struct
static_counter
{
public:
template
<
typename
Unique
>
static
constexpr
index_t
next
()
{
return
next
<
Unique
>
(
0
)
*
Step
+
Start
;
}
template
<
unsigned
long
long
>
static
constexpr
index_t
next
()
{
struct
Unique
{
};
return
next
<
Unique
>
(
0
)
*
Step
+
Start
;
}
template
<
typename
Unique
>
static
constexpr
index_t
current
()
{
return
current
<
Unique
>
(
0
)
*
Step
+
Start
;
}
template
<
unsigned
long
long
>
static
constexpr
index_t
current
()
{
struct
Unique
{
};
return
current
<
Unique
>
(
0
)
*
Step
+
Start
;
}
private:
template
<
index_t
I
>
struct
slot
{
_Pragma
(
"GCC diagnostic push"
);
_Pragma
(
"GCC diagnostic ignored
\"
-Wundefined-internal
\"
"
);
friend
constexpr
bool
slot_allocated
(
slot
<
I
>
);
_Pragma
(
"GCC diagnostic pop"
);
};
template
<
index_t
I
>
struct
allocate_slot
{
friend
constexpr
bool
slot_allocated
(
slot
<
I
>
)
{
return
true
;
}
enum
{
value
=
I
};
};
// If slot_allocated(slot<I>) has NOT been defined, then SFINAE will keep this function out of
// the overload set...
template
<
typename
Unique
,
index_t
I
=
0
,
bool
=
slot_allocated
(
slot
<
I
>())
>
static
constexpr
index_t
next
(
index_t
)
{
return
next
<
Unique
,
I
+
1
>
(
0
);
}
// ...And this function will be used, instead, which will define slot_allocated(slot<I>) via
// allocate_slot<I>.
template
<
typename
Unique
,
index_t
I
=
0
>
static
constexpr
index_t
next
(
double
)
{
return
allocate_slot
<
I
>::
value
;
}
// If slot_allocated(slot<I>) has NOT been defined, then SFINAE will keep this function out of
// the overload set...
template
<
typename
Unique
,
index_t
I
=
Start
,
bool
=
slot_allocated
(
slot
<
I
>())
>
static
constexpr
index_t
current
(
index_t
)
{
return
current
<
Unique
,
I
+
1
>
(
0
);
}
// ...And this function will be used, instead, which will return the current counter, or assert
// in case next() hasn't been called yet.
template
<
typename
Unique
,
index_t
I
=
Start
>
static
constexpr
index_t
current
(
double
)
{
static_assert
(
I
!=
0
,
"You must invoke next() first"
);
return
I
-
1
;
}
};
namespace
impl
{
template
<
int
I
>
struct
static_counter_uniq_
;
}
#define MAKE_SC() \
ck_tile::static_counter<ck_tile::impl::static_counter_uniq_<__COUNTER__>> {}
#define MAKE_SC_WITH(start_, step_) \
ck_tile::static_counter<ck_tile::impl::static_counter_uniq_<__COUNTER__>, start_, step_> {}
#define NEXT_SC(c_) c_.next<__COUNTER__>()
#define NEXT_SCI(c_, static_i_) c_.next<__COUNTER__ + static_i_>()
// Usage:
// constexpr auto c = MAKE_SC()
// NEXT_SC(c) // -> constexpr 0
// NEXT_SC(c) // -> constexpr 1
// NEXT_SC(c) // -> constexpr 2
}
// namespace ck_tile
include/ck_tile/host.hpp
View file @
9533a172
...
...
@@ -11,6 +11,7 @@
#include "ck_tile/host/fill.hpp"
#include "ck_tile/host/hip_check_error.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include "ck_tile/host/joinable_thread.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/host/ranges.hpp"
#include "ck_tile/host/reference/reference_batched_dropout.hpp"
...
...
@@ -20,9 +21,11 @@
#include "ck_tile/host/reference/reference_batched_rotary_position_embedding.hpp"
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_elementwise.hpp"
#include "ck_tile/host/reference/reference_fused_moe.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
#include "ck_tile/host/reference/reference_layernorm2d_fwd.hpp"
#include "ck_tile/host/reference/reference_moe_sorting.hpp"
#include "ck_tile/host/reference/reference_permute.hpp"
#include "ck_tile/host/reference/reference_reduce.hpp"
#include "ck_tile/host/reference/reference_rmsnorm2d_fwd.hpp"
...
...
include/ck_tile/host/device_memory.hpp
View file @
9533a172
...
...
@@ -7,6 +7,7 @@
#include <stdint.h>
#include <stdexcept>
#include "ck_tile/host/hip_check_error.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace
ck_tile
{
template
<
typename
T
>
...
...
@@ -36,6 +37,19 @@ struct DeviceMem
mpDeviceBuf
=
nullptr
;
}
}
template
<
typename
T
>
DeviceMem
(
const
HostTensor
<
T
>&
t
)
:
mMemSize
(
t
.
get_element_space_size_in_bytes
())
{
if
(
mMemSize
!=
0
)
{
HIP_CHECK_ERROR
(
hipMalloc
(
static_cast
<
void
**>
(
&
mpDeviceBuf
),
mMemSize
));
}
else
{
mpDeviceBuf
=
nullptr
;
}
ToDevice
(
t
.
data
());
}
void
Realloc
(
std
::
size_t
mem_size
)
{
if
(
mpDeviceBuf
)
...
...
@@ -92,6 +106,27 @@ struct DeviceMem
HIP_CHECK_ERROR
(
hipMemcpy
(
p
,
mpDeviceBuf
,
cpySize
,
hipMemcpyDeviceToHost
));
}
}
// construct a host tensor with type T
template
<
typename
T
>
HostTensor
<
T
>
ToHost
(
std
::
size_t
cpySize
)
{
// TODO: host tensor could be slightly larger than the device tensor
// we just copy all data from GPU buffer
std
::
size_t
host_elements
=
(
cpySize
+
sizeof
(
T
)
-
1
)
/
sizeof
(
T
);
HostTensor
<
T
>
h_
({
host_elements
});
if
(
mpDeviceBuf
)
{
HIP_CHECK_ERROR
(
hipMemcpy
(
h_
.
data
(),
mpDeviceBuf
,
cpySize
,
hipMemcpyDeviceToHost
));
}
return
h_
;
}
template
<
typename
T
>
HostTensor
<
T
>
ToHost
()
{
return
ToHost
<
T
>
(
mMemSize
);
}
void
SetZero
()
const
{
if
(
mpDeviceBuf
)
...
...
include/ck_tile/host/fill.hpp
View file @
9533a172
...
...
@@ -13,6 +13,7 @@
#include <unordered_set>
#include "ck_tile/core.hpp"
#include "ck_tile/host/joinable_thread.hpp"
namespace
ck_tile
{
...
...
@@ -22,13 +23,44 @@ struct FillUniformDistribution
float
a_
{
-
5.
f
};
float
b_
{
5.
f
};
std
::
optional
<
uint32_t
>
seed_
{
11939
};
// ATTENTION: threaded does not guarantee the distribution between thread
bool
threaded
=
false
;
template
<
typename
ForwardIter
>
void
operator
()(
ForwardIter
first
,
ForwardIter
last
)
const
{
std
::
mt19937
gen
(
seed_
.
has_value
()
?
*
seed_
:
std
::
random_device
{}());
std
::
uniform_real_distribution
<
float
>
dis
(
a_
,
b_
);
std
::
generate
(
first
,
last
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
if
(
threaded
)
{
uint32_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
auto
total
=
static_cast
<
std
::
size_t
>
(
std
::
distance
(
first
,
last
));
auto
work_per_thread
=
static_cast
<
std
::
size_t
>
((
total
+
num_thread
-
1
)
/
num_thread
);
std
::
vector
<
joinable_thread
>
threads
(
num_thread
);
for
(
std
::
size_t
it
=
0
;
it
<
num_thread
;
++
it
)
{
std
::
size_t
iw_begin
=
it
*
work_per_thread
;
std
::
size_t
iw_end
=
std
::
min
((
it
+
1
)
*
work_per_thread
,
total
);
auto
thread_f
=
[
this
,
total
,
iw_begin
,
iw_end
,
&
first
]
{
if
(
iw_begin
>
total
||
iw_end
>
total
)
return
;
// need to make each thread unique, add an offset to current seed
std
::
mt19937
gen
(
seed_
.
has_value
()
?
(
*
seed_
+
iw_begin
)
:
std
::
random_device
{}());
std
::
uniform_real_distribution
<
float
>
dis
(
a_
,
b_
);
std
::
generate
(
first
+
iw_begin
,
first
+
iw_end
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
};
threads
[
it
]
=
joinable_thread
(
thread_f
);
}
}
else
{
std
::
mt19937
gen
(
seed_
.
has_value
()
?
*
seed_
:
std
::
random_device
{}());
std
::
uniform_real_distribution
<
float
>
dis
(
a_
,
b_
);
std
::
generate
(
first
,
last
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
}
}
template
<
typename
ForwardRange
>
...
...
@@ -115,13 +147,44 @@ struct FillNormalDistribution
float
mean_
{
0.
f
};
float
variance_
{
1.
f
};
std
::
optional
<
uint32_t
>
seed_
{
11939
};
// ATTENTION: threaded does not guarantee the distribution between thread
bool
threaded
=
false
;
template
<
typename
ForwardIter
>
void
operator
()(
ForwardIter
first
,
ForwardIter
last
)
const
{
std
::
mt19937
gen
(
seed_
.
has_value
()
?
*
seed_
:
std
::
random_device
{}());
std
::
normal_distribution
<
float
>
dis
(
mean_
,
std
::
sqrt
(
variance_
));
std
::
generate
(
first
,
last
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
if
(
threaded
)
{
uint32_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
auto
total
=
static_cast
<
std
::
size_t
>
(
std
::
distance
(
first
,
last
));
auto
work_per_thread
=
static_cast
<
std
::
size_t
>
((
total
+
num_thread
-
1
)
/
num_thread
);
std
::
vector
<
joinable_thread
>
threads
(
num_thread
);
for
(
std
::
size_t
it
=
0
;
it
<
num_thread
;
++
it
)
{
std
::
size_t
iw_begin
=
it
*
work_per_thread
;
std
::
size_t
iw_end
=
std
::
min
((
it
+
1
)
*
work_per_thread
,
total
);
auto
thread_f
=
[
this
,
total
,
iw_begin
,
iw_end
,
&
first
]
{
if
(
iw_begin
>
total
||
iw_end
>
total
)
return
;
// need to make each thread unique, add an offset to current seed
std
::
mt19937
gen
(
seed_
.
has_value
()
?
(
*
seed_
+
iw_begin
)
:
std
::
random_device
{}());
std
::
normal_distribution
<
float
>
dis
(
mean_
,
std
::
sqrt
(
variance_
));
std
::
generate
(
first
+
iw_begin
,
first
+
iw_end
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
};
threads
[
it
]
=
joinable_thread
(
thread_f
);
}
}
else
{
std
::
mt19937
gen
(
seed_
.
has_value
()
?
*
seed_
:
std
::
random_device
{}());
std
::
normal_distribution
<
float
>
dis
(
mean_
,
std
::
sqrt
(
variance_
));
std
::
generate
(
first
,
last
,
[
&
dis
,
&
gen
]()
{
return
ck_tile
::
type_convert
<
T
>
(
dis
(
gen
));
});
}
}
template
<
typename
ForwardRange
>
...
...
@@ -235,6 +298,44 @@ struct FillMonotonicSeq
}
};
template
<
typename
T
,
bool
IsAscending
=
true
>
struct
FillStepRange
{
float
start_value_
{
0
};
float
end_value_
{
3
};
float
step_
{
1
};
template
<
typename
ForwardIter
>
void
operator
()(
ForwardIter
first
,
ForwardIter
last
)
const
{
std
::
generate
(
first
,
last
,
[
=
,
n
=
start_value_
]()
mutable
{
auto
tmp
=
n
;
n
+=
step_
;
if
constexpr
(
IsAscending
)
{
if
(
n
>
end_value_
)
n
=
start_value_
;
}
else
{
if
(
n
<
end_value_
)
n
=
start_value_
;
}
return
type_convert
<
T
>
(
tmp
);
});
}
template
<
typename
ForwardRange
>
auto
operator
()(
ForwardRange
&&
range
)
const
->
std
::
void_t
<
decltype
(
std
::
declval
<
const
FillStepRange
&>
()(
std
::
begin
(
std
::
forward
<
ForwardRange
>
(
range
)),
std
::
end
(
std
::
forward
<
ForwardRange
>
(
range
))))
>
{
(
*
this
)(
std
::
begin
(
std
::
forward
<
ForwardRange
>
(
range
)),
std
::
end
(
std
::
forward
<
ForwardRange
>
(
range
)));
}
};
template
<
typename
T
>
struct
FillConstant
{
...
...
include/ck_tile/host/host_tensor.hpp
View file @
9533a172
...
...
@@ -8,12 +8,13 @@
#include <iostream>
#include <iomanip>
#include <numeric>
#include <thread>
#include <utility>
#include <vector>
#include <functional>
#include <fstream>
#include "ck_tile/core.hpp"
#include "ck_tile/host/joinable_thread.hpp"
#include "ck_tile/host/ranges.hpp"
namespace
ck_tile
{
...
...
@@ -213,23 +214,6 @@ CK_TILE_HOST HostTensorDescriptor transpose_host_tensor_descriptor_given_new2old
return
HostTensorDescriptor
(
new_lengths
,
new_strides
);
}
struct
joinable_thread
:
std
::
thread
{
template
<
typename
...
Xs
>
joinable_thread
(
Xs
&&
...
xs
)
:
std
::
thread
(
std
::
forward
<
Xs
>
(
xs
)...)
{
}
joinable_thread
(
joinable_thread
&&
)
=
default
;
joinable_thread
&
operator
=
(
joinable_thread
&&
)
=
default
;
~
joinable_thread
()
{
if
(
this
->
joinable
())
this
->
join
();
}
};
template
<
typename
F
,
typename
...
Xs
>
struct
ParallelTensorFunctor
{
...
...
@@ -590,6 +574,107 @@ struct HostTensor
size
()
*
FromSize
/
ToSize
};
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
HostTensor
<
T
>&
t
)
{
os
<<
t
.
mDesc
;
os
<<
"["
;
for
(
typename
Data
::
size_type
idx
=
0
;
idx
<
t
.
mData
.
size
();
++
idx
)
{
if
(
0
<
idx
)
{
os
<<
", "
;
}
if
constexpr
(
std
::
is_same_v
<
T
,
bf16_t
>
||
std
::
is_same_v
<
T
,
fp16_t
>
)
{
os
<<
type_convert
<
float
>
(
t
.
mData
[
idx
])
<<
" #### "
;
}
else
{
os
<<
t
.
mData
[
idx
];
}
}
os
<<
"]"
;
return
os
;
}
// read data from a file, as dtype
// the file could dumped from torch as (targeting tensor is t here)
// numpy.savetxt("f.txt", t.view(-1).numpy())
// numpy.savetxt("f.txt", t.cpu().view(-1).numpy()) # from cuda to cpu to save
// numpy.savetxt("f.txt", t.cpu().view(-1).numpy(), fmt="%d") # save as int
// will output f.txt, each line is a value
// dtype=float or int, internally will cast to real type
void
loadtxt
(
std
::
string
file_name
,
std
::
string
dtype
=
"float"
)
{
std
::
ifstream
file
(
file_name
);
if
(
file
.
is_open
())
{
std
::
string
line
;
index_t
cnt
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
if
(
cnt
>=
static_cast
<
index_t
>
(
mData
.
size
()))
{
throw
std
::
runtime_error
(
std
::
string
(
"data read from file:"
)
+
file_name
+
" is too big"
);
}
if
(
dtype
==
"float"
)
{
mData
[
cnt
]
=
type_convert
<
T
>
(
std
::
stof
(
line
));
}
else
if
(
dtype
==
"int"
||
dtype
==
"int32"
)
{
mData
[
cnt
]
=
type_convert
<
T
>
(
std
::
stoi
(
line
));
}
cnt
++
;
}
file
.
close
();
if
(
cnt
<
static_cast
<
index_t
>
(
mData
.
size
()))
{
std
::
cerr
<<
"Warning! reading from file:"
<<
file_name
<<
", does not match the size of this tensor"
<<
std
::
endl
;
}
}
else
{
// Print an error message to the standard error
// stream if the file cannot be opened.
throw
std
::
runtime_error
(
std
::
string
(
"unable to open file:"
)
+
file_name
);
}
}
// can save to a txt file and read from torch as:
// torch.from_numpy(np.loadtxt('f.txt', dtype=np.int32/np.float32...)).view([...]).contiguous()
void
savetxt
(
std
::
string
file_name
,
std
::
string
dtype
=
"float"
)
{
std
::
ofstream
file
(
file_name
);
if
(
file
.
is_open
())
{
for
(
auto
&
itm
:
mData
)
{
if
(
dtype
==
"float"
)
file
<<
type_convert
<
float
>
(
itm
)
<<
std
::
endl
;
else
if
(
dtype
==
"int"
)
file
<<
type_convert
<
int
>
(
itm
)
<<
std
::
endl
;
else
// TODO: we didn't implement operator<< for all custom
// data types, here fall back to float in case compile error
file
<<
type_convert
<
float
>
(
itm
)
<<
std
::
endl
;
}
file
.
close
();
}
else
{
// Print an error message to the standard error
// stream if the file cannot be opened.
throw
std
::
runtime_error
(
std
::
string
(
"unable to open file:"
)
+
file_name
);
}
}
Descriptor
mDesc
;
Data
mData
;
};
...
...
include/ck_tile/host/joinable_thread.hpp
0 → 100644
View file @
9533a172
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <thread>
#include <utility>
namespace
ck_tile
{
struct
joinable_thread
:
std
::
thread
{
template
<
typename
...
Xs
>
joinable_thread
(
Xs
&&
...
xs
)
:
std
::
thread
(
std
::
forward
<
Xs
>
(
xs
)...)
{
}
joinable_thread
(
joinable_thread
&&
)
=
default
;
joinable_thread
&
operator
=
(
joinable_thread
&&
)
=
default
;
~
joinable_thread
()
{
if
(
this
->
joinable
())
this
->
join
();
}
};
}
// namespace ck_tile
include/ck_tile/host/reference/reference_fused_moe.hpp
0 → 100644
View file @
9533a172
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace
ck_tile
{
// [indexing implementation-1]
// using M_a as constexpr block_size to partition all tokens into different slices
// each slice map to one expert, and one expert can have multiple slices
// e.g. num_experts = 6, topk=3, M_a = 4, input_tokens = 5
// before sort, topk_ids is : [[0, 3, 5], [2, 3, 5], [1, 3, 5], [1, 2, 3], [1, 3, 5]]
// tok-0 tok-1 tok-2 tok-3 tok-4
// topk_weight is : [[a, b, c], [d, e, f], [g, h, i], [j, k, l], [m, n, o]] (some float
// number)
//
// token_id_per_expert is : [[0], [2, 3, 4], [1, 3], [0, 1, 2, 3, 4], [], [0, 1, 2, 5]]
// (only for reference) exp-0 exp-1 exp-2 exp-3 exp-4 exp-5
// weight_id_per_expert is: [[a], [g, j, m], [d, k], [b, e, h, l, n], [], [c, f, i, o]]
//
// max_num_tokens_padded : topk * input_tokens + num_experts * (M_a - 1)
// max_num_tokens_padded : topk * input_tokens + num_experts * M_a - topk (updated)
// * this could be larger than actual, since actual tokens are on GPU
//
// sorted_token_ids_ptr : [0, 6, 6, 6, 2, 3, 4, 6, 1, 3, 6, 6, 0, 1, 2, 3, 4, 6, 6, 6, 6, 6, 6, 6,
// 0, 1, 2, 5]
// |- exp-0 -|- exp-1 -|- exp-2 -|- exp-3 -|- exp-4
// -|- exp-5 -|
// sorted_weight_ptr : [a, *, *, *, g, j, m, *, d, k, *, *, b, e, h, l, n, *, *, *, *, *, *, *,
// c, f, i, o]
//
// * length is max_num_tokens_padded, actual size is num_tokens_post_padded_ptr
//
// sorted_expert_ids_ptr : [0, 1, 2, 3, 3, 4, 5]
// * length is (max_num_tokens_padded + block_size - 1) / block_size
///
// num_tokens_post_padded_ptr : [28]
// num_sorted_tiles_ptr : [7]
template
<
typename
AccDataType
,
// you only need to explcitly set this one
typename
Activation
,
// ck_tile::element_wise::Gelu
typename
ADataType
,
typename
GDataType
,
typename
DDataType
,
typename
ODataType
,
typename
AScaleDataType
,
typename
GScaleDataType
,
typename
DScaleDataType
,
typename
YSmoothScaleDataType
,
typename
TopkWeightDataType
,
typename
IndexDataType
>
void
reference_fused_moe
(
const
ck_tile
::
HostTensor
<
ADataType
>&
a_host
,
// [tokens, hidden_size]
const
ck_tile
::
HostTensor
<
GDataType
>&
g_host
,
// [experts, interme_size_0, hidden_size]
const
ck_tile
::
HostTensor
<
DDataType
>&
d_host
,
// [experts, hidden_size, interme_size_1]
const
ck_tile
::
HostTensor
<
AScaleDataType
>&
sa_host
,
// [tokens, 1],
const
ck_tile
::
HostTensor
<
GScaleDataType
>&
sg_host
,
// [experts, 1, interme_size_0]
const
ck_tile
::
HostTensor
<
DScaleDataType
>&
sd_host
,
// [experts, 1, hidden_size],
const
ck_tile
::
HostTensor
<
YSmoothScaleDataType
>&
sy_host
,
// [experts, 1, interme_size_0]
ck_tile
::
HostTensor
<
ODataType
>&
o_host
,
// [tokens, hidden_size]
const
ck_tile
::
HostTensor
<
IndexDataType
>&
sorted_token_ids_host
,
// [max_num_tokens_padded]
const
ck_tile
::
HostTensor
<
TopkWeightDataType
>&
sorted_weight_host
,
// [max_num_tokens_padded]
const
ck_tile
::
HostTensor
<
IndexDataType
>&
sorted_expert_ids_host
,
// [(max_num_tokens_padded + block_size - 1) / block_size]
const
ck_tile
::
HostTensor
<
IndexDataType
>&
num_sorted_tiles_host
,
// [1]
const
ck_tile
::
HostTensor
<
IndexDataType
>&
token_ids_host
,
// [tokens, topk] --> ugly!!! remove in the future
ck_tile
::
index_t
block_m
,
ck_tile
::
index_t
tokens
,
ck_tile
::
index_t
experts
,
ck_tile
::
index_t
hidden_size
,
ck_tile
::
index_t
intermediate_size
,
// this size is for gate/up
ck_tile
::
index_t
topk
,
ck_tile
::
index_t
gate_only
)
{
assert
(
sorted_token_ids_host
.
get_num_of_dimension
()
==
1
);
assert
(
sorted_weight_host
.
get_num_of_dimension
()
==
1
);
assert
(
sorted_expert_ids_host
.
get_num_of_dimension
()
==
1
);
assert
(
num_sorted_tiles_host
.
get_element_size
()
==
1
);
ck_tile
::
index_t
num_sorted_tiles
=
num_sorted_tiles_host
.
mData
[
0
]
/
block_m
;
ck_tile
::
index_t
intermediate_size_0
=
intermediate_size
;
ck_tile
::
index_t
intermediate_size_1
=
intermediate_size
/
(
gate_only
?
1
:
2
);
// TODO: better remove this in the future, or modify the token_id value
auto
get_topk_id
=
[
&
](
ck_tile
::
index_t
token_id_
,
ck_tile
::
index_t
expert_id_
)
{
for
(
ck_tile
::
index_t
i_
=
0
;
i_
<
topk
;
i_
++
)
{
if
(
token_ids_host
(
token_id_
,
i_
)
==
expert_id_
)
return
i_
;
}
throw
std
::
runtime_error
(
"not correct token/expert pair
\n
"
);
return
-
1
;
// TODO: not correct!!
};
ck_tile
::
HostTensor
<
AccDataType
>
out_topk_tokens
({
tokens
,
topk
,
hidden_size
});
int
max_num_tokens_padded
=
topk
*
tokens
+
experts
*
block_m
-
topk
;
// assert();
auto
f
=
[
&
](
auto
i_flatten
)
{
ck_tile
::
index_t
i_tile
=
i_flatten
/
block_m
;
if
(
i_tile
>=
num_sorted_tiles
)
return
;
ck_tile
::
index_t
i_expert
=
sorted_expert_ids_host
.
mData
[
i_tile
];
ck_tile
::
index_t
i_token
=
sorted_token_ids_host
.
mData
[
i_flatten
];
if
(
i_token
>=
tokens
)
return
;
ck_tile
::
index_t
i_topk
=
get_topk_id
(
i_token
,
i_expert
);
// TODO: ugly
auto
weight
=
sorted_weight_host
.
mData
[
i_flatten
];
ck_tile
::
HostTensor
<
AccDataType
>
acc_0
({
1
,
intermediate_size_0
});
// first gemm
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
intermediate_size_0
;
i_n
++
)
{
AccDataType
acc
=
static_cast
<
AccDataType
>
(
0
);
for
(
ck_tile
::
index_t
i_k
=
0
;
i_k
<
hidden_size
;
i_k
++
)
{
acc
+=
type_convert
<
AccDataType
>
(
a_host
(
i_token
,
i_k
))
*
type_convert
<
AccDataType
>
(
g_host
(
i_expert
,
i_n
,
i_k
));
}
acc_0
(
0
,
i_n
)
=
acc
;
// printf("ie:%2d, it:%3d, in:%d, %f\n", i_expert, i_token, i_n, acc);
}
ck_tile
::
HostTensor
<
AccDataType
>
y
({
1
,
intermediate_size_1
});
if
(
gate_only
)
{
if
(
intermediate_size_1
!=
intermediate_size_0
)
throw
std
::
runtime_error
(
"intermediate_size not correct, 0:"
+
std
::
to_string
(
intermediate_size_0
)
+
", 1:"
+
std
::
to_string
(
intermediate_size_1
));
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
intermediate_size_1
;
i_n
++
)
{
Activation
{}(
y
(
0
,
i_n
),
acc_0
(
0
,
i_n
));
// printf("ie:%2d, it:%3d, in:%d, %f\n", i_expert, i_token, i_n, y(0, i_n));
}
}
else
{
if
(
intermediate_size_1
*
2
!=
intermediate_size_0
)
throw
std
::
runtime_error
(
"intermediate_size not correct, 0:"
+
std
::
to_string
(
intermediate_size_0
)
+
", 1:"
+
std
::
to_string
(
intermediate_size_1
));
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
intermediate_size_1
;
i_n
++
)
{
AccDataType
tmp
;
Activation
{}(
tmp
,
acc_0
(
0
,
i_n
));
y
(
0
,
i_n
)
=
tmp
*
acc_0
(
0
,
i_n
+
intermediate_size_1
);
// TODO: elementwise mul
}
}
// second gemm, loop along gemm-n
ck_tile
::
HostTensor
<
AccDataType
>
acc_1
({
1
,
hidden_size
});
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
hidden_size
;
i_n
++
)
{
AccDataType
acc
=
static_cast
<
AccDataType
>
(
0
);
for
(
ck_tile
::
index_t
i_k
=
0
;
i_k
<
intermediate_size_1
;
i_k
++
)
{
acc
+=
y
(
0
,
i_k
)
*
type_convert
<
AccDataType
>
(
d_host
(
i_expert
,
i_n
,
i_k
));
}
acc_1
(
0
,
i_n
)
=
acc
*
weight
;
// multiple weight here
}
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
hidden_size
;
i_n
++
)
{
out_topk_tokens
(
i_token
,
i_topk
,
i_n
)
=
acc_1
(
0
,
i_n
);
}
};
// make_ParallelTensorFunctor(f, max_num_tokens_padded)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor
(
f
,
max_num_tokens_padded
)(
1
);
// reduce
auto
r
=
[
&
](
auto
i_token
)
{
for
(
ck_tile
::
index_t
i_n
=
0
;
i_n
<
hidden_size
;
i_n
++
)
{
AccDataType
acc
=
type_convert
<
AccDataType
>
(
0
);
for
(
ck_tile
::
index_t
i_topk
=
0
;
i_topk
<
topk
;
i_topk
++
)
{
acc
+=
out_topk_tokens
(
i_token
,
i_topk
,
i_n
);
}
o_host
(
i_token
,
i_n
)
=
type_convert
<
ODataType
>
(
acc
);
}
};
make_ParallelTensorFunctor
(
r
,
tokens
)(
std
::
thread
::
hardware_concurrency
());
(
void
)
num_sorted_tiles_host
;
(
void
)
sa_host
;
(
void
)
sg_host
;
(
void
)
sd_host
;
(
void
)
sy_host
;
}
}
// namespace ck_tile
include/ck_tile/host/reference/reference_gemm.hpp
View file @
9533a172
...
...
@@ -183,4 +183,116 @@ void reference_gemm_gpu(DeviceMem& a_device,
return
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
LayoutA
,
typename
LayoutB
,
typename
LayoutC
>
void
reference_batched_gemm_gpu
(
DeviceMem
&
a_device
,
DeviceMem
&
b_device
,
DeviceMem
&
c_device
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_a
,
index_t
stride_b
,
index_t
stride_c
,
index_t
batch_stride_A
,
index_t
batch_stride_B
,
index_t
batch_stride_C
,
index_t
batch_count
)
{
ADataType
*
d_A
;
BDataType
*
d_B
;
CDataType
*
d_C
;
hipError_t
errA
=
hipMalloc
(
&
d_A
,
batch_count
*
M
*
K
*
sizeof
(
ADataType
));
hipError_t
errB
=
hipMalloc
(
&
d_B
,
batch_count
*
N
*
K
*
sizeof
(
BDataType
));
hipError_t
errC
=
hipMalloc
(
&
d_C
,
batch_count
*
M
*
N
*
sizeof
(
CDataType
));
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for A: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for B: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
return
;
// Early exit on error
}
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error allocating device memory for C: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
return
;
// Early exit on error
}
errA
=
hipMemcpy
(
d_A
,
a_device
.
GetDeviceBuffer
(),
batch_count
*
M
*
K
*
sizeof
(
ADataType
),
hipMemcpyHostToDevice
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying A to device: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipMemcpy
(
d_B
,
b_device
.
GetDeviceBuffer
(),
batch_count
*
N
*
K
*
sizeof
(
BDataType
),
hipMemcpyHostToDevice
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying B to device: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
int
totalElements
=
M
*
N
;
int
numThreadsPerBlock
=
256
;
// Common choice for threads per block
int
numBlocks
=
(
totalElements
+
numThreadsPerBlock
-
1
)
/
numThreadsPerBlock
;
for
(
index_t
batch_id
=
0
;
batch_id
<
batch_count
;
++
batch_id
)
{
ADataType
*
d_ATemp
=
d_A
+
batch_id
*
batch_stride_A
;
BDataType
*
d_BTemp
=
d_B
+
batch_id
*
batch_stride_B
;
CDataType
*
d_CTemp
=
d_C
+
batch_id
*
batch_stride_C
;
naive_gemm_kernel
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
LayoutA
,
LayoutB
,
LayoutC
>
<<<
numBlocks
,
numThreadsPerBlock
>>>
(
d_ATemp
,
d_BTemp
,
d_CTemp
,
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_c
);
}
errC
=
hipMemcpy
(
c_device
.
GetDeviceBuffer
(),
d_C
,
batch_count
*
M
*
N
*
sizeof
(
CDataType
),
hipMemcpyDeviceToHost
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error copying C to device: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
errA
=
hipFree
(
d_A
);
if
(
errA
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the A memory: "
<<
hipGetErrorString
(
errA
)
<<
std
::
endl
;
}
errB
=
hipFree
(
d_B
);
if
(
errB
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the B memory: "
<<
hipGetErrorString
(
errB
)
<<
std
::
endl
;
}
errC
=
hipFree
(
d_C
);
if
(
errC
!=
hipSuccess
)
{
std
::
cerr
<<
"Error free the C memory: "
<<
hipGetErrorString
(
errC
)
<<
std
::
endl
;
}
return
;
}
}
// namespace ck_tile
include/ck_tile/host/reference/reference_moe_sorting.hpp
0 → 100644
View file @
9533a172
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace
ck_tile
{
#define MOE_SORTING_MOCK_ID(token_id_, topk_id_) \
static_cast<uint32_t>(((token_id_)&0x00ffffff) | (((topk_id_)&0xff) << 24))
template
<
typename
WeightType
,
typename
IndexType
=
index_t
>
CK_TILE_HOST
void
reference_moe_sorting
(
const
HostTensor
<
IndexType
>&
topk_ids
,
const
HostTensor
<
WeightType
>&
weights
,
HostTensor
<
IndexType
>&
p_sorted_token_ids
,
HostTensor
<
WeightType
>&
sorted_weight
,
HostTensor
<
IndexType
>&
sorted_expert_ids
,
index_t
&
unit_cnt
,
const
index_t
experts
,
const
index_t
unit_size
)
{
const
index_t
num_token
=
topk_ids
.
mDesc
.
get_lengths
()[
0
];
const
index_t
topk
=
topk_ids
.
mDesc
.
get_lengths
()[
1
];
// allocate a temp buffer, and fill the value with [number_token|topk]
std
::
vector
<
std
::
vector
<
IndexType
>>
expert_tokens
(
experts
,
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
std
::
vector
<
IndexType
>
(
unit_size
,
MOE_SORTING_MOCK_ID
(
num_token
,
topk
)));
#else
std
::
vector
<
IndexType
>
(
unit_size
,
num_token
));
#endif
std
::
vector
<
std
::
vector
<
WeightType
>>
expert_token_weights
(
experts
,
std
::
vector
<
WeightType
>
(
unit_size
,
0
));
std
::
vector
<
IndexType
>
expert_slices
(
experts
,
1
);
std
::
vector
<
IndexType
>
expert_slice_idxs
(
experts
,
0
);
for
(
index_t
t
=
0
;
t
<
num_token
;
t
++
)
{
for
(
index_t
k
=
0
;
k
<
topk
;
k
++
)
{
IndexType
e
=
topk_ids
(
t
,
k
);
WeightType
w
=
weights
(
t
,
k
);
index_t
idx
=
expert_slice_idxs
[
e
];
if
(
idx
>
expert_slices
[
e
]
*
unit_size
-
1
)
{
expert_slices
[
e
]
++
;
index_t
new_size
=
expert_slices
[
e
]
*
unit_size
;
expert_tokens
[
e
].
resize
(
new_size
);
expert_token_weights
[
e
].
resize
(
new_size
);
for
(
index_t
i
=
(
expert_slices
[
e
]
-
1
)
*
unit_size
;
i
<
new_size
;
i
++
)
{
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
expert_tokens
[
e
][
i
]
=
MOE_SORTING_MOCK_ID
(
num_token
,
topk
);
#else
expert_tokens
[
e
][
i
]
=
num_token
;
#endif
expert_token_weights
[
e
][
i
]
=
0
;
}
}
#if CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
expert_tokens
[
e
][
idx
]
=
MOE_SORTING_MOCK_ID
(
t
,
k
);
#else
expert_tokens
[
e
][
idx
]
=
t
;
#endif
expert_token_weights
[
e
][
idx
]
=
w
;
expert_slice_idxs
[
e
]
++
;
}
}
IndexType
*
out_tokens
=
p_sorted_token_ids
.
data
();
WeightType
*
out_weights
=
sorted_weight
.
data
();
IndexType
*
out_expert_id
=
sorted_expert_ids
.
data
();
for
(
index_t
e
=
0
;
e
<
experts
;
e
++
)
{
memcpy
(
out_tokens
,
expert_tokens
[
e
].
data
(),
sizeof
(
index_t
)
*
expert_slices
[
e
]
*
unit_size
);
out_tokens
+=
expert_slices
[
e
]
*
unit_size
;
memcpy
(
out_weights
,
expert_token_weights
[
e
].
data
(),
sizeof
(
WeightType
)
*
expert_slices
[
e
]
*
unit_size
);
out_weights
+=
expert_slices
[
e
]
*
unit_size
;
for
(
index_t
s
=
0
;
s
<
expert_slices
[
e
];
s
++
)
{
out_expert_id
[
s
]
=
e
;
unit_cnt
++
;
}
out_expert_id
+=
expert_slices
[
e
];
}
unit_cnt
*=
unit_size
;
return
;
}
#undef MOE_SORTING_MOCK_ID
}
// namespace ck_tile
include/ck_tile/host/reference/reference_permute.hpp
View file @
9533a172
...
...
@@ -16,7 +16,7 @@ namespace ck_tile {
*/
template
<
typename
DataType
>
CK_TILE_HOST
void
reference_permute
(
const
HostTensor
<
DataType
>&
x
,
HostTensor
<
DataType
>&
y
,
std
::
vector
<
index_t
>
dims
)
reference_permute
(
const
HostTensor
<
DataType
>&
x
,
HostTensor
<
DataType
>&
y
,
std
::
vector
<
index_t
>
perm
)
{
const
auto
x_len
=
x
.
mDesc
.
get_lengths
();
const
auto
y_len
=
y
.
mDesc
.
get_lengths
();
...
...
@@ -43,7 +43,7 @@ reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::v
std
::
vector
<
size_t
>
tmp
(
rank
,
0
);
for
(
index_t
i
=
0
;
i
<
rank
;
i
++
)
{
tmp
[
dims
[
i
]]
=
y_coord
[
i
];
tmp
[
perm
[
i
]]
=
y_coord
[
i
];
}
return
tmp
;
}();
...
...
@@ -54,4 +54,23 @@ reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::v
make_ParallelTensorFunctor
(
f
,
x_elm
)(
std
::
thread
::
hardware_concurrency
());
}
template
<
typename
DataType
>
CK_TILE_HOST
auto
reference_permute
(
const
HostTensor
<
DataType
>&
x
,
std
::
vector
<
index_t
>
perm
)
{
auto
x_shape
=
x
.
get_lengths
();
ck_tile
::
index_t
rank
=
perm
.
size
();
std
::
vector
<
ck_tile
::
index_t
>
y_shape
=
[
&
]()
{
std
::
vector
<
ck_tile
::
index_t
>
tmp
(
rank
,
0
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
rank
);
i
++
)
{
tmp
[
i
]
=
x_shape
[
perm
[
i
]];
}
return
tmp
;
}();
HostTensor
<
DataType
>
y
(
y_shape
);
reference_permute
(
x
,
y
,
perm
);
return
y
;
}
}
// namespace ck_tile
Prev
1
…
7
8
9
10
11
12
13
14
15
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment