Unverified Commit 83a15088 authored by Muhammed  Emin Ozturk's avatar Muhammed Emin Ozturk Committed by GitHub
Browse files

Merge branch 'develop' into muozturk_bf16fp8_streamk

parents 4ccae192 c287418d
......@@ -27,11 +27,15 @@ using DeviceGemmStreamK = ck::tensor_operation::device::DeviceGemmXdlStreamK
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 256, 256, 128, 4, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
#else // defined(CK_USE_AMD_MFMA_GFX950)
< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// < ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// < ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 128, 32, 64, 4, 8, 32, 32, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>;
// < ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 128, 32, 128, 4, 8, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 1, 1, 1, S<1, 32, 1, 4>, 8>;
#endif // defined(CK_USE_AMD_MFMA_GFX950)
......
......@@ -13,3 +13,9 @@ add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bw
add_example_executable(example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_dl_fp16)
add_example_executable(example_grouped_conv_bwd_weight_v3_xdl_bf16 grouped_conv_bwd_weight_v3_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_v3_xdl_bf16)
add_example_executable(example_grouped_conv_bwd_weight_v3_xdl_fp16 grouped_conv_bwd_weight_v3_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_v3_xdl_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle_v3.hpp"
using InDataType = BF16;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using WeiDataType = F32;
using OutDataType = BF16;
using AccDataType = F32;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
// clang-format on
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffleV3<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
32, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<2, 0, 1>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format off
template <ck::index_t NDimSpatial>
using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return 1;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return !run_grouped_conv_bwd_weight<1>(config, conv_param);
case 2: return !run_grouped_conv_bwd_weight<2>(config, conv_param);
case 3: return !run_grouped_conv_bwd_weight<3>(config, conv_param);
default: break;
}
return 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle_v3.hpp"
using InDataType = F16;
using WeiDataType = F16;
using OutDataType = F16;
using AccDataType = F32;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffleV3<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
32, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
false, // ABlockLdsAddExtraM
S<4, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<2, 0, 1>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
false, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
template <ck::index_t NDimSpatial>
using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return 1;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return !run_grouped_conv_bwd_weight<1>(config, conv_param);
case 2: return !run_grouped_conv_bwd_weight<2>(config, conv_param);
case 3: return !run_grouped_conv_bwd_weight<3>(config, conv_param);
default: break;
}
return 1;
}
......@@ -107,10 +107,10 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t init_method = arg_parser.get_int("init");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t init_method = arg_parser.get_int("init");
stride_A = ck_tile::get_default_stride(M, K, stride_A, is_row_major(a_layout));
stride_B = ck_tile::get_default_stride(K, N, stride_B, is_row_major(b_layout));
......@@ -123,16 +123,23 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
if (init_method == 0) {
if(init_method == 0)
{
ck_tile::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
} else if (init_method == 1) {
}
else if(init_method == 1)
{
ck_tile::FillMonotonicSeq<ADataType>{}(a_m_k);
ck_tile::FillMonotonicSeq<BDataType>{}(b_k_n);
} else if (init_method == 2) {
}
else if(init_method == 2)
{
ck_tile::FillConstant<ADataType>{static_cast<ADataType>(1)}(a_m_k);
ck_tile::FillConstant<BDataType>{static_cast<BDataType>(1)}(b_k_n);
} else {
}
else
{
a_m_k.SetZero();
b_k_n.SetZero();
}
......
......@@ -255,20 +255,11 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
}
else
{
// Tail number always Full - #PrefetchStages
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<false>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "When there's no hot loop, this tail number \"" << tail_num
<< "\" is not supported! PrefetchStages: " << BaseGemmPipeline::PrefetchStages
<< "\n File: " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
std::ostringstream err;
err << "Num K loop must be larger than number of prefetech stages."
<< "\n PrefetchStages: " << BaseGemmPipeline::PrefetchStages << "\n File: " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
return ave_time;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm_v2.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_bwd_weight_v3.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename AGridDesc_AK0_M_K1,
typename BGridDesc_BK0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3(
typename GridwiseGemm::Argument karg,
const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<AGridDesc_AK0_M_K1,
BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset,
p_shared,
karg,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
k_idx);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename GridwiseGemm,
typename AGridDesc_AK0_M_K1,
typename BGridDesc_BK0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds(
typename GridwiseGemm::Argument karg,
const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
// offset base pointer for each work-group
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run_2Lds<AGridDesc_AK0_M_K1,
BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset,
p_shared_0,
p_shared_1,
karg,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
k_idx);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardWeightSpecialization ConvBackwardWeightSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXdl,
ck::index_t NPerXdl,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = InDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGroupedConvBwdWeight_Xdl_CShuffleV3
: public DeviceGroupedConvBwdWeight<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
ComputeTypeA,
ComputeTypeB>
{
static_assert(is_same_v<InElementwiseOperation, element_wise::PassThrough>);
static_assert(is_same_v<WeiElementwiseOperation, element_wise::PassThrough>);
static_assert(is_same_v<OutElementwiseOperation, element_wise::PassThrough>);
using DeviceOp = DeviceGroupedConvBwdWeight_Xdl_CShuffleV3;
using ADataType = OutDataType;
using BDataType = InDataType;
using CDataType = WeiDataType;
using AElementwiseOperation = OutElementwiseOperation;
using BElementwiseOperation = InElementwiseOperation;
using CElementwiseOperation = WeiElementwiseOperation;
// TODO make A/B datatype different
using ABDataType = InDataType;
static inline auto I0 = Number<0>{};
static inline auto I1 = Number<1>{};
static inline auto I2 = Number<2>{};
static inline auto I3 = Number<3>{};
static inline auto I4 = Number<4>{};
static inline auto I5 = Number<5>{};
static constexpr GemmSpecialization GemmSpec = GemmSpecialization::Default;
static constexpr auto K1Number = Number<K1>{};
static constexpr auto conv_to_gemm_transformer =
TransformConvBwdWeightToGemmV2<NDimSpatial,
MPerBlock,
NPerBlock,
K1Number,
K0PerBlock / K1Number,
1 /*NumGroupsToMerge*/,
ConvBackwardWeightSpecialization>{};
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
const ck::index_t dim = 1;
const ck::index_t batch = 1;
const std::array<ck::index_t, NDimSpatial> lengths{1};
const std::array<ck::index_t, NDimSpatial + 3> strides{1, 1, 1, 1};
const std::array<ck::index_t, NDimSpatial> params{1};
return conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<1>(
dim,
dim,
dim,
lengths,
lengths,
lengths,
strides,
strides,
strides,
params,
params,
params,
params,
batch);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
const ck::index_t dim = 1;
const ck::index_t batch = 1;
const std::array<ck::index_t, NDimSpatial> lengths{1, 1};
const std::array<ck::index_t, NDimSpatial + 3> strides{1, 1, 1, 1, 1};
const std::array<ck::index_t, NDimSpatial> params{1, 1};
return conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<2>(
dim,
dim,
dim,
lengths,
lengths,
lengths,
strides,
strides,
strides,
params,
params,
params,
params,
batch);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
const ck::index_t dim = 1;
const ck::index_t batch = 1;
const std::array<ck::index_t, NDimSpatial> lengths{1, 1, 1};
const std::array<ck::index_t, NDimSpatial + 3> strides{1, 1, 1, 1, 1, 1};
const std::array<ck::index_t, NDimSpatial> params{1, 1, 1};
return conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(
dim,
dim,
dim,
lengths,
lengths,
lengths,
strides,
strides,
strides,
params,
params,
params,
params,
batch);
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using GridwiseGemm =
GridwiseGemm_xdl_cshuffle_v3<tensor_layout::gemm::RowMajor,
tensor_layout::gemm::ColumnMajor,
tensor_layout::gemm::RowMajor,
ADataType,
BDataType,
AccDataType,
CDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
K1,
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CBlockTransferScalarPerVector_NWaveNPerXdl,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB>;
// Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
CGridDesc_M_N{}, 1, 1));
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
const std::array<ck::index_t, NDimSpatial>& input_right_pads,
const ck::index_t M01,
const ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
: p_a_grid_{p_out_grid},
p_b_grid_{p_in_grid},
p_c_grid_{p_wei_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
compute_ptr_offset_of_batch_{},
M01_{M01},
N01_{N01},
a_element_op_{out_element_op},
b_element_op_{in_element_op},
c_element_op_{wei_element_op},
Conv_G_{b_g_n_c_wis_lengths[0]},
Conv_N_{b_g_n_c_wis_lengths[1]},
Conv_K_{e_g_k_c_xs_lengths[1]},
Conv_C_{b_g_n_c_wis_lengths[2]},
input_spatial_lengths_{},
filter_spatial_lengths_{},
output_spatial_lengths_{},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads},
k_batch_{split_k}
{
constexpr index_t spatial_offset = 3;
std::copy(begin(b_g_n_c_wis_lengths) + spatial_offset,
end(b_g_n_c_wis_lengths),
begin(input_spatial_lengths_));
std::copy(begin(e_g_k_c_xs_lengths) + spatial_offset,
end(e_g_k_c_xs_lengths),
begin(filter_spatial_lengths_));
std::copy(begin(a_g_n_k_wos_lengths) + spatial_offset,
end(a_g_n_k_wos_lengths),
begin(output_spatial_lengths_));
const auto descs =
conv_to_gemm_transformer
.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
b_g_n_c_wis_strides,
e_g_k_c_xs_strides,
a_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
k_batch_);
a_grid_desc_kbatch_k0_m_k1_ = descs[I0];
b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
// A/B/C Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_k_wos_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideC_ =
Conv_K_ * Conv_C_ *
std::accumulate(begin(filter_spatial_lengths_),
end(filter_spatial_lengths_),
index_t{1},
std::multiplies<>{});
const index_t GemmM = a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const index_t GemmN = b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_,
GridwiseGemm::CalculateMBlock(GemmM),
GridwiseGemm::CalculateNBlock(GemmN));
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I1, I1, I0> compute_ptr_offset_of_batch_;
index_t M01_;
index_t N01_;
OutElementwiseOperation a_element_op_;
InElementwiseOperation b_element_op_;
WeiElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
const index_t Conv_G_;
const index_t Conv_N_;
const index_t Conv_K_;
const index_t Conv_C_;
std::array<ck::index_t, NDimSpatial> input_spatial_lengths_;
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths_;
std::array<ck::index_t, NDimSpatial> output_spatial_lengths_;
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides_;
const std::array<ck::index_t, NDimSpatial>& input_left_pads_;
const std::array<ck::index_t, NDimSpatial>& input_right_pads_;
const index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
void ShowInfo(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{" << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const index_t GemmM = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const index_t GemmN = arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
const index_t GemmK = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) *
arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2);
const ADataType* p_a_grid = arg.p_a_grid_;
const BDataType* p_b_grid = arg.p_b_grid_;
typename GridwiseGemm::Argument gemm_arg{
p_a_grid, p_b_grid, arg.p_c_grid_, GemmM, GemmN, GemmK, I0, I0, I0, arg.k_batch_};
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(
gemm_arg.M, gemm_arg.N, gemm_arg.KBatch, arg.Conv_G_);
float ave_time = 0;
index_t k_grain = gemm_arg.KBatch * K0PerBlock;
index_t K_split = (gemm_arg.K + k_grain - 1) / k_grain * K0PerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto num_k_per_block =
arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(Number<0>{}) / gemm_arg.KBatch;
const auto Run = [&](const auto& kernel) {
if(stream_config.flush_cache)
{
typename GridwiseGemm::Argument gemm_arg_ = gemm_arg;
ck::utility::RotatingMemWrapper<typename GridwiseGemm::Argument> rotating_mem(
gemm_arg_,
stream_config.rotating_count,
gemm_arg_.M * gemm_arg_.K * sizeof(ADataType),
gemm_arg_.K * gemm_arg_.N * sizeof(BDataType));
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
};
ave_time += ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
gemm_arg_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.compute_ptr_offset_of_batch_,
num_k_per_block);
}
else
{
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
gemm_arg,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.compute_ptr_offset_of_batch_,
num_k_per_block);
}
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(gemm_arg.KBatch > 1)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(gemm_arg.KBatch > 1)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
const index_t GemmM = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const index_t GemmN = arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
const index_t GemmK = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) *
arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2);
typename GridwiseGemm::Argument gemm_arg{
nullptr, nullptr, nullptr, GemmM, GemmN, GemmK, I0, I0, I0, arg.k_batch_};
const auto num_k_loop = gemm_arg.AK0 / (K0PerBlock / K1);
if constexpr(BlkGemmPipelineVer != BlockGemmPipelineVersion::v1)
{
if(num_k_loop <= GridwiseGemm::BlockwiseGemmPipe::PrefetchStages)
{
return false;
}
}
if(!ck::is_xdl_supported())
{
return false;
}
if(!is_bf16_atomic_supported() && std::is_same_v<CDataType, ck::bhalf_t> &&
arg.k_batch_ > 1)
{
return false;
}
if constexpr(NDimSpatial == 1)
{
if constexpr(!is_GNWC_GKXC_GNWK<InLayout, WeiLayout, OutLayout>())
{
return false;
}
}
else if constexpr(NDimSpatial == 2)
{
if constexpr(!(is_NHWGC_GKYXC_NHWGK<InLayout, WeiLayout, OutLayout>() ||
is_GNHWC_GKYXC_GNHWK<InLayout, WeiLayout, OutLayout>()))
{
return false;
}
}
else if constexpr(NDimSpatial == 3)
{
if constexpr(!(is_NDHWGC_GKZYXC_NDHWGK<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWC_GKZYXC_GNDHWK<InLayout, WeiLayout, OutLayout>()))
{
return false;
}
}
else
{
return false;
}
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 pad = 0 conv
for(int i = 0; i < NDimSpatial; i++)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
if(!(ABlockTransferSrcVectorDim == 1 && BBlockTransferSrcVectorDim == 1 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0))
{
return false;
}
// Gridwise GEMM size
return true;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto
MakeArgument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
const std::array<ck::index_t, NDimSpatial>& input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const ck::index_t split_k)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
b_g_n_c_wis_lengths, // input
b_g_n_c_wis_strides,
e_g_k_c_xs_lengths, // weight
e_g_k_c_xs_strides,
a_g_n_k_wos_lengths, // output
a_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
void* p_wei_grid,
const void* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& b_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& e_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& a_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
const std::array<ck::index_t, NDimSpatial>& input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const ck::index_t split_k) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
b_g_n_c_wis_lengths, // input
b_g_n_c_wis_strides,
e_g_k_c_xs_lengths, // weight
e_g_k_c_xs_strides,
a_g_n_k_wos_lengths, // output
a_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedConvBwdWeight_Xdl_CShuffleV3"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1 << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1 << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< CBlockTransferScalarPerVector_NWaveNPerXdl
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -34,6 +34,94 @@ struct TransformConvBwdWeightToGemmV2
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& output_strides)
{
const index_t BatchStride = output_strides[0];
const index_t WoStride = output_strides[3];
const auto KStride = Number<1>{};
return make_naive_tensor_descriptor(make_tuple(N * Wo, NumGroupsToMerge, K),
make_tuple(WoStride, BatchStride, KStride));
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_in_grid_desc(const index_t N,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& input_strides)
{
const index_t BatchStride = input_strides[0];
const index_t NStride = input_strides[1];
const index_t WiStride = input_strides[3];
const auto CStride = input_strides[2];
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Wi, NumGroupsToMerge, C),
make_tuple(WiStride, BatchStride, CStride));
}
else
{
return make_naive_tensor_descriptor(
make_tuple(N, Wi, NumGroupsToMerge, C),
make_tuple(NStride, WiStride, BatchStride, CStride));
}
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_wei_grid_desc(const index_t K,
const index_t X,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& weights_strides)
{
const auto CStride = Number<1>{};
const auto KStride = weights_strides[1];
const auto XStride = weights_strides[3];
const auto BatchStride = weights_strides[0];
// Add NumGroupsToMerge for Batch+M dimension and, 1 as a placehorder
// for Batch+N dimension
const auto desc = make_naive_tensor_descriptor(
make_tuple(NumGroupsToMerge, K, X, 1, C),
make_tuple(BatchStride, KStride, XStride, BatchStride, CStride));
// Padd 1 to NumGroupsToMerge
const auto padded_desc = transform_tensor_descriptor(
desc,
make_tuple(make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(K),
make_pass_through_transform(X),
make_pad_transform(1, 0, NumGroupsToMerge - 1),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
// We need only matrices from diagonal. Xor returns 0 for the same
// values. So if matrices is not on diagonal then it will be stored in padding.
// To avoid use of modulo after xor we assume that NumBatch to merge is power of 2.
static_assert(NumGroupsToMerge == 1 || NumGroupsToMerge == 2 || NumGroupsToMerge == 4 ||
NumGroupsToMerge == 8 || NumGroupsToMerge == 16 || NumGroupsToMerge == 32 ||
NumGroupsToMerge == 64);
const auto unmerged_padded_desc = transform_tensor_descriptor(
padded_desc,
make_tuple(make_xor_transform(make_tuple(NumGroupsToMerge, NumGroupsToMerge)),
make_pass_through_transform(K),
make_pass_through_transform(X),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 3>{}, Sequence<1>{}, Sequence<2>{}, Sequence<4>{}),
make_tuple(Sequence<0, 3>{}, Sequence<1>{}, Sequence<2>{}, Sequence<4>{}));
// Merge To M, N
return transform_tensor_descriptor(
unmerged_padded_desc,
make_tuple(make_merge_transform(make_tuple(NumGroupsToMerge, K)),
make_merge_transform(make_tuple(X, NumGroupsToMerge, C))),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
......@@ -221,6 +309,187 @@ struct TransformConvBwdWeightToGemmV2
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_strides,
const std::array<index_t, NDimSpatial + 3>& weights_strides,
const std::array<index_t, NDimSpatial + 3>& output_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t batch_k)
{
using namespace ck;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t GemmKTotal = N * Wo;
const index_t GemmM = K * NumGroupsToMerge;
const index_t GemmN = C * X * NumGroupsToMerge;
const auto PadGemmM = MPerBlock - GemmM % MPerBlock;
const auto PadGemmN = NPerBlock - GemmN % NPerBlock;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_grid_desc = make_out_grid_desc<NDim>(N, Wo, K, output_strides);
const auto in_grid_desc = make_in_grid_desc<NDim>(N, Wi, C, input_strides);
const auto wei_grid_desc = make_wei_grid_desc<NDim>(K, X, C, weights_strides);
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmM / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmN / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_grid_desc);
}
else
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmM / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmktotal_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, NumGroupsToMerge, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3, 4>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// Padd
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch * GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch * GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
} // function end
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
......
......@@ -310,7 +310,7 @@ struct SimplifiedGenericAttentionMask
const index_t x_per_split = ck_tile::max(1, integer_divide_ceil(x_total, num_splits));
const index_t split_start = x_per_split * i_split;
const index_t split_end = split_start + x_per_split;
const index_t split_end = ck_tile::min(x_total, split_start + x_per_split);
return ck_tile::make_tuple(ck_tile::max(origin_start, split_start),
ck_tile::min(origin_end, split_end));
......
......@@ -742,7 +742,7 @@ struct FmhaFwdSplitKVKernel
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, false>{});
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
......
......@@ -343,6 +343,8 @@ struct BlockFmhaFwdSplitKVPipelineNWarpSShuffleQRKSVS
// moving k_dram_window is an in-page-block operation, so there is
// no need to invoke k_page_block_navigator.move_tile_window() here.
move_tile_window(k_dram_window, {0, kK0});
// ensure LDS access by Q is done before the over-writting by K
block_sync_lds();
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
do
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using namespace ck::tensor_layout::convolution;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
#ifdef CK_ENABLE_FP8
using F8 = ck::f8_t;
#endif
#ifdef CK_ENABLE_BF8
using BF8 = ck::bf8_t;
#endif
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_v3_xdl_c_shuffle_f32_instances = std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | |
// generic instance
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>
// clang-format on
>;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_v3_xdl_c_shuffle_f16_instances = std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | |
// generic instance
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 80, 32, 8, 16, 16, 4, 5, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 5, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 112, 32, 8, 16, 16, 4, 7, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 7, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>
// clang-format on
>;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_v3_xdl_c_shuffle_bf16_instances = std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | |
// generic instance
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 80, 32, 8, 16, 16, 4, 5, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 5, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>,
DeviceGroupedConvBwdWeight_Xdl_CShuffleV3< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 112, 32, 8, 16, 16, 4, 7, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<2, 0, 1>, 1, 7, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion>
//clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -61,8 +61,9 @@ using device_grouped_conv_fwd_xdl_bf16_comp_instances = std::tuple<
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
#else
#if defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
#else // defined(CK_USE_AMD_MFMA_GFX950)
// Compute friendly
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
......@@ -81,7 +82,7 @@ using device_grouped_conv_fwd_xdl_bf16_comp_instances = std::tuple<
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 64, 64, 64, 8, 8, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>
#endif // defined(__gfx950__)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// clang-format on
>;
......@@ -97,8 +98,9 @@ using device_grouped_conv_fwd_xdl_f16_comp_instances = std::tuple<
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
#else
#if defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
#else // defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
......@@ -113,7 +115,7 @@ using device_grouped_conv_fwd_xdl_f16_comp_instances = std::tuple<
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
#endif // defined(__gfx950__)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// clang-format on
>;
......@@ -148,8 +150,9 @@ using device_grouped_conv_fwd_xdl_int8_comp_instances = std::tuple<
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
#else
#if defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout,DsLayout,ELayout,int8_t,int8_t,int32_t, int8_t, DsLayout,int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 128, 32, 32, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
#else // defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
......@@ -160,7 +163,7 @@ using device_grouped_conv_fwd_xdl_int8_comp_instances = std::tuple<
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, DsLayout, int8_t, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
#endif // defined(__gfx950__)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// clang-format on
>;
......
......@@ -45,13 +45,16 @@ using device_grouped_conv_fwd_xdl_merged_groups_bf16_instances = std::tuple<
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Type| Type| Pipeline| ToMerge|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | | Scheduler| |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
#else
#if defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 16>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 32>
#else // defined(CK_USE_AMD_MFMA_GFX950)
// Instances with NumGroupsPerBatch > 1
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 16>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, DsLayout, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, BF16, BF16, LoopScheduler::Default, 32>
#endif // defined(__gfx950__)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// clang-format on
>;
......@@ -67,13 +70,17 @@ using device_grouped_conv_fwd_xdl_merged_groups_f16_instances = std::tuple<
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
#else
#if defined(CK_USE_AMD_MFMA_GFX950)
// Instances with NumGroupsPerBatch > 1
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 16>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 32, 8, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 32>
#else // defined(CK_USE_AMD_MFMA_GFX950)
// Instances with NumGroupsPerBatch > 1
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 8>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 16>,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, DsLayout, F16, PassThrough, PassThrough, PassThrough, ConvSpec, GemmMNKPadding, 1, 64, 64, 16, 16, 4, 4, 16, 16, 4, 1, S< 4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 1, S< 4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 4>, 1, F16, F16, LoopScheduler::Default, 32>
#endif // defined(__gfx950__)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// clang-format on
>;
......
......@@ -311,6 +311,11 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev1_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
......@@ -320,6 +325,11 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev1_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
......@@ -343,6 +353,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev5_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
......@@ -352,6 +371,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_instances(
......@@ -381,6 +410,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_instances(
......@@ -471,6 +510,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
......@@ -480,6 +528,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instances(
......@@ -509,6 +567,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instances(
......
......@@ -74,6 +74,30 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
......@@ -87,6 +111,30 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_BF16
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
......@@ -112,6 +160,53 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_in
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
......@@ -222,6 +317,54 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
......@@ -330,6 +473,54 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
// conv3d backward weight
#ifdef CK_ENABLE_BF16
......@@ -384,6 +575,54 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
......@@ -505,6 +744,54 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
......@@ -613,6 +900,54 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
......
......@@ -44,7 +44,9 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_km_nk_mn_comp_instances = std::tu
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Compute friendly
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 8, 32, 32, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 4, 32, 32, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 2, 2, 32, 32, 4, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, S<16,16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
......@@ -54,7 +56,9 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_km_nk_mn_comp_instances = std::tu
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 8, 32, 32, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 4, 32, 32, 4, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 2, 2, 32, 32, 4, 4, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, S<16,16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 8, 8, 16, 16, 8, 7, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
......@@ -86,7 +90,9 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_km_nk_mn_mem_instances = std::tup
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 4, 8, 16, 16, 1, 1, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 4, 8, 16, 16, 1, 1, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 4, 8, 16, 16, 1, 1, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 4, 8, 16, 16, 1, 2, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 4, 4, 16, 16, 1, 2, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 64, 4, 8, 16, 16, 1, 4, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Col, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 16, 256, 64, 2, 8, 16, 16, 1, 4, S<32, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
......
......@@ -43,13 +43,17 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances = std::tu
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 4, 32, 32, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 2, 2, 32, 32, 4, 4, S<16,16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 0, 1, 2, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
......@@ -80,8 +84,10 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances = std::tup
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 4, 4, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 8, 4, 16, 16, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
......
......@@ -44,16 +44,20 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_instances = std::tu
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Compute friendly
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 4, 4, 32, 32, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 2, 2, 32, 32, 4, 4, S<16,16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 0, S<16,16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
// AGPR Spill
// DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 8, 16, 16, 8, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
// AGPR Spill when use permuted lds layout. so, use padding for these two.
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 2, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 224, 64, 8, 8, 16, 16, 8, 7, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 2, 1, S<1, 32, 1, 8>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
......@@ -84,8 +88,10 @@ using device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_instances = std::tup
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 8, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 8, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 8, 8, 16, 16, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 64, 8, 8, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Col, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 16, 256, 64, 8, 8, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
......
......@@ -47,7 +47,9 @@ using device_gemm_xdl_universal_f16_f16_f16_mk_kn_mn_comp_instances = std::tuple
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#if !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 0, 1, 2, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
#endif // !defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment