Commit 8d2f2f8c authored by coderfeli's avatar coderfeli
Browse files

Merge branch 'develop' into ck_tile/gemm_debug_alias

parents 99c8123f 4cb3d7d7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp"
template <typename DataType>
struct GemmBasicTypeConfig;
template <>
struct GemmBasicTypeConfig<ck_tile::half_t>
{
using ADataType = ck_tile::half_t;
using BDataType = ck_tile::half_t;
using CDataType = ck_tile::half_t;
using AccDataType = float;
};
using Types = GemmBasicTypeConfig<ck_tile::half_t>;
// Specific type aliases for easy access
using ADataType = Types::ADataType;
using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
using grouped_gemm_kargs = ck_tile::GroupedGemmHostArgs;
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("a_layout", "R", "A tensor data layout - Row by default")
.insert("b_layout", "R", "B tensor data layout - Row by default")
.insert("c_layout", "R", "C tensor data layout - Row by default")
.insert("validate", "1", "0. No validation, 1. Validation on CPU")
.insert("warmup", "10", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("group_count", "16", "group count");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
std::size_t GetWorkspaceSize(const std::vector<grouped_gemm_kargs>& gemm_descs);
float grouped_gemm_calc(const std::vector<grouped_gemm_kargs>& gemm_descs,
const ck_tile::stream_config& s,
void* p_workspace_);
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename ALayout, typename BLayout, typename CLayout>
float invoke_gemm(int n_warmup,
int n_repeat,
int group_count,
const std::vector<grouped_gemm_kargs>& args)
{
ck_tile::DeviceMem gemm_workspace;
gemm_workspace.Realloc(GetWorkspaceSize(args));
float ave_time = grouped_gemm<ALayout, BLayout, CLayout>(
args,
ck_tile::stream_config{nullptr, true, 1, n_warmup, n_repeat},
gemm_workspace.GetDeviceBuffer());
std::string op_name{"Grouped Gemm"};
std::size_t flop = 0, num_btype = 0;
for(int j = 0; j < group_count; ++j)
{
flop += std::size_t(2) * args[j].M * args[j].N * args[j].K;
num_btype += sizeof(ADataType) * args[j].M * args[j].K +
sizeof(BDataType) * args[j].K * args[j].N +
sizeof(CDataType) * args[j].M * args[j].N;
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
return ave_time;
}
template <typename ALayout, typename BLayout, typename CLayout>
int run_grouped_gemm_example_with_layouts(int argc,
char* argv[],
const ALayout a_layout = ALayout{},
const BLayout b_layout = BLayout{},
[[maybe_unused]] const CLayout c_layout = CLayout{})
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
{
return -1;
};
const int group_count = arg_parser.get_int("group_count");
const int repeat = arg_parser.get_int("repeat");
const int warmup = arg_parser.get_int("warmup");
std::vector<ck_tile::index_t> Ms;
std::vector<ck_tile::index_t> Ns;
std::vector<ck_tile::index_t> Ks;
std::vector<ck_tile::index_t> stride_As;
std::vector<ck_tile::index_t> stride_Bs;
std::vector<ck_tile::index_t> stride_Cs;
for(int i = 0; i < group_count; i++)
{
Ms.push_back(256 + 256 * i);
Ns.push_back(128 + 128 * i);
Ks.push_back(128 + 64 * i);
stride_As.push_back(Ks[i]);
stride_Bs.push_back(Ks[i]);
stride_Cs.push_back(Ns[i]);
}
std::vector<ck_tile::HostTensor<ADataType>> a_m_k_tensors;
std::vector<ck_tile::HostTensor<BDataType>> b_k_n_tensors;
std::vector<ck_tile::HostTensor<CDataType>> c_m_n_tensors;
a_m_k_tensors.reserve(group_count);
b_k_n_tensors.reserve(group_count);
c_m_n_tensors.reserve(group_count);
std::vector<std::unique_ptr<ck_tile::DeviceMem>> a_m_k_dev_buf;
std::vector<std::unique_ptr<ck_tile::DeviceMem>> b_k_n_dev_buf;
std::vector<std::unique_ptr<ck_tile::DeviceMem>> c_m_n_dev_buf;
a_m_k_dev_buf.reserve(group_count);
b_k_n_dev_buf.reserve(group_count);
c_m_n_dev_buf.reserve(group_count);
std::vector<grouped_gemm_kargs> gemm_descs;
gemm_descs.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
const ck_tile::index_t M = Ms[i];
const ck_tile::index_t N = Ns[i];
const ck_tile::index_t K = Ks[i];
stride_As[i] = f_get_default_stride(M, N, stride_As[i], a_layout);
stride_Bs[i] = f_get_default_stride(K, N, stride_Bs[i], b_layout);
stride_Cs[i] = f_get_default_stride(M, N, stride_Cs[i], CLayout{});
a_m_k_tensors.push_back(
ck_tile::HostTensor<ADataType>(f_host_tensor_descriptor(M, K, stride_As[i], a_layout)));
b_k_n_tensors.push_back(
ck_tile::HostTensor<BDataType>(f_host_tensor_descriptor(K, N, stride_Bs[i], b_layout)));
c_m_n_tensors.push_back(ck_tile::HostTensor<CDataType>(
f_host_tensor_descriptor(M, N, stride_Cs[i], CLayout{})));
std::cout << "gemm[" << i << "]"
<< " a_m_k: " << a_m_k_tensors[i].mDesc << " b_k_n: " << b_k_n_tensors[i].mDesc
<< " c_m_n: " << c_m_n_tensors[i].mDesc << std::endl;
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k_tensors[i]);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n_tensors[i]);
a_m_k_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
a_m_k_tensors[i].get_element_space_size_in_bytes()));
b_k_n_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
b_k_n_tensors[i].get_element_space_size_in_bytes()));
c_m_n_dev_buf.push_back(std::make_unique<ck_tile::DeviceMem>(
c_m_n_tensors[i].get_element_space_size_in_bytes()));
a_m_k_dev_buf[i]->ToDevice(a_m_k_tensors[i].data());
b_k_n_dev_buf[i]->ToDevice(b_k_n_tensors[i].data());
c_m_n_dev_buf[i]->SetZero();
c_m_n_tensors[i].SetZero();
const void* p_a = a_m_k_dev_buf[i]->GetDeviceBuffer();
const void* p_b = b_k_n_dev_buf[i]->GetDeviceBuffer();
void* p_c = c_m_n_dev_buf[i]->GetDeviceBuffer();
gemm_descs.push_back({p_a, p_b, p_c, M, N, K, stride_As[i], stride_Bs[i], stride_Cs[i]});
}
invoke_gemm<ALayout, BLayout, CLayout>(warmup, repeat, group_count, gemm_descs);
for(int i = 0; i < group_count; i++)
{
c_m_n_dev_buf[i]->FromDevice(c_m_n_tensors[i].data());
}
bool pass{true};
if(arg_parser.get_int("validate"))
{
for(int i = 0; i < group_count; ++i)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(Ms[i], Ns[i], stride_Cs[i], CLayout{}));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k_tensors[i], b_k_n_tensors[i], c_m_n_host_ref);
pass &= ck_tile::check_err(c_m_n_tensors[i], c_m_n_host_ref);
}
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
}
return pass;
}
int run_grouped_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
{
return -1;
}
const std::string a_layout = arg_parser.get_str("a_layout");
const std::string b_layout = arg_parser.get_str("b_layout");
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
if(a_layout == "R" && b_layout == "C")
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "R" && b_layout == "R")
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename TLayout>
constexpr auto
f_host_tensor_descriptor(std::size_t row, std::size_t col, std::size_t stride, TLayout layout)
{
using namespace ck_tile::literals;
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
}
template <typename TLayout>
constexpr auto
f_get_default_stride(std::size_t row, std::size_t col, std::size_t stride, TLayout layout)
{
if(stride == 0)
{
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
}
......@@ -16,3 +16,4 @@ add_subdirectory(13_moe_sorting)
add_subdirectory(14_moe_smoothquant)
add_subdirectory(15_fused_moe)
add_subdirectory(16_batched_gemm)
add_subdirectory(17_grouped_gemm)
[Back to the main page](../../README.md)
# Composable Kernel supported operations
## Supported device operations
* [Average pooling]()
* [Batched contraction]()
* [Batched gemm]()
* [Batchnorm]()
* [CGEMM]()
* [Contraction]()
* [Convolution]()
* [Image to Column and Column to Image]()
* [Elementwise]()
* [GEMM]()
* [Max pooling]()
* [Reduce]()
* [Normalization]()
* [Permute]()
* [Put]()
* [Softmax]()
......@@ -326,7 +326,7 @@ struct Tensor
std::size_t GetElementSpaceSizeInBytes() const { return sizeof(T) * GetElementSpaceSize(); }
void SetZero() { ck::ranges::fill<T>(mData, 0); }
void SetZero() { ck::ranges::fill<T>(mData, T{0}); }
template <typename F>
void ForEach_impl(F&& f, std::vector<size_t>& idx, size_t rank)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -37,7 +37,7 @@ struct GeneratorTensor_1<ck::half_t>
float value = 1.0;
template <typename... Is>
ck::bhalf_t operator()(Is...)
ck::half_t operator()(Is...)
{
return ck::type_convert<ck::half_t>(value);
}
......@@ -62,7 +62,7 @@ struct GeneratorTensor_1<ck::f8_t>
float value = 1.0;
template <typename... Is>
ck::bhalf_t operator()(Is...)
ck::f8_t operator()(Is...)
{
return ck::type_convert<ck::f8_t>(value);
}
......@@ -256,14 +256,33 @@ struct GeneratorTensor_Checkboard
}
};
template <ck::index_t Dim>
/**
* @brief Is used to generate sequential values based on the specified dimension.
*
* @tparam T The type of the tensor values.
* @tparam Dim The specific dimension used for generation.
*
* GeneratorTensor_Sequential<1>{} will generate the following values for a 3x3 tensor:
*
* 0 1 2
* 0 1 2
* 0 1 2
*
* Essentially, the values generated are logical coordinates of the generated element that
* correspond to dimension Dim. E.g. for 2-dimensional tensor and Dim=1, the values are the column
* indices.
*
*/
template <typename T, ck::index_t Dim>
struct GeneratorTensor_Sequential
{
template <typename... Ts>
float operator()(Ts... Xs) const
T operator()(Ts... Xs) const
{
std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}};
return dims[Dim];
float tmp = dims[Dim];
return ck::type_convert<T>(tmp);
}
};
......
......@@ -111,8 +111,7 @@ __global__ void
[[maybe_unused]] const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
[[maybe_unused]] const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
......
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -603,11 +603,11 @@ struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
}
hipGetErrorString(
hipMemcpyWithStream(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
hipMemcpyAsync(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
......
......@@ -761,11 +761,11 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
float time{0.f};
hip_check_error(
hipMemcpyWithStream(dev_gemm_kargs,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
hipMemcpyAsync(dev_gemm_kargs,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
auto preprocess = [&]() {
hip_check_error(hipMemsetAsync(
......
......@@ -940,10 +940,10 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
const void* p_host_kernel_args) const
{
arg.p_dev_gemm_args_ = p_dev_kernel_args;
hip_check_error(hipMemcpy(p_dev_kernel_args,
p_host_kernel_args,
GetDeviceKernelArgSize(&arg),
hipMemcpyHostToDevice));
hip_check_error(hipMemcpyAsync(p_dev_kernel_args,
p_host_kernel_args,
GetDeviceKernelArgSize(&arg),
hipMemcpyHostToDevice));
}
virtual void SetDeviceKernelArgs(BaseArgument* p_arg,
......
......@@ -557,12 +557,12 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
}
}
hipGetErrorString(hipMemcpyWithStream(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() *
sizeof(GemmBiasTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
hipGetErrorString(
hipMemcpyAsync(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmBiasTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
float ave_time = 0;
......
......@@ -421,11 +421,11 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
}
hip_check_error(
hipMemcpyWithStream(arg.p_workspace_,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
hipMemcpyAsync(arg.p_workspace_,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
float ave_time = 0;
......
......@@ -38,8 +38,7 @@ __global__ void
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
......
......@@ -549,8 +549,10 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
(is_same<T, half_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, bhalf_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, int32_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, f8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, bf8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, f8_fnuz_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, bf8_fnuz_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, fp8_storage_t>::value &&
(N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(is_same<T, int8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)),
"wrong! not implemented");
......@@ -843,8 +845,8 @@ amd_buffer_load_invalid_element_return_zero(const T* p_src_wave,
#else
vector_t tmp = amd_buffer_load_impl<scalar_t, vector_size, coherence>(
src_wave_buffer_resource, src_thread_addr_offset, 0);
vector_t tmp{amd_buffer_load_impl<scalar_t, vector_size, coherence>(
src_wave_buffer_resource, src_thread_addr_offset, 0)};
return src_thread_element_valid ? tmp : vector_t(0);
#endif
}
......@@ -873,8 +875,8 @@ amd_buffer_load_invalid_element_return_customized_value(const T* p_src_wave,
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
vector_t tmp = amd_buffer_load_impl<scalar_t, vector_size, coherence>(
src_wave_buffer_resource, src_thread_addr_offset, 0);
vector_t tmp{amd_buffer_load_impl<scalar_t, vector_size, coherence>(
src_wave_buffer_resource, src_thread_addr_offset, 0)};
return src_thread_element_valid ? tmp : vector_t(customized_value);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/random_gen.hpp"
#include "ck/utility/type.hpp"
#ifdef CK_USE_FNUZ_FP8
#define CK_USE_FNUZ_FP8 1
#else
#define CK_USE_FNUZ_FP8 0
#endif
#ifdef CK_USE_OCP_FP8
#define CK_USE_OCP_FP8 1
#else
#define CK_USE_OCP_FP8 0
#endif
namespace ck {
using f8_fnuz_t = _BitInt(8);
using bf8_fnuz_t = unsigned _BitInt(8);
#if(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx1200__) || \
defined(__gfx1201__)) && \
__HIP_DEVICE_COMPILE__
#define CK_FP8_CVT_FAST_PATH 1
#else
#define CK_FP8_CVT_FAST_PATH 0
#endif
#if(defined(__gfx1200__) || defined(__gfx1201__)) && __HIP_DEVICE_COMPILE__
#define CK_OCP_FP8_CVT_FAST_PATH 1
#else
#define CK_OCP_FP8_CVT_FAST_PATH 0
#endif
typedef unsigned char fp8_storage_t;
/**
* \brief Describes FP8 interpretation
*/
enum class ck_fp8_interpretation_t
{
CK_E4M3_OCP = 0, // OCP E4M3
CK_E5M2_OCP = 1, // OCP E5M2
CK_E4M3_FNUZ = 2, // FP8
CK_E5M2_FNUZ = 3, // BF8
};
/**
* \brief Describes saturation behavior
*/
enum class ck_saturation_t
{
CK_NOSAT = 0, // No saturation - replace with NaN or Inf
CK_SATFINITE = 1, // Saturate to finite
};
namespace fp8_impl {
typedef fp8_storage_t fp8x2_storage_t __attribute__((ext_vector_type(2)));
typedef float float2_t __attribute__((ext_vector_type(2)));
__host__ __device__ static inline constexpr bool fnuz_f8_is_nan(f8_fnuz_t a)
{
return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool fnuz_bf8_is_nan(bf8_fnuz_t a)
{
return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool ocp_f8_is_nan(fp8_storage_t a)
{
return (a & 0x7f) == 0x7f;
}
__host__ __device__ static inline constexpr bool ocp_bf8_is_nan(fp8_storage_t a)
{
return (a & 0x7f) > 0x7c;
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L220
// This has been modified to handle double types as well
template <typename T, int wm, int we, bool is_fnuz, bool clip = false>
__host__ __device__ static inline T cast_from_f8(fp8_storage_t x)
{
constexpr bool is_half = __hip_internal::is_same<T, _Float16>::value;
constexpr bool is_float = __hip_internal::is_same<T, float>::value;
constexpr bool is_double = __hip_internal::is_same<T, double>::value;
static_assert(is_half || is_float || is_double, "only half, float and double are supported");
constexpr int weo = is_half ? 5 : (is_float ? 8 : 11);
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 52);
T fInf, fNegInf, fNaN, fNeg0, fmax, fmin;
if constexpr(is_half)
{
const unsigned short int ihInf = 0x7C00;
const unsigned short int ihNegInf = 0xFC00;
const unsigned short int ihNaN = 0x7C01;
const unsigned short int ihNeg0 = 0x8000;
/* Max number in e5m2 57344*/
const unsigned short int ifmax = 0x7B00;
const unsigned short int ifmin = 0xFB00;
fInf = bit_cast<_Float16>(ihInf);
fNegInf = bit_cast<_Float16>(ihNegInf);
fNaN = bit_cast<_Float16>(ihNaN);
fNeg0 = bit_cast<_Float16>(ihNeg0);
fmax = bit_cast<_Float16>(ifmax);
fmin = bit_cast<_Float16>(ifmin);
}
else if constexpr(is_float)
{
const unsigned int ifInf = 0x7F800000;
const unsigned int ifNegInf = 0xFF800000;
const unsigned int ifNaN = 0x7F800001;
const unsigned int ifNeg0 = 0x80000000;
/* Max number in e5m2 57344*/
const unsigned int ifmax = 0x47600000;
const unsigned int ifmin = 0xC7600000;
fInf = bit_cast<float>(ifInf);
fNegInf = bit_cast<float>(ifNegInf);
fNaN = bit_cast<float>(ifNaN);
fNeg0 = bit_cast<float>(ifNeg0);
fmax = bit_cast<float>(ifmax);
fmin = bit_cast<float>(ifmin);
}
else if constexpr(is_double)
{
const unsigned long long ifInf = 0x7FF0000000000000ull;
const unsigned long long ifNegInf = 0xFFF0000000000000ull;
const unsigned long long ifNaN = 0x7FF0000000000001ull;
const unsigned long long ifNeg0 = 0x8000000000000000ull;
/* Max number in e5m2 57344*/
const unsigned long long ifmax = 0x40EC000000000000ull;
const unsigned long long ifmin = 0xC0EC000000000000ull;
fInf = bit_cast<double>(ifInf);
fNegInf = bit_cast<double>(ifNegInf);
fNaN = bit_cast<double>(ifNaN);
fNeg0 = bit_cast<double>(ifNeg0);
fmax = bit_cast<double>(ifmax);
fmin = bit_cast<double>(ifmin);
}
if(x == 0)
{
return 0;
}
unsigned long long sign = x >> 7;
unsigned long long mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if constexpr(is_fnuz)
{
if(x == 0x80)
{
return fNaN;
}
}
else
{
if(x == 0x80)
{
return fNeg0;
}
if constexpr(we == 4)
{ // e4m3
if((x & 0x7F) == 0x7F)
{
return fNaN;
}
}
else if((x & 0x7C) == 0x7C)
{ // e5m2
if((x & 0x3) == 0)
{
if constexpr(clip)
{
return sign ? fmin : fmax;
}
return sign ? fNegInf : fInf;
}
return fNaN;
}
}
typename __hip_internal::conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type retval;
if constexpr(we == 5 && is_half && !is_fnuz)
{
retval = x << 8;
return bit_cast<T>(retval);
}
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (is_fnuz ? 1 : 0);
// subnormal input
if(exponent == 0)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __clz(mantissa) - (32 - wm);
#else
int sh = 1 + __builtin_clz(mantissa) - (32 - wm);
#endif
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1ull << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if constexpr(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa;
else if constexpr(sizeof(T) == 4)
retval = (sign << 31) | (exponent << 23) | mantissa;
else
retval = (sign << 63) | (static_cast<unsigned long long>(exponent) << 52) | mantissa;
return bit_cast<T>(retval);
}
#if CK_FP8_CVT_FAST_PATH
template <ck_fp8_interpretation_t interpret>
static __device__ float cast_to_f32_from_f8(fp8_storage_t v)
{
union
{
unsigned int i32val;
unsigned char i8val[4];
} val;
val.i8val[0] = v;
static_assert(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ ||
interpret == ck_fp8_interpretation_t::CK_E4M3_OCP ||
interpret == ck_fp8_interpretation_t::CK_E5M2_FNUZ ||
interpret == ck_fp8_interpretation_t::CK_E5M2_OCP,
"Only FNUZ and OCP interpretations are supported");
if constexpr((interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP))
{
return __builtin_amdgcn_cvt_f32_fp8(val.i32val, 0);
}
else
{
return __builtin_amdgcn_cvt_f32_bf8(val.i32val, 0);
}
}
template <ck_fp8_interpretation_t interpret>
static __device__ float2_t cast_to_f32x2_from_f8x2(fp8x2_storage_t v)
{
const auto i16val = bit_cast<uint16_t>(v);
static_assert(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ ||
interpret == ck_fp8_interpretation_t::CK_E4M3_OCP ||
interpret == ck_fp8_interpretation_t::CK_E5M2_FNUZ ||
interpret == ck_fp8_interpretation_t::CK_E5M2_OCP,
"Only FNUZ and OCP interpretations are supported");
if constexpr((interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP))
{
return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, false);
}
else
{
return __builtin_amdgcn_cvt_pk_f32_bf8(i16val, false);
}
}
#endif
} // namespace fp8_impl
struct f8_ocp_t
{
using data_type = fp8_storage_t;
data_type data;
static constexpr ck_saturation_t default_saturation = ck_saturation_t::CK_SATFINITE;
static constexpr ck_fp8_interpretation_t default_interpret =
ck_fp8_interpretation_t::CK_E4M3_OCP;
static constexpr unsigned int we = 4; // exponent width
static constexpr unsigned int wm = 3; // mantissa width
__host__ __device__ constexpr bool operator==(const f8_ocp_t& other) const
{
return (data == other.data) && (fp8_impl::ocp_f8_is_nan(data) == false); // NaN != NaN
}
#if CK_USE_OCP_FP8
__host__ __device__ explicit operator float() const
#else
__host__ explicit operator float() const
#endif
{
#if CK_OCP_FP8_CVT_FAST_PATH
return fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data);
#else
return fp8_impl::cast_from_f8<float, wm, we, false>(
this->data); // XXX: clip==false must be consistent with operator _Float16
#endif
}
#if CK_USE_OCP_FP8
__host__ __device__ explicit operator _Float16() const
#else
__host__ explicit operator _Float16() const
#endif
{
#if CK_OCP_FP8_CVT_FAST_PATH
return static_cast<_Float16>(fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data));
#else
return fp8_impl::cast_from_f8<_Float16, wm, we, false>(
this->data); // XXX: clip==false must be consistent with operator float
#endif
}
};
struct bf8_ocp_t
{
using data_type = fp8_storage_t;
data_type data;
static constexpr ck_saturation_t default_saturation = ck_saturation_t::CK_SATFINITE;
static constexpr ck_fp8_interpretation_t default_interpret =
ck_fp8_interpretation_t::CK_E5M2_OCP;
static constexpr unsigned int we = 5; // exponent width
static constexpr unsigned int wm = 2; // mantissa width
__host__ __device__ constexpr bool operator==(const bf8_ocp_t& other) const
{
return (data == other.data) && (fp8_impl::ocp_bf8_is_nan(data) == false); // NaN != NaN
}
#if CK_USE_OCP_FP8
__host__ __device__ explicit operator float() const
#else
__host__ explicit operator float() const
#endif
{
#if defined(__gfx1200__) || defined(__gfx1201__)
return fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data);
#else
return fp8_impl::cast_from_f8<float, wm, we, false>(
this->data); // XXX: clip==false must be consistent with operator _Float16
#endif
}
#if CK_USE_OCP_FP8
__host__ __device__ explicit operator _Float16() const
#else
__host__ explicit operator _Float16() const
#endif
{
#if defined(__gfx1200__) || defined(__gfx1201__)
return static_cast<_Float16>(fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data));
#else
return fp8_impl::cast_from_f8<_Float16, wm, we, false>(
this->data); // XXX: clip==false must be consistent with operator float
#endif
}
};
template <typename T>
__host__ __device__ static inline constexpr bool fp8_is_nan(T);
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(f8_ocp_t a)
{
return fp8_impl::ocp_f8_is_nan(a.data);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(bf8_ocp_t a)
{
return fp8_impl::ocp_bf8_is_nan(a.data);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(f8_fnuz_t a)
{
return fp8_impl::fnuz_f8_is_nan(a);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(bf8_fnuz_t a)
{
return fp8_impl::fnuz_bf8_is_nan(a);
}
template <typename T,
std::enable_if_t<std::is_same_v<T, bf8_ocp_t> || std::is_same_v<T, f8_ocp_t> ||
std::is_same_v<T, bf8_fnuz_t> || std::is_same_v<T, f8_fnuz_t>,
bool> = true>
__host__ __device__ static inline constexpr bool fp8_is_inf(T)
{
return false;
}
template <>
__host__ __device__ inline constexpr bool fp8_is_inf(bf8_ocp_t a)
{
return (a.data & 0x7f) == 0x7c;
}
namespace fp8_impl {
// Assertions to check for supported conversion types
#define __assert_ocp_support(interp) \
{ \
if(interp != ck_fp8_interpretation_t::CK_E4M3_OCP && \
interp != ck_fp8_interpretation_t::CK_E5M2_OCP) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
#define __assert_fnuz_support(interp) \
{ \
if(interp != ck_fp8_interpretation_t::CK_E4M3_FNUZ && \
interp != ck_fp8_interpretation_t::CK_E5M2_FNUZ) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
__host__ __device__ static inline void
__is_interpret_supported([[maybe_unused]] ck_fp8_interpretation_t interp)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
#if CK_USE_OCP_FP8
__assert_ocp_support(interp);
#endif
#if CK_USE_FNUZ_FP8
__assert_fnuz_support(interp);
#endif
#endif
}
#if CK_FP8_CVT_FAST_PATH
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_float8.h#L79
template <ck_fp8_interpretation_t interpret, bool saturate, bool stochastic_rounding = false>
static __device__ fp8_storage_t cast_to_f8_from_f32(float v, unsigned int rng = 0)
{
fp8_storage_t i8data;
union
{
float fval;
unsigned int i32val;
unsigned char i8val[4]; // NOTE: not endian independent
} val;
unsigned int ival = 0;
val.fval = v;
if constexpr(saturate)
{
if constexpr(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ)
{
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
}
else if constexpr(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
{ // OCP type
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 448.0, -448.0);
}
}
else
{
if((val.i32val & 0x7F800000) != 0x7F800000)
{ /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
}
}
}
if constexpr(stochastic_rounding)
{
ival = (interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
? __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0)
: __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
val.i32val = ival;
i8data = val.i8val[0]; // little endian
}
else
{ // RNE CVT
ival = (interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
? __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival, false)
: __builtin_amdgcn_cvt_pk_bf8_f32(val.fval,
val.fval,
ival,
false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
}
return i8data;
}
#endif // CK_FP8_CVT_FAST_PATH
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L39
// This has been modified to add double types conversion as well
template <typename T, int wm, int we, bool is_fnuz, bool clip = false, bool stoch = false>
__host__ __device__ static inline fp8_storage_t cast_to_f8(T _x, unsigned int rng = 0)
{
constexpr bool is_half = __hip_internal::is_same<T, _Float16>::value;
constexpr bool is_float = __hip_internal::is_same<T, float>::value;
constexpr bool is_double = __hip_internal::is_same<T, double>::value;
static_assert(is_half || is_float || is_double,
"Only half, float and double can be cast to f8");
constexpr int mfmt = (sizeof(T) == 8) ? 52 : ((sizeof(T) == 4) ? 23 : 10);
using T_bitwise = typename __hip_internal::conditional<
sizeof(T) == 2,
unsigned short int,
typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
type>::type;
T_bitwise x_bitwise = bit_cast<T_bitwise>(_x);
unsigned long long x{x_bitwise};
unsigned long long head, mantissa;
int exponent, bias;
unsigned int sign;
unsigned long long fInf, mask;
if constexpr(sizeof(T) == 8)
{
head = x & 0xFFF0000000000000ull;
mantissa = x & 0xFFFFFFFFFFFFFull;
exponent = (head >> 52) & 0x7FF;
sign = head >> 63;
bias = 1023;
fInf = 0x7FF0000000000000ull;
mask = 0x7FFFFFFFFFFFFFFFull;
}
else if constexpr(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
fInf = 0x7F800000;
mask = 0x7FFFFFFF;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
fInf = 0x7C00;
mask = 0x7FFF;
}
unsigned int signed_inf = 0;
unsigned int nan = 0;
if constexpr(is_fnuz)
{
signed_inf = clip ? ((sign << 7) + 0x7f) : 0x80;
nan = 0x80;
}
else
{
if constexpr(we == 4)
{ // e4m3
signed_inf = (sign << 7) + (clip ? 0x7e : 0x7f);
}
else
{ // e5m2
signed_inf = (sign << 7) + (clip ? 0x7b : 0x7c);
}
nan = (sign << 7) + 0x7f;
}
// Max values
unsigned long long ifmax = 0;
if constexpr(sizeof(T) == 8)
{
if constexpr(we == 5)
{ // 57344
ifmax = 0x40EC000000000000ull;
}
else
{
if constexpr(is_fnuz)
{ // 240
ifmax = 0x406E000000000000ull;
}
else
{ // 448
ifmax = 0x407C000000000000ull;
}
}
}
else if(sizeof(T) == 4)
{
if constexpr(we == 5)
{
ifmax = 0x47600000;
}
else
{
if constexpr(is_fnuz)
{
ifmax = 0x43700000;
}
else
{
ifmax = 0x43E00000;
}
}
}
else
{
if constexpr(we == 5)
{
ifmax = 0x7B00;
}
else
{
if constexpr(is_fnuz)
{
ifmax = 0x5B80;
}
else
{
ifmax = 0x5F00;
}
}
}
// Deal with inf and NaNs
if((x & fInf) == fInf)
{
if constexpr(is_fnuz)
return signed_inf;
return mantissa != 0 ? nan : signed_inf;
}
if((x & mask) > ifmax)
{
return signed_inf;
}
if(x == 0)
{
return 0;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const int f8_bias = (1 << (we - 1)) - 1 + (is_fnuz ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if(exponent == 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff = 0; // exponent_diff=0 does not mean there is no difference
// for this case, act_exponent could be larger. Just
// that it does not need shift mantissa
}
mantissa += (1ull << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1ull << (mfmt - wm + exponent_diff)) - 1)) ==
(1ull << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part and
make something not midpoint look like midpoint. For example, the fp16 number
0x1002 (0 00100 0000000010), it is larger than midpoint, but after shift right
by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1ull << mfmt);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
unsigned long long drop_mask = (1ull << (mfmt - wm)) - 1;
bool odd =
mantissa & (1ull << (mfmt - wm)); // if the least significant bit that is not truncated is 1
mantissa +=
(stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1ull) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0)
{
if((1ull << mfmt) & mantissa)
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
}
else
{
if((1ull << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - 1;
if(f8_exponent > max_exp)
{
if constexpr(clip)
{
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
}
else
{
return signed_inf;
}
}
if(f8_exponent == 0 && mantissa == 0)
return is_fnuz ? 0 : (sign << 7);
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
/**
* \brief convert float to @p fp8_storage_t
*
* \tparam interp interpretation of fp8
* \tparam sat saturation of fp8
* \param f float number
* \return fp8_storage_t
*/
template <ck_fp8_interpretation_t interp,
ck_saturation_t sat = ck_saturation_t::CK_SATFINITE,
bool stochastic_rounding = false>
#if CK_FP8_CVT_FAST_PATH
__host__ __device__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
__is_interpret_supported(interp);
uint32_t rng = 0;
if constexpr(stochastic_rounding)
{
constexpr int seed = 1254739;
rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&f), f);
}
return cast_to_f8_from_f32<interp, sat == ck_saturation_t::CK_SATFINITE, stochastic_rounding>(
f, rng);
#else
#if CK_USE_OCP_FP8
__host__ __device__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
#else
__host__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
#endif
uint32_t rng = 0;
if constexpr(stochastic_rounding)
{
constexpr int seed = 1254739;
rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&f), f);
}
if constexpr(interp == ck_fp8_interpretation_t::CK_E4M3_FNUZ)
{
return cast_to_f8<float,
3,
4,
true,
sat == ck_saturation_t::CK_SATFINITE,
stochastic_rounding>(f, rng);
}
else if constexpr(interp == ck_fp8_interpretation_t::CK_E5M2_FNUZ)
{
return cast_to_f8<float,
2,
5,
true,
sat == ck_saturation_t::CK_SATFINITE,
stochastic_rounding>(f, rng);
}
else if constexpr(interp == ck_fp8_interpretation_t::CK_E4M3_OCP)
{
return cast_to_f8<float,
3,
4,
false,
sat == ck_saturation_t::CK_SATFINITE,
stochastic_rounding>(f, rng);
}
else if constexpr(interp == ck_fp8_interpretation_t::CK_E5M2_OCP)
{
return cast_to_f8<float,
2,
5,
false,
sat == ck_saturation_t::CK_SATFINITE,
stochastic_rounding>(f, rng);
}
else
{
__hip_assert(false && "FP8 type is not supported by current target device");
return 0;
}
#endif // CK_FP8_CVT_FAST_PATH
}
/**
* \brief convert _Float16 to @p fp8_storage_t
*
* \tparam sat saturation of fp8
* \tparam interp interpretation of fp8
* \tparam stochastic_rounding switch between RNE and SR
* \param x _Float16 value
* \return fp8_storage_t
*/
template <ck_fp8_interpretation_t interp,
ck_saturation_t sat = ck_saturation_t::CK_SATFINITE,
bool stochastic_rounding = false>
#if CK_FP8_CVT_FAST_PATH || CK_USE_OCP_FP8
__host__ __device__ static inline fp8_storage_t cvt_half_t_to_fp8(const _Float16 x)
#else
__host__ static inline fp8_storage_t cvt_half_t_to_fp8(const _Float16 x)
#endif
{
return cvt_float_to_fp8<interp, sat, stochastic_rounding>(static_cast<float>(x));
}
} // namespace fp8_impl
// Declare a template function for fp8 conversion using RNE
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_rne(X x);
// convert fp32 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_ocp_t f8_convert_rne<f8_ocp_t, float>(float x)
{
return f8_ocp_t{
fp8_impl::cvt_float_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation>(x)};
}
// convert fp32 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_rne<bf8_ocp_t, float>(float x)
{
return bf8_ocp_t{
fp8_impl::cvt_float_to_fp8<bf8_ocp_t::default_interpret, bf8_ocp_t::default_saturation>(x)};
}
// convert _Float16 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_ocp_t f8_convert_rne<f8_ocp_t, _Float16>(_Float16 x)
{
return f8_ocp_t{
fp8_impl::cvt_half_t_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation>(x)};
}
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_rne<bf8_ocp_t, _Float16>(_Float16 x)
{
return bf8_ocp_t{
fp8_impl::cvt_half_t_to_fp8<bf8_ocp_t::default_interpret, bf8_ocp_t::default_saturation>(
x)};
}
// Declare a template function for fp8 conversion using RNE
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_sr(X x);
// convert fp32 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_ocp_t f8_convert_sr<f8_ocp_t, float>(float x)
{
return f8_ocp_t{
fp8_impl::cvt_float_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation, true>(
x)};
}
// convert fp32 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_sr<bf8_ocp_t, float>(float x)
{
return bf8_ocp_t{fp8_impl::cvt_float_to_fp8<bf8_ocp_t::default_interpret,
bf8_ocp_t::default_saturation,
true>(x)};
}
// convert _Float16 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_ocp_t f8_convert_sr<f8_ocp_t, _Float16>(_Float16 x)
{
return f8_ocp_t{fp8_impl::cvt_half_t_to_fp8<f8_ocp_t::default_interpret,
f8_ocp_t::default_saturation,
true>(x)};
}
// convert _Float16 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_sr<bf8_ocp_t, _Float16>(_Float16 x)
{
return bf8_ocp_t{fp8_impl::cvt_half_t_to_fp8<bf8_ocp_t::default_interpret,
bf8_ocp_t::default_saturation,
true>(x)};
}
#if CK_USE_OCP_FP8
using f8_t = f8_ocp_t;
using bf8_t = bf8_ocp_t;
#define CK_FP8_TYPE_FNUZ 0
#define CK_FP8_TYPE_OCP 1
#else
using f8_t = f8_fnuz_t;
using bf8_t = bf8_fnuz_t;
#define CK_FP8_TYPE_FNUZ 1
#define CK_FP8_TYPE_OCP 0
#endif
} // namespace ck
......@@ -4,7 +4,7 @@
#pragma once
namespace ck {
// Define the common macro for gfx94x models
// Define the common macro for MI300 models
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define __gfx94__
#endif
......
......@@ -3,6 +3,7 @@
#pragma once
#include "ck/utility/amd_ck_fp8.hpp"
#include "ck/utility/statically_indexed_array.hpp"
namespace ck {
......@@ -10,8 +11,6 @@ namespace ck {
using bhalf_t = ushort;
using half_t = _Float16;
using int4_t = _BitInt(4);
using f8_t = _BitInt(8);
using bf8_t = unsigned _BitInt(8);
inline constexpr auto next_pow2(uint32_t x)
{
......@@ -19,14 +18,15 @@ inline constexpr auto next_pow2(uint32_t x)
return x > 1u ? (1u << (32u - __builtin_clz(x - 1u))) : x;
}
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_t, bf8_t, bool
// native types: double, float, _Float16, ushort, int32_t, int8_t, uint8_t, f8_fnuz_t, bf8_fnuz_t,
// native types: bool
template <typename T>
inline constexpr bool is_native_type()
{
return is_same<T, double>::value || is_same<T, float>::value || is_same<T, half_t>::value ||
is_same<T, bhalf_t>::value || is_same<T, int32_t>::value || is_same<T, int8_t>::value ||
is_same<T, uint8_t>::value || is_same<T, f8_t>::value || is_same<T, bf8_t>::value ||
is_same<T, bool>::value;
is_same<T, uint8_t>::value || is_same<T, f8_fnuz_t>::value ||
is_same<T, bf8_fnuz_t>::value || is_same<T, bool>::value;
}
// vector_type
......@@ -166,16 +166,30 @@ struct scalar_type<int4_t>
#endif
template <>
struct scalar_type<f8_t>
struct scalar_type<f8_fnuz_t>
{
using type = f8_t;
using type = f8_fnuz_t;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bf8_t>
struct scalar_type<bf8_fnuz_t>
{
using type = bf8_t;
using type = bf8_fnuz_t;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<f8_ocp_t>
{
using type = f8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
template <>
struct scalar_type<bf8_ocp_t>
{
using type = bf8_ocp_t::data_type;
static constexpr index_t vector_size = 1;
};
......@@ -1010,60 +1024,203 @@ struct vector_type<T, 256, typename std::enable_if_t<is_native_type<T>()>>
}
};
template <typename T, index_t N, typename Enable = void>
struct non_native_vector_base;
template <typename T>
struct nnvb_data_t_selector
{
using type = unsigned _BitInt(8 * sizeof(T));
};
template <>
struct nnvb_data_t_selector<f8_ocp_t>
{
using type = f8_ocp_t::data_type;
};
template <>
struct nnvb_data_t_selector<bf8_ocp_t>
{
using type = bf8_ocp_t::data_type;
};
template <typename T, index_t N>
struct non_native_vector_base<
T,
N,
std::enable_if_t<sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8>>
{
using data_t = typename nnvb_data_t_selector<T>::type; // select data_t based on the size of T
static_assert(sizeof(T) == sizeof(data_t), "non_native_vector_base storage size mismatch");
using data_v = data_t __attribute__((ext_vector_type(N)));
using type = non_native_vector_base<T, N>;
union alignas(next_pow2(N * sizeof(T)))
{
data_v dN; // storage vector;
StaticallyIndexedArray<data_t, N> dxN;
StaticallyIndexedArray<T, N> dTxN;
StaticallyIndexedArray<data_v, 1> dNx1;
} data_;
__host__ __device__ constexpr non_native_vector_base(data_t a) : data_{data_v(a)} {}
__host__ __device__ constexpr non_native_vector_base(T f)
: non_native_vector_base(bit_cast<data_t>(f))
{
}
__host__ __device__ constexpr non_native_vector_base() : non_native_vector_base(T{}){};
__host__ __device__ constexpr non_native_vector_base(data_v v) : data_{v} {}
__host__ __device__ constexpr operator data_v() const { return data_.dN; }
__host__ __device__ constexpr operator data_t() const
{
if constexpr(N == 1)
{
return data_.dxN[Number<0>{}];
}
else
{
return data_.dxN; // XXX this should cause an error
}
}
__host__ __device__ constexpr operator T() const
{
if constexpr(N == 1)
{
return data_.dTxN[Number<0>{}];
}
else
{
return data_.dTxN; // XXX this should cause an error
}
}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same_v<X, data_t> || is_same_v<X, T> || is_same_v<X, data_v>,
"Something went wrong, please check src and dst types.");
if constexpr(is_same_v<X, data_t>)
{
return data_.dxN;
}
else if constexpr(is_same_v<X, T>)
{
return data_.dTxN;
}
else if constexpr(is_same_v<X, data_v>)
{
return data_.dNx1;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same_v<X, data_t> || is_same_v<X, T> || is_same_v<X, data_v>,
"Something went wrong, please check src and dst types.");
if constexpr(is_same_v<X, data_t>)
{
return data_.dxN;
}
else if constexpr(is_same_v<X, T>)
{
return data_.dTxN;
}
else if constexpr(is_same_v<X, data_v>)
{
return data_.dNx1;
}
else
{
return err;
}
}
};
template <typename T, index_t N>
struct non_native_vector_base
struct scalar_type<non_native_vector_base<T, N>>;
template <index_t N>
struct scalar_type<non_native_vector_base<f8_ocp_t, N>>
{
using type = non_native_vector_base<T, N>;
using type = typename non_native_vector_base<f8_ocp_t, N>::data_t;
static constexpr index_t vector_size = N;
};
__host__ __device__ non_native_vector_base() = default;
__host__ __device__ non_native_vector_base(const type&) = default;
__host__ __device__ non_native_vector_base(type&&) = default;
__host__ __device__ ~non_native_vector_base() = default;
template <index_t N>
struct scalar_type<non_native_vector_base<bf8_ocp_t, N>>
{
using type = typename non_native_vector_base<bf8_ocp_t, N>::data_t;
T d[N];
static constexpr index_t vector_size = N;
};
// non-native vector_type implementation
template <typename T>
struct vector_type<T, 1, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using type = d1_t;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using type = d1_nnv_t;
union alignas(next_pow2(1 * sizeof(T)))
{
d1_t d1_;
StaticallyIndexedArray<d1_t, 1> d1x1_;
d1_nnv_t d1_nnv_;
} data_;
__host__ __device__ constexpr vector_type() : data_{type{}} {}
__host__ __device__ constexpr vector_type() : data_{d1_t{}} {}
__host__ __device__ constexpr vector_type(type v) : data_{v} {}
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x1_;
}
else
{
return err;
}
}
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value,
"Something went wrong, please check src and dst types.");
return data_.d1x1_;
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x1_;
}
else
{
return err;
}
}
};
template <typename T>
struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using type = d2_t;
......@@ -1081,10 +1238,11 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x2_;
}
......@@ -1101,10 +1259,11 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x2_;
}
......@@ -1122,9 +1281,10 @@ struct vector_type<T, 2, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using type = d4_t;
......@@ -1143,10 +1303,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x4_;
}
......@@ -1167,10 +1328,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value || is_same<X, d4_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x4_;
}
......@@ -1192,10 +1354,11 @@ struct vector_type<T, 4, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using type = d8_t;
......@@ -1215,11 +1378,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x8_;
}
......@@ -1244,11 +1408,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x8_;
}
......@@ -1274,11 +1439,12 @@ struct vector_type<T, 8, typename std::enable_if_t<!is_native_type<T>()>>
template <typename T>
struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
{
using d1_t = T;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using d1_t = T;
using d1_nnv_t = non_native_vector_base<T, 1>;
using d2_t = non_native_vector_base<T, 2>;
using d4_t = non_native_vector_base<T, 4>;
using d8_t = non_native_vector_base<T, 8>;
using d16_t = non_native_vector_base<T, 16>;
using type = d16_t;
......@@ -1299,12 +1465,12 @@ struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr const auto& AsType() const
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x16_;
}
......@@ -1333,12 +1499,12 @@ struct vector_type<T, 16, typename std::enable_if_t<!is_native_type<T>()>>
template <typename X>
__host__ __device__ constexpr auto& AsType()
{
static_assert(is_same<X, d1_t>::value || is_same<X, d2_t>::value ||
is_same<X, d4_t>::value || is_same<X, d8_t>::value ||
is_same<X, d16_t>::value,
static_assert(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value ||
is_same<X, d2_t>::value || is_same<X, d4_t>::value ||
is_same<X, d8_t>::value || is_same<X, d16_t>::value,
"Something went wrong, please check src and dst types.");
if constexpr(is_same<X, d1_t>::value)
if constexpr(is_same<X, d1_t>::value || is_same<X, d1_nnv_t>::value)
{
return data_.d1x16_;
}
......@@ -1632,20 +1798,70 @@ using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type;
// f8
using f8x2_t = typename vector_type<f8_t, 2>::type;
using f8x4_t = typename vector_type<f8_t, 4>::type;
using f8x8_t = typename vector_type<f8_t, 8>::type;
using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
using f8x64_t = typename vector_type<f8_t, 64>::type;
using f8x2_fnuz_t = typename vector_type<f8_fnuz_t, 2>::type;
using f8x4_fnuz_t = typename vector_type<f8_fnuz_t, 4>::type;
using f8x8_fnuz_t = typename vector_type<f8_fnuz_t, 8>::type;
using f8x16_fnuz_t = typename vector_type<f8_fnuz_t, 16>::type;
using f8x32_fnuz_t = typename vector_type<f8_fnuz_t, 32>::type;
using f8x64_fnuz_t = typename vector_type<f8_fnuz_t, 64>::type;
// bf8
using bf8x2_t = typename vector_type<bf8_t, 2>::type;
using bf8x4_t = typename vector_type<bf8_t, 4>::type;
using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using bf8x16_t = typename vector_type<bf8_t, 16>::type;
using bf8x32_t = typename vector_type<bf8_t, 32>::type;
using bf8x64_t = typename vector_type<bf8_t, 64>::type;
using bf8x2_fnuz_t = typename vector_type<bf8_fnuz_t, 2>::type;
using bf8x4_fnuz_t = typename vector_type<bf8_fnuz_t, 4>::type;
using bf8x8_fnuz_t = typename vector_type<bf8_fnuz_t, 8>::type;
using bf8x16_fnuz_t = typename vector_type<bf8_fnuz_t, 16>::type;
using bf8x32_fnuz_t = typename vector_type<bf8_fnuz_t, 32>::type;
using bf8x64_fnuz_t = typename vector_type<bf8_fnuz_t, 64>::type;
// f8
using f8x2_ocp_t = typename vector_type<f8_ocp_t, 2>::type;
using f8x4_ocp_t = typename vector_type<f8_ocp_t, 4>::type;
using f8x8_ocp_t = typename vector_type<f8_ocp_t, 8>::type;
using f8x16_ocp_t = typename vector_type<f8_ocp_t, 16>::type;
using f8x32_ocp_t = typename vector_type<f8_ocp_t, 32>::type;
using f8x64_ocp_t = typename vector_type<f8_ocp_t, 64>::type;
// bf8
using bf8x2_ocp_t = typename vector_type<bf8_ocp_t, 2>::type;
using bf8x4_ocp_t = typename vector_type<bf8_ocp_t, 4>::type;
using bf8x8_ocp_t = typename vector_type<bf8_ocp_t, 8>::type;
using bf8x16_ocp_t = typename vector_type<bf8_ocp_t, 16>::type;
using bf8x32_ocp_t = typename vector_type<bf8_ocp_t, 32>::type;
using bf8x64_ocp_t = typename vector_type<bf8_ocp_t, 64>::type;
#if CK_FP8_TYPE_OCP
// f8
using f8x2_t = f8x2_ocp_t;
using f8x4_t = f8x4_ocp_t;
using f8x8_t = f8x8_ocp_t;
using f8x16_t = f8x16_ocp_t;
using f8x32_t = f8x32_ocp_t;
using f8x64_t = f8x64_ocp_t;
// bf8
using bf8x2_t = bf8x2_ocp_t;
using bf8x4_t = bf8x4_ocp_t;
using bf8x8_t = bf8x8_ocp_t;
using bf8x16_t = bf8x16_ocp_t;
using bf8x32_t = bf8x32_ocp_t;
using bf8x64_t = bf8x64_ocp_t;
#elif CK_FP8_TYPE_FNUZ
// f8
using f8x2_t = f8x2_fnuz_t;
using f8x4_t = f8x4_fnuz_t;
using f8x8_t = f8x8_fnuz_t;
using f8x16_t = f8x16_fnuz_t;
using f8x32_t = f8x32_fnuz_t;
using f8x64_t = f8x64_fnuz_t;
// bf8
using bf8x2_t = bf8x2_fnuz_t;
using bf8x4_t = bf8x4_fnuz_t;
using bf8x8_t = bf8x8_fnuz_t;
using bf8x16_t = bf8x16_fnuz_t;
using bf8x32_t = bf8x32_fnuz_t;
using bf8x64_t = bf8x64_fnuz_t;
#endif
// u8
using uint8x2_t = typename vector_type<uint8_t, 2>::type;
......@@ -1702,7 +1918,7 @@ struct NumericLimits<int4_t>
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<f8_t>
struct NumericLimits<f8_fnuz_t>
{
// negative zero nan mode with exp bias = 8
static constexpr uint8_t binary_min = 0x08; // 0b00001000
......@@ -1715,17 +1931,17 @@ struct NumericLimits<f8_t>
// static constexpr uint8_t binary_lowest = 0xF7; // 0b11110111
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=0
__host__ __device__ static constexpr f8_t Min() { return f8_t(binary_min); }
__host__ __device__ static constexpr f8_fnuz_t Min() { return f8_fnuz_t(binary_min); }
__host__ __device__ static constexpr f8_t Max() { return f8_t(binary_max); }
__host__ __device__ static constexpr f8_fnuz_t Max() { return f8_fnuz_t(binary_max); }
__host__ __device__ static constexpr f8_t Lowest() { return f8_t(binary_lowest); }
__host__ __device__ static constexpr f8_fnuz_t Lowest() { return f8_fnuz_t(binary_lowest); }
__host__ __device__ static constexpr f8_t QuietNaN() { return f8_t(binary_qnan); }
__host__ __device__ static constexpr f8_fnuz_t QuietNaN() { return f8_fnuz_t(binary_qnan); }
};
template <>
struct NumericLimits<bf8_t>
struct NumericLimits<bf8_fnuz_t>
{
// negative zero nan mode with exp bias = 16
static constexpr uint8_t binary_min = 0x04; // 0b00000100
......@@ -1738,13 +1954,59 @@ struct NumericLimits<bf8_t>
// static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011
// static constexpr uint8_t binary_qnan = 0x79; // any sign, exp=1111, mant!=
__host__ __device__ static constexpr bf8_t Min() { return bf8_t(binary_min); }
__host__ __device__ static constexpr bf8_fnuz_t Min() { return bf8_fnuz_t(binary_min); }
__host__ __device__ static constexpr bf8_t Max() { return bf8_t(binary_max); }
__host__ __device__ static constexpr bf8_fnuz_t Max() { return bf8_fnuz_t(binary_max); }
__host__ __device__ static constexpr bf8_t Lowest() { return bf8_t(binary_lowest); }
__host__ __device__ static constexpr bf8_fnuz_t Lowest() { return bf8_fnuz_t(binary_lowest); }
__host__ __device__ static constexpr bf8_t QuietNaN() { return bf8_t(binary_qnan); }
__host__ __device__ static constexpr bf8_fnuz_t QuietNaN() { return bf8_fnuz_t(binary_qnan); }
};
template <>
struct NumericLimits<f8_ocp_t>
{
static constexpr uint8_t binary_min = 0x08; // 0b00001000 = 2^-6
static constexpr uint8_t binary_max = 0x7E; // 0b01111110 = 448
static constexpr uint8_t binary_lowest = 0xFE; // 0b11111110 = -448
static constexpr uint8_t binary_qnan = 0x7F; // 0b01111111
__host__ __device__ static constexpr f8_ocp_t Min() { return bit_cast<f8_ocp_t>(binary_min); }
__host__ __device__ static constexpr f8_ocp_t Max() { return bit_cast<f8_ocp_t>(binary_max); }
__host__ __device__ static constexpr f8_ocp_t Lowest()
{
return bit_cast<f8_ocp_t>(binary_lowest);
}
__host__ __device__ static constexpr f8_ocp_t QuietNaN()
{
return bit_cast<f8_ocp_t>(binary_qnan);
}
};
template <>
struct NumericLimits<bf8_ocp_t>
{
static constexpr uint8_t binary_min = 0x04; // 0b00000100 = 2^-14
static constexpr uint8_t binary_max = 0x7B; // 0b01111011 = 57344
static constexpr uint8_t binary_lowest = 0xFB; // 0b11111011 = -57344
static constexpr uint8_t binary_qnan = 0x7D; // 0b01111101
__host__ __device__ static constexpr bf8_ocp_t Min() { return bit_cast<bf8_ocp_t>(binary_min); }
__host__ __device__ static constexpr bf8_ocp_t Max() { return bit_cast<bf8_ocp_t>(binary_max); }
__host__ __device__ static constexpr bf8_ocp_t Lowest()
{
return bit_cast<bf8_ocp_t>(binary_lowest);
}
__host__ __device__ static constexpr bf8_ocp_t QuietNaN()
{
return bit_cast<bf8_ocp_t>(binary_qnan);
}
};
template <typename T>
......@@ -1787,7 +2049,7 @@ struct NumericUtils<half_t>
};
template <>
struct NumericUtils<f8_t>
struct NumericUtils<f8_fnuz_t>
{
static constexpr int exp = 4;
static constexpr int mant = 3;
......@@ -1796,13 +2058,28 @@ struct NumericUtils<f8_t>
};
template <>
struct NumericUtils<bf8_t>
struct NumericUtils<bf8_fnuz_t>
{
static constexpr int exp = 5;
static constexpr int mant = 2;
static constexpr int bias = 16; // negative zero nan mode
// static constexpr int bias = 15; // ieee mode
};
template <>
struct NumericUtils<f8_ocp_t>
{
static constexpr int exp = 4;
static constexpr int mant = 3;
static constexpr int bias = 7;
};
template <>
struct NumericUtils<bf8_ocp_t>
{
static constexpr int exp = 5;
static constexpr int mant = 2;
static constexpr int bias = 15;
};
template <>
struct NumericUtils<bhalf_t>
......
......@@ -80,7 +80,7 @@ static inline __host__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __host__ bool isnan(f8_t x) { return (x & 0x80); };
static inline __host__ bool isnan(f8_t x) { return ck::fp8_is_nan(x); };
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static inline __host__ bool isnan(int4_t x)
......@@ -531,7 +531,7 @@ static inline __device__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __device__ bool isnan(f8_t x) { return (x & 0x80); };
static inline __device__ bool isnan(f8_t x) { return ck::fp8_is_nan(x); };
static inline __device__ half_t sqrt(half_t x)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
namespace ck {
// Pseudo random number generator
......@@ -23,7 +25,7 @@ __host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed =
}
// version for fp16
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<half_t, T>{}, bool> = false>
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<_Float16, T>{}, bool> = false>
__host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed = seed_t)
{
uint16_t x = *(reinterpret_cast<uint16_t*>(&val));
......@@ -38,9 +40,10 @@ __host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed =
}
// return 0 if data is not fp16 or fp32
template <typename T,
uint32_t seed_t,
std::enable_if_t<!(std::is_same<float, T>{} || std::is_same<half_t, T>{}), bool> = false>
template <
typename T,
uint32_t seed_t,
std::enable_if_t<!(std::is_same<float, T>{} || std::is_same<_Float16, T>{}), bool> = false>
__host__ __device__ uint32_t prand_generator(int id, T val, uint32_t seed = seed_t)
{
std::ignore = id;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment