"tests/models/autoencoders/test_models_vae.py" did not exist on "958d9ec72310b67eb3c4d3fed55219af857ae5d1"
Commit 854cd8b4 authored by mtgu0705's avatar mtgu0705
Browse files

commit missing files

parent 182e7480
......@@ -268,8 +268,8 @@ int main(int argc, char* argv[])
expert_ids.savetxt("expert_ids.txt", "int");
sorted_token_ids.savetxt("sorted_token_ids.txt", "int");
Tensor<A0DataType> a0_t_k_k(HostTensorDescriptor({tokens, topk, K}, {topk*K, K, 1}));
Tensor<B0DataType> b0_e_n_k(HostTensorDescriptor({experts, K, N}, {N*K, 1, N}));
Tensor<B0DataType> b0_preshuffled(HostTensorDescriptor({experts, K, N}, {N*K, 1, N}));
Tensor<B0DataType> b0_e_n_k(HostTensorDescriptor({experts, K, N}, {N*K, 1, K}));
Tensor<B0DataType> b0_preshuffled(HostTensorDescriptor({experts, K, N}, {N*K, 1, K}));
Tensor<D0DataType> d0_t_n(HostTensorDescriptor({tokens, N}, {StrideDs[0], 0}));
Tensor<D1DataType> d1_e_n(HostTensorDescriptor({experts, N}, {1, StrideDs[1]}));
Tensor<D2DataType> d2_e_n(HostTensorDescriptor({sorted_size, N}, {1, 0}));
......
......@@ -36,7 +36,7 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = F8;
using B0DataType = I4;
using EDataType = F32;
using EDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
......
......@@ -6,6 +6,7 @@
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_dequant_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_dequant_v3.hpp"
namespace ck {
......@@ -35,7 +36,7 @@ constexpr auto BlockGemmBPreshufflePipeline_Selector()
{
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(std::is_same<ADataType, BDataType>::value)
if constexpr(std::is_same<ADataType, BDataType>::value)
{
return BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlkGemmPipeSche,
BlockSize,
......@@ -109,9 +110,28 @@ constexpr auto BlockGemmBPreshufflePipeline_Selector()
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
static_assert(MRepeat >= 4, "MRepeat should at least be 4 in BlockGemmPipelineVersion::v3");
if(std::is_same<ADataType, BDataType>::value)
if constexpr(std::is_same<ADataType, BDataType>::value)
{
std::cerr << "BlockGemmPipeline v3 configuration is not available" << std::endl;
return BlockwiseGemmXdlops_pipeline_bpreshuffle_v3<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else
{
......
......@@ -144,7 +144,7 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
static constexpr index_t GlobalBufferNum = 2;
template <typename TileDesc_M0_M1_M2_K>
__host__ __device__ static constexpr auto MakeAGemmMmaTileDescriptor(const TileDesc_M0_M1_M2_K&)
......@@ -249,7 +249,7 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
constexpr auto b_block_origin_idx = make_tuple(I0, I0, I0, I0);
// Global prefetch A1 B1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
......@@ -258,12 +258,13 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
__builtin_amdgcn_sched_barrier(0);
// // Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, I0);
// // Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Local prefetch A1
......@@ -296,13 +297,12 @@ struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v1<BlockGemmPipelineScheduler::I
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_buf));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, mfma_reg_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, local_read_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// printf("bid %d tid %d %f %f\n", blockIdx.x, threadIdx.x,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Compute optimized pipeline
// GlobalPrefetchStages: 2
// LocalPreFillStages: 1
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v3
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v3<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::A_K1;
using Base::B_K1;
using Base::I0;
using Base::I1;
using Base::I2;
using Base::KRepeat;
using Base::xdlops_gemm;
using typename Base::HotLoopInstList;
using Base::a_block_desc_m0_m1_m2_k;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::AMmaKStride;
using Base::BMmaKStride;
using Base::MWaves;
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
static constexpr index_t HotloopLocalBufSwitch = MRepeat % 2 == 0 ? 0 : 1;
template <typename TileDesc_M0_M1_M2_K>
__host__ __device__ static constexpr auto MakeAGemmMmaTileDescriptor(const TileDesc_M0_M1_M2_K&)
{
constexpr index_t M0 = TileDesc_M0_M1_M2_K{}.GetLength(Number<0>{});
constexpr index_t M1 = TileDesc_M0_M1_M2_K{}.GetLength(Number<1>{});
constexpr index_t M2 = TileDesc_M0_M1_M2_K{}.GetLength(Number<2>{});
constexpr index_t K2 = KPack;
constexpr index_t K1 = 64 / NPerXDL;
constexpr index_t K0 = KRepeat;
return transform_tensor_descriptor(
TileDesc_M0_M1_M2_K{},
make_tuple(
make_pass_through_transform(Number<M0>{}),
make_pass_through_transform(Number<M1>{}),
make_pass_through_transform(Number<M2>{}),
make_unmerge_transform(make_tuple(Number<K0>{}, Number<K1>{}, Number<K2>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3, 4, 5>{}));
}
static constexpr auto a_block_desc_m0_m1_m2_k0_k1_k2 =
MakeAGemmMmaTileDescriptor(a_block_desc_m0_m1_m2_k);
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
return num_loop % 2 == 0 ? TailNumber::Even : TailNumber::Odd;
}
template <typename Stage>
__device__ static constexpr auto HotLoopScheduler(Stage stage)
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = MWaves * HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
if constexpr(stage.value == 0)
{
constexpr auto staged_num_buffer_load_b_per_ds_read_a =
num_buffer_load_inst_b / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_buffer_load_b =
staged_num_mfma / num_buffer_load_inst_b;
// B global
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_buffer_load_b_per_ds_read_a - 1, 1>{}([&](auto ibuf_inst) {
ignore = ibuf_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 1)
{
constexpr auto staged_num_mfma_per_ds_write_a =
math::integer_divide_ceil(staged_num_mfma, num_ds_write_inst_a);
constexpr auto stage_more_mfma =
staged_num_mfma - (staged_num_mfma_per_ds_write_a - 1) * num_ds_write_inst_a;
// A local write
static_for<0, num_ds_write_inst_a, 1>{}([&](auto i_inst) {
if constexpr(i_inst.value < stage_more_mfma)
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
}
}
else
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 2, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
}
}
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 2)
{
constexpr auto staged_num_mfma_per_buffer_load_a =
math::integer_divide_ceil(staged_num_mfma, num_buffer_load_inst_a);
constexpr auto stage_more_mfma =
staged_num_mfma - (staged_num_mfma_per_buffer_load_a - 1) * num_buffer_load_inst_a;
// A global
static_for<0, num_buffer_load_inst_a, 1>{}([&](auto i_inst) {
if constexpr(i_inst.value < stage_more_mfma)
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
}
}
else
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a - 2, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
}
}
});
__builtin_amdgcn_sched_barrier(0);
}
else
{
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
}
template <typename Stage>
__device__ static constexpr auto EpilogueScheduler_1(Stage stage)
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_b = MWaves * HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
if constexpr(stage.value == 0)
{
constexpr auto staged_num_buffer_load_b_per_ds_read_a =
num_buffer_load_inst_b / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_buffer_load_b =
staged_num_mfma / num_buffer_load_inst_b;
// B global
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_buffer_load_b_per_ds_read_a, 1>{}([&](auto ibuf_inst) {
ignore = ibuf_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 1)
{
#if 0
constexpr auto staged_num_ds_write_a_per_ds_read_a =
num_ds_write_inst_a / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_ds_write_a = staged_num_mfma / num_ds_write_inst_a;
// A local write
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_ds_write_a_per_ds_read_a, 1>{}([&](auto idswrite_inst) {
ignore = idswrite_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
});
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_ds_write_a_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
#elif 1
constexpr auto staged_num_mfma_per_ds_write_a =
math::integer_divide_ceil(staged_num_mfma, num_ds_write_inst_a);
constexpr auto stage_more_mfma =
staged_num_mfma - (staged_num_mfma_per_ds_write_a - 1) * num_ds_write_inst_a;
// A local write
static_for<0, num_ds_write_inst_a, 1>{}([&](auto i_inst) {
if constexpr(i_inst.value < stage_more_mfma)
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
}
}
else
{
if(i_inst.value < staged_num_ds_read_inst_a)
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 2, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
}
}
});
#endif
__builtin_amdgcn_sched_barrier(0);
}
else
{
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
}
__device__ static constexpr auto EpilogueScheduler_2()
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
ignore = b_block_buf;
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
constexpr auto b_block_origin_idx = make_tuple(I0, I0, I0, I0);
// Global prefetch A1 B1
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(I0));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
__builtin_amdgcn_sched_barrier(0);
// // Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
// // Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Local prefetch A1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(I0, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(I0, I0, I0, k0, I0, I0),
a_thread_buf);
});
// Initialize C
c_thread_buf.Clear();
__builtin_amdgcn_sched_barrier(0);
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
auto LoopFunc = [&](auto mfma_reg_buf, auto local_read_buf) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
if constexpr(m0.value == 0)
{
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_buf));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
}
else if constexpr(m0.value == 1)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(local_read_buf));
}
else if constexpr(m0.value == 2)
{
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
}
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple((m0 + HotloopLocalBufSwitch * mfma_reg_buf) %
2,
I0,
I0,
k0,
I0,
ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf]
[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value == MRepeat - 1)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(local_read_buf),
a_thread_desc_,
make_tuple(
Number<(m0 + 1 + HotloopLocalBufSwitch * mfma_reg_buf) %
2>{},
I0,
I0,
k0,
I0,
I0),
a_thread_buf);
});
}
else
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(mfma_reg_buf),
a_thread_desc_,
make_tuple(
Number<(m0 + 1 + HotloopLocalBufSwitch * mfma_reg_buf) %
2>{},
I0,
I0,
k0,
I0,
I0),
a_thread_buf);
});
}
HotLoopScheduler(m0);
});
};
LoopFunc(I0, I1);
LoopFunc(I1, I0);
i += 2;
} while(i < (num_loop - 2));
}
// tail
if constexpr(TailNum == TailNumber::Even)
{
static_for<0, MRepeat, 1>{}([&](auto m0) {
if constexpr(m0.value == 0)
{
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(I1));
}
else if constexpr(m0.value == MRepeat - 1)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
}
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value == MRepeat - 1)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I1),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
else
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
EpilogueScheduler_1(m0);
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(make_tuple(
(m0 + HotloopLocalBufSwitch) % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I1][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value != (MRepeat - 1))
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<m0 + 1>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I1),
a_thread_desc_,
make_tuple(
Number<(m0 + 1 + HotloopLocalBufSwitch) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
EpilogueScheduler_2();
}
});
// Let's leak last MFMA block to epilogue region, cover the potential lds-shuffle
// latency
// __builtin_amdgcn_sched_barrier(0);
}
else
{
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value != (MRepeat - 1))
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<m0 + 1>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
EpilogueScheduler_2();
}
});
}
}
protected:
// MRepeat MWave MLane KRepeat KLane KPack
// KRepeat -> MRepeat-> Mwave->KLane->MLane->KPack
// Reduce the vgpr usage here.
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(I2, I1, I1, Number<KRepeat>{}, I1, Number<KPack>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<ADataType,
ComputeDataType,
decltype(a_block_desc_m0_m1_m2_k0_k1_k2),
decltype(a_thread_desc_),
Sequence<1, 1, 1, 1, 1, KPack>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
A_K1>;
AThreadCopy a_thread_copy_{Base::CalculateAThreadOriginDataIndex6D()};
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<NRepeat>{}, I1, Number<KRepeat>{}, Number<KPack>{}));
static constexpr BTileDesc b_block_desc_n0_n1_k0_k1;
using Base::c_thread_desc_;
};
} // namespace ck
......@@ -380,11 +380,12 @@ struct DeviceMoeGemm
// }
// else
{
const auto kernel = kernel_moe_gemm_gather<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
const auto kernel = kernel_moe_gemm<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
IsInputGemm,
TailNumber::Odd>;
RunKernel(kernel);
}
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment