Commit 7ffb0921 authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge branch 'develop' into aosewski/ck_tile_universal_gemm_p1

parents 4cf45f1b 0023f01a
...@@ -569,7 +569,9 @@ if(NOT DEFINED INSTANCES_ONLY) ...@@ -569,7 +569,9 @@ if(NOT DEFINED INSTANCES_ONLY)
PACKAGE_NAME examples PACKAGE_NAME examples
) )
add_subdirectory(example) add_subdirectory(example)
add_subdirectory(test) if(BUILD_TESTING)
add_subdirectory(test)
endif()
rocm_package_setup_component(profiler rocm_package_setup_component(profiler
LIBRARY_NAME composablekernel LIBRARY_NAME composablekernel
......
...@@ -320,7 +320,7 @@ def cmake_build(Map conf=[:]){ ...@@ -320,7 +320,7 @@ def cmake_build(Map conf=[:]){
if (package_build == true && (env.BRANCH_NAME == "develop" || env.BRANCH_NAME == "amd-master")) { if (package_build == true && (env.BRANCH_NAME == "develop" || env.BRANCH_NAME == "amd-master")) {
archiveArtifacts artifacts: "build/*.deb", allowEmptyArchive: true, fingerprint: true archiveArtifacts artifacts: "build/*.deb", allowEmptyArchive: true, fingerprint: true
} }
if (params.RUN_CK_TILE_TESTS){ if (params.RUN_CK_TILE_FMHA_TESTS){
try{ try{
archiveArtifacts "perf_fmha_fwd_*.log" archiveArtifacts "perf_fmha_fwd_*.log"
archiveArtifacts "perf_fmha_bwd_*.log" archiveArtifacts "perf_fmha_bwd_*.log"
...@@ -371,7 +371,7 @@ def buildHipClangJob(Map conf=[:]){ ...@@ -371,7 +371,7 @@ def buildHipClangJob(Map conf=[:]){
def retimage def retimage
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.ck_git_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') { withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
timeout(time: 48, unit: 'HOURS') timeout(time: 48, unit: 'HOURS')
{ {
...@@ -426,7 +426,7 @@ def runCKProfiler(Map conf=[:]){ ...@@ -426,7 +426,7 @@ def runCKProfiler(Map conf=[:]){
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
def retimage def retimage
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.ck_git_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
try { try {
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
withDockerContainer(image: image, args: dockerOpts) { withDockerContainer(image: image, args: dockerOpts) {
...@@ -563,7 +563,7 @@ def Build_CK(Map conf=[:]){ ...@@ -563,7 +563,7 @@ def Build_CK(Map conf=[:]){
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
def retimage def retimage
gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.ck_git_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
try { try {
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
withDockerContainer(image: image, args: dockerOpts) { withDockerContainer(image: image, args: dockerOpts) {
...@@ -668,7 +668,7 @@ def process_results(Map conf=[:]){ ...@@ -668,7 +668,7 @@ def process_results(Map conf=[:]){
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
def retimage def retimage
gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.ck_git_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
try { try {
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
} }
...@@ -682,7 +682,7 @@ def process_results(Map conf=[:]){ ...@@ -682,7 +682,7 @@ def process_results(Map conf=[:]){
timeout(time: 1, unit: 'HOURS'){ timeout(time: 1, unit: 'HOURS'){
try{ try{
dir("script"){ dir("script"){
if (params.RUN_CK_TILE_TESTS){ if (params.RUN_CK_TILE_FMHA_TESTS){
try{ try{
unstash "perf_fmha_fwd_gfx942.log" unstash "perf_fmha_fwd_gfx942.log"
unstash "perf_fmha_bwd_gfx942.log" unstash "perf_fmha_bwd_gfx942.log"
...@@ -838,7 +838,7 @@ pipeline { ...@@ -838,7 +838,7 @@ pipeline {
dbsshport = "${dbsshport}" dbsshport = "${dbsshport}"
dbsshuser = "${dbsshuser}" dbsshuser = "${dbsshuser}"
dbsshpassword = "${dbsshpassword}" dbsshpassword = "${dbsshpassword}"
status_wrapper_creds = "${status_wrapper_creds}" ck_git_creds = "${ck_git_creds}"
gerrit_cred="${gerrit_cred}" gerrit_cred="${gerrit_cred}"
DOCKER_BUILDKIT = "1" DOCKER_BUILDKIT = "1"
} }
......
...@@ -233,6 +233,8 @@ function(add_embed_library EMBED_NAME) ...@@ -233,6 +233,8 @@ function(add_embed_library EMBED_NAME)
else() else()
target_sources(${EMBED_NAME} INTERFACE $<TARGET_OBJECTS:${INTERNAL_EMBED_LIB}>) target_sources(${EMBED_NAME} INTERFACE $<TARGET_OBJECTS:${INTERNAL_EMBED_LIB}>)
endif() endif()
target_include_directories(${EMBED_NAME} INTERFACE "${EMBED_DIR}/include") target_include_directories(${EMBED_NAME} INTERFACE
$<BUILD_INTERFACE:${EMBED_DIR}/include>
$<INSTALL_INTERFACE:include/ck>)
endfunction() endfunction()
...@@ -39,6 +39,7 @@ set_target_properties(ck_host PROPERTIES ...@@ -39,6 +39,7 @@ set_target_properties(ck_host PROPERTIES
target_include_directories(ck_host PUBLIC target_include_directories(ck_host PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>
) )
add_executable(ck-template-driver driver/main.cpp) add_executable(ck-template-driver driver/main.cpp)
...@@ -48,6 +49,12 @@ rocm_install( ...@@ -48,6 +49,12 @@ rocm_install(
TARGETS ck_host ck_headers TARGETS ck_host ck_headers
EXPORT ck_hostTargets EXPORT ck_hostTargets
) )
rocm_install(EXPORT ck_hostTargets
FILE composable_kernelck_hostTargets.cmake
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel)
rocm_install(DIRECTORY include/ck DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) rocm_install(DIRECTORY include/ck DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
add_subdirectory(test) if(BUILD_TESTING)
add_subdirectory(test)
endif()
rocm-docs-core==1.8.1 rocm-docs-core==1.8.2
sphinxcontrib-bibtex==2.6.3 sphinxcontrib-bibtex==2.6.3
...@@ -103,7 +103,7 @@ requests==2.32.3 ...@@ -103,7 +103,7 @@ requests==2.32.3
# via # via
# pygithub # pygithub
# sphinx # sphinx
rocm-docs-core==1.8.1 rocm-docs-core==1.8.2
# via -r requirements.in # via -r requirements.in
six==1.16.0 six==1.16.0
# via pybtex # via pybtex
......
add_example_executable(example_complex_contraction_bilinear_xdl_fp32 complex_contraction_bilinear_xdl_fp32.cpp)
add_example_executable(example_complex_contraction_bilinear_xdl_fp64 complex_contraction_bilinear_xdl_fp64.cpp)
# Instructions for ```example_complex_contraction_bilinear_xdl_fp32```
## Run
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Generic instances for fp32, fp16 and bf16 data types.
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceKK_Generic = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceKN_Generic = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceMK_Generic = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceMN_Generic = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4, ComputeDataType>;
// clang-format on
// Fp64 instances.
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceKK_FP64 = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceKN_FP64 = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceMK_FP64 = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1, ComputeDataType>;
// clang-format on
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename ComputeDataType,
typename AElementOp,
typename BElementOp,
typename CDEElementOp>
// clang-format off
using DeviceOpInstanceMN_FP64 = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 1, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1, ComputeDataType>;
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_complex_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_complex_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F64;
using BDataType = F64;
using AccDataType = F64;
using CShuffleDataType = F64;
using DDataType = F64;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F64;
using ComputeDataType = F64;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_complex_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_complex_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
int run_complex_contraction_bilinear_example(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float alpha = 1.f;
float beta = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 28)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
d_ms_ns_lengths = {M0, M1, N0, N1};
d_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
alpha = std::stof(argv[26]);
beta = std::stof(argv[27]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n");
printf("arg22 to 25: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg26 to 27: alpha, beta\n");
exit(0);
}
// For Real Part of Complex Tensor
Tensor<ADataType> a_ms_ks_re(a_ms_ks_lengths, a_ms_ks_strides);
Tensor<BDataType> b_ns_ks_re(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> d_ms_ns_re(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_host_result_re(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result_re(e_ms_ns_lengths, e_ms_ns_strides);
// For Imaginary Part of Complex Tensor
Tensor<ADataType> a_ms_ks_img(a_ms_ks_lengths, a_ms_ks_strides);
Tensor<BDataType> b_ns_ks_img(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> d_ms_ns_img(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_host_result_img(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result_img(e_ms_ns_lengths, e_ms_ns_strides);
// Intermediate E tensor Definition
Tensor<EDataType> e_ms_ns_device_result_re1(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result_img1(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a_ms_ks_re: " << a_ms_ks_re.mDesc << std::endl;
std::cout << "b_ns_ks_re: " << b_ns_ks_re.mDesc << std::endl;
std::cout << "d_ms_ns_re: " << d_ms_ns_re.mDesc << std::endl;
std::cout << "e_ms_ns_re: " << e_ms_ns_host_result_re.mDesc << std::endl;
std::cout << "a_ms_ks_img: " << a_ms_ks_img.mDesc << std::endl;
std::cout << "b_ns_ks_img: " << b_ns_ks_img.mDesc << std::endl;
std::cout << "d_ms_ns_img: " << d_ms_ns_img.mDesc << std::endl;
std::cout << "e_ms_ns_img: " << e_ms_ns_host_result_img.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks_re.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks_re.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns_re.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
a_ms_ks_img.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks_img.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns_img.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks_re.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks_re.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns_re.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
a_ms_ks_img.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks_img.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns_img.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf_re(sizeof(ADataType) * a_ms_ks_re.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf_re(sizeof(BDataType) * b_ns_ks_re.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf_re(sizeof(DDataType) * d_ms_ns_re.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf_re(sizeof(EDataType) * e_ms_ns_device_result_re.mDesc.GetElementSpaceSize());
DeviceMem a_device_buf_img(sizeof(ADataType) * a_ms_ks_img.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf_img(sizeof(BDataType) * b_ns_ks_img.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf_img(sizeof(DDataType) * d_ms_ns_img.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf_img(sizeof(EDataType) * e_ms_ns_device_result_img.mDesc.GetElementSpaceSize());
// Intermediate Value For E Real and Img
DeviceMem e_device_buf_re1(sizeof(EDataType) * e_ms_ns_device_result_re.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf_img1(sizeof(EDataType) * e_ms_ns_device_result_img.mDesc.GetElementSpaceSize());
a_device_buf_re.ToDevice(a_ms_ks_re.mData.data());
b_device_buf_re.ToDevice(b_ns_ks_re.mData.data());
d_device_buf_re.ToDevice(d_ms_ns_re.mData.data());
a_device_buf_img.ToDevice(a_ms_ks_img.mData.data());
b_device_buf_img.ToDevice(b_ns_ks_img.mData.data());
d_device_buf_img.ToDevice(d_ms_ns_img.mData.data());
// set zero
e_device_buf_re.SetZero();
e_device_buf_img.SetZero();
// set zero for intermediate values
e_device_buf_re1.SetZero();
e_device_buf_img1.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// device operation
// For real Intermediate Value re_1
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument_re1 = op.MakeArgument(a_device_buf_re.GetDeviceBuffer(),
b_device_buf_re.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf_re.GetDeviceBuffer()},
e_device_buf_re1.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument_re1))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time_re1 = invoker.Run(argument_re1, StreamConfig{nullptr, time_kernel});
alpha = -1.f;
beta = 1.f;
a_element_op = AElementOp{};
b_element_op = BElementOp{};
cde_element_op = CDEElementOp{alpha, beta};
// device operation
// For real Intermediate Value re_2
// auto op = DeviceOpInstance{};
// auto invoker = op.MakeInvoker();
auto argument_re2 = op.MakeArgument(a_device_buf_img.GetDeviceBuffer(),
b_device_buf_img.GetDeviceBuffer(),
std::array<const void*, 1>{e_device_buf_re1.GetDeviceBuffer()},
e_device_buf_re.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument_re2))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time_re2 = invoker.Run(argument_re2, StreamConfig{nullptr, time_kernel});
alpha = 1.f;
beta = 1.f;
a_element_op = AElementOp{};
b_element_op = BElementOp{};
cde_element_op = CDEElementOp{alpha, beta};
auto argument_img1 = op.MakeArgument(a_device_buf_re.GetDeviceBuffer(),
b_device_buf_img.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf_img.GetDeviceBuffer()},
e_device_buf_img1.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument_img1))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time_img1 = invoker.Run(argument_img1, StreamConfig{nullptr, time_kernel});
alpha = 1.f;
beta = 1.f;
auto argument_img2 = op.MakeArgument(a_device_buf_img.GetDeviceBuffer(),
b_device_buf_re.GetDeviceBuffer(),
std::array<const void*, 1>{e_device_buf_img1.GetDeviceBuffer()},
e_device_buf_img.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument_img2))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time_img2 = invoker.Run(argument_img2, StreamConfig{nullptr, time_kernel});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K * 2;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N * 2;
float ave_time = ave_time_img2 + ave_time_img1 + ave_time_re2 + ave_time_re1 ;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf_re.FromDevice(e_ms_ns_device_result_re.mData.data());
e_device_buf_img.FromDevice(e_ms_ns_device_result_img.mData.data());
auto isRealOk = 0;
auto isImgOk = 0;
if(do_verification)
{
// Real Part Verification
Tensor<CShuffleDataType> c_ms_ns_host_result_re(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<CShuffleDataType> c_ms_ns_host_result_re1(e_ms_ns_lengths, e_ms_ns_strides);
using ReferenceOpInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
F32,
AElementOp,
BElementOp>;
auto ref_op = ReferenceOpInstance{};
auto ref_invoker = ref_op.MakeInvoker();
auto ref_argument_re =
ref_op.MakeArgument(a_ms_ks_re, b_ns_ks_re, c_ms_ns_host_result_re, a_element_op, b_element_op);
ref_invoker.Run(ref_argument_re);
alpha = 1.f;
beta = 1.f;
cde_element_op = CDEElementOp{alpha, beta};
for(size_t m0 = 0; m0 < e_ms_ns_host_result_re.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result_re.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result_re.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result_re.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result_re(m0, m1, n0, n1),
c_ms_ns_host_result_re(m0, m1, n0, n1),
d_ms_ns_re(m0, m1, n0, n1));
}
}
}
}
alpha = 1.f;
beta = -1.f;
cde_element_op = CDEElementOp{alpha, beta};
auto ref_argument_re1 =
ref_op.MakeArgument(a_ms_ks_img, b_ns_ks_img, c_ms_ns_host_result_re1, a_element_op, b_element_op);
ref_invoker.Run(ref_argument_re1);
for(size_t m0 = 0; m0 < e_ms_ns_host_result_re.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result_re.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result_re.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result_re.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result_re(m0, m1, n0, n1),
e_ms_ns_host_result_re(m0, m1, n0, n1),
c_ms_ns_host_result_re1(m0, m1, n0, n1));
}
}
}
}
isRealOk = ck::utils::check_err(e_ms_ns_device_result_re, e_ms_ns_host_result_re) ? 0 : 1;
// Img Part Verification
Tensor<CShuffleDataType> c_ms_ns_host_result_img(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<CShuffleDataType> c_ms_ns_host_result_img1(e_ms_ns_lengths, e_ms_ns_strides);
auto ref_argument_img =
ref_op.MakeArgument(a_ms_ks_re, b_ns_ks_img, c_ms_ns_host_result_img, a_element_op, b_element_op);
ref_invoker.Run(ref_argument_img);
alpha = 1.f;
beta = 1.f;
cde_element_op = CDEElementOp{alpha, beta};
for(size_t m0 = 0; m0 < e_ms_ns_host_result_img.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result_img.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result_img.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result_img.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result_img(m0, m1, n0, n1),
c_ms_ns_host_result_img(m0, m1, n0, n1),
d_ms_ns_img(m0, m1, n0, n1));
}
}
}
}
auto ref_argument_img1 =
ref_op.MakeArgument(a_ms_ks_img, b_ns_ks_re, c_ms_ns_host_result_img1, a_element_op, b_element_op);
ref_invoker.Run(ref_argument_img1);
for(size_t m0 = 0; m0 < e_ms_ns_host_result_img.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result_img.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result_img.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result_img.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result_img(m0, m1, n0, n1),
e_ms_ns_host_result_img(m0, m1, n0, n1),
c_ms_ns_host_result_img1(m0, m1, n0, n1));
}
}
}
}
isImgOk = ck::utils::check_err(e_ms_ns_device_result_re, e_ms_ns_host_result_re) ? 0 : 1;
return (isRealOk && isImgOk);
}
return 0;
}
...@@ -70,8 +70,13 @@ args: ...@@ -70,8 +70,13 @@ args:
-seed random seed used for initializing input tensors. 0 for non-deterministic seed (default:11939) -seed random seed used for initializing input tensors. 0 for non-deterministic seed (default:11939)
-warmup number of iterations before benchmark the kernel (default:5) -warmup number of iterations before benchmark the kernel (default:5)
-repeat number of iterations to benchmark the kernel (default:20) -repeat number of iterations to benchmark the kernel (default:20)
-drop_seed seed for the random number generator for the dropout layer, default is 1
-drop_offset offset for the dropout layer which is used during random number generation, default is 0
-drop_prefs flag to indicate `drop_seed` and `drop_offset` values if present on the GPU, default is 0, 0 - host, 1 - GPU
``` ```
Example: `./bin/tile_example_fmha_fwd -b=1 -h=16 -s=16384 -d=128` will run a fmha case with batch=1, nhead=16, sequence length=16384, hdim=128, fp16 case. Example 1: `./bin/tile_example_fmha_fwd -b=1 -h=16 -s=16384 -d=128` will run a fmha case with batch=1, nhead=16, sequence length=16384, hdim=128, fp16 case.
Example 2: `./bin/tile_example_fmha_fwd -b=1 -h=8 -s=16384 -d=64 -drop_prefs=1 -drop_seed=10 -drop_offset=1234` will run a fmha case with
batch=1, nhead=8, sequence length=16384, hdim=64, drop_seed=0 (in GPU memory), drop_offset=1234 (in GPU memory) fp16 case
## support features ## support features
Currently we are still in rapid development stage, so more features/optimizations will be coming soon. Currently we are still in rapid development stage, so more features/optimizations will be coming soon.
......
...@@ -85,6 +85,9 @@ auto create_args(int argc, char* argv[]) ...@@ -85,6 +85,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout") .insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator") .insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator") .insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer") .insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("warmup", "5", "number of iterations before benchmark the kernel") .insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel") .insert("repeat", "20", "number of iterations to benchmark the kernel")
...@@ -99,10 +102,23 @@ auto create_args(int argc, char* argv[]) ...@@ -99,10 +102,23 @@ auto create_args(int argc, char* argv[])
// different threshold for different dtype // different threshold for different dtype
template <typename DataType> template <typename DataType>
auto get_elimit(int /*init_method*/) auto get_elimit(ck_tile::index_t /*hdim_q*/, ck_tile::index_t /*hdim_v*/)
{
double rtol = 1e-2;
double atol = 1e-2;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>(ck_tile::index_t hdim_q, ck_tile::index_t hdim_v)
{ {
double rtol = 1e-2; double rtol = 1e-2;
double atol = 1e-2; double atol = 1e-2;
if(hdim_q > 128 && hdim_v > 128) // 3.2 for RTZ/1.5 for RTN
{
rtol = 3.2e-2;
atol = 3.2e-2;
}
return ck_tile::make_tuple(rtol, atol); return ck_tile::make_tuple(rtol, atol);
} }
...@@ -145,6 +161,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -145,6 +161,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop"); float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed"); uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset"); uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(use_dbias && bias.type != bias_enum::elementwise_bias) if(use_dbias && bias.type != bias_enum::elementwise_bias)
{ {
std::cerr << "dbias only exists when bias type is elementwise" << std::endl; std::cerr << "dbias only exists when bias type is elementwise" << std::endl;
...@@ -368,6 +386,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -368,6 +386,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::DeviceMem dbias_buf(dbias_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem dbias_buf(dbias_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t)); ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t));
ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t)); ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t));
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem dq_acc_buf(dq_acc_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem dq_acc_buf(dq_acc_host.get_element_space_size_in_bytes());
...@@ -378,6 +398,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -378,6 +398,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
do_buf.ToDevice(do_host.data()); do_buf.ToDevice(do_host.data());
seqstart_q.ToDevice(seqstart_q_host.data()); seqstart_q.ToDevice(seqstart_q_host.data());
seqstart_k.ToDevice(seqstart_k_host.data()); seqstart_k.ToDevice(seqstart_k_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data()); alibi_slope_buf.ToDevice(alibi_slope_host.data());
// clang-format off // clang-format off
...@@ -459,6 +481,18 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -459,6 +481,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
const ck_tile::index_t split_stride_dq_acc = const ck_tile::index_t split_stride_dq_acc =
(shape_batch * nhead * shape_seqlen_q * hdim_q); (shape_batch * nhead * shape_seqlen_q * hdim_q);
const auto drop_seed_offset = [&]() -> decltype(fmha_bwd_args::drop_seed_offset) {
if(drop_prefs)
{
return std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
return std::make_pair(drop_seed, drop_offset);
}
}();
return fmha_bwd_args{q_buf.GetDeviceBuffer(), return fmha_bwd_args{q_buf.GetDeviceBuffer(),
k_buf.GetDeviceBuffer(), k_buf.GetDeviceBuffer(),
v_buf.GetDeviceBuffer(), v_buf.GetDeviceBuffer(),
...@@ -532,7 +566,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -532,7 +566,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
static_cast<ck_tile::index_t>(mask.type), static_cast<ck_tile::index_t>(mask.type),
p_drop, p_drop,
p_undrop, p_undrop,
{drop_seed, drop_offset}}; drop_seed_offset};
}(); }();
float ave_time = fmha_bwd(fmha_traits, fmha_args, stream_config); float ave_time = fmha_bwd(fmha_traits, fmha_args, stream_config);
...@@ -899,7 +933,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -899,7 +933,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
// clang-format on // clang-format on
auto [rtol, atol] = get_elimit<DataType>(init_method); auto [rtol, atol] = get_elimit<DataType>(hdim_q, hdim_v);
bool dq_cur_pass = ck_tile::check_err(dq_host_result, bool dq_cur_pass = ck_tile::check_err(dq_host_result,
dq_host_ref, dq_host_ref,
std::string("Error: QGrad Incorrect results!"), std::string("Error: QGrad Incorrect results!"),
......
...@@ -9,7 +9,10 @@ ...@@ -9,7 +9,10 @@
#include "ck_tile/ops/epilogue.hpp" #include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp" #include "mask.hpp"
#include "bias.hpp" #include "bias.hpp"
#include <type_traits> #include <type_traits>
#include <utility>
#include <variant>
template <typename DataType> template <typename DataType>
struct FmhaBwdTypeConfig; struct FmhaBwdTypeConfig;
...@@ -135,7 +138,8 @@ struct fmha_bwd_args ...@@ -135,7 +138,8 @@ struct fmha_bwd_args
ck_tile::index_t mask_type; ck_tile::index_t mask_type;
float p_drop; float p_drop;
float p_undrop; float p_undrop;
std::tuple<uint64_t, uint64_t> drop_seed_offset; std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
}; };
template <typename FmhaBwdDQDKDVKernel> template <typename FmhaBwdDQDKDVKernel>
......
...@@ -122,6 +122,9 @@ auto create_args(int argc, char* argv[]) ...@@ -122,6 +122,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout") .insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator") .insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator") .insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer") .insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert( .insert(
"rotary_dim", "0", "RoPE rotary dimension. rotary_dim <= 0 means not apply RoPE at all") "rotary_dim", "0", "RoPE rotary dimension. rotary_dim <= 0 means not apply RoPE at all")
...@@ -442,6 +445,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -442,6 +445,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop"); float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed"); uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset"); uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(p_drop < 0.0f || p_drop > 1.0f) if(p_drop < 0.0f || p_drop > 1.0f)
{ {
std::cerr << "The value of p_drop should be 0~1" << std::endl; std::cerr << "The value of p_drop should be 0~1" << std::endl;
...@@ -552,16 +557,33 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -552,16 +557,33 @@ bool run(const ck_tile::ArgParser& arg_parser)
} }
#endif #endif
auto get_lengths = [&](bool permute, struct
ck_tile::index_t b /*batch*/, {
ck_tile::index_t h /*nhead*/, auto operator()(bool permute,
ck_tile::index_t s /*seqlen*/, ck_tile::index_t b /*batch*/,
ck_tile::index_t d /*hdim*/) { ck_tile::index_t h /*nhead*/,
if(permute) ck_tile::index_t s /*seqlen*/,
return std::array<ck_tile::index_t, 4>{b, h, s, d}; ck_tile::index_t d /*hdim*/)
else {
return std::array<ck_tile::index_t, 4>{b, s, h, d}; if(permute)
}; return std::array<ck_tile::index_t, 4>{b, h, s, d};
else
return std::array<ck_tile::index_t, 4>{b, s, h, d};
}
auto operator()(bool permute,
ck_tile::index_t ns /*num_splits*/,
ck_tile::index_t b /*batch*/,
ck_tile::index_t h /*nhead*/,
ck_tile::index_t s /*seqlen*/,
ck_tile::index_t d /*hdim*/)
{
if(permute)
return std::array<ck_tile::index_t, 5>{ns, b, h, s, d};
else
return std::array<ck_tile::index_t, 5>{ns, b, s, h, d};
}
} get_lengths;
bool is_v_rowmajor = vlayout == std::string("r"); bool is_v_rowmajor = vlayout == std::string("r");
...@@ -617,7 +639,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -617,7 +639,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
: std::array<ck_tile::index_t, 4>{1, 1, 1, 1}); : std::array<ck_tile::index_t, 4>{1, 1, 1, 1});
ck_tile::HostTensor<OaccDataType> o_acc_host( ck_tile::HostTensor<OaccDataType> o_acc_host(
1 < num_splits || use_kvcache 1 < num_splits || use_kvcache
? std::array<ck_tile::index_t, 5>{num_splits, batch, nhead, max_seqlen_q, hdim_v} ? get_lengths(o_perm, num_splits, shape_batch, nhead, shape_seqlen_q, hdim_v)
: std::array<ck_tile::index_t, 5>{1, 1, 1, 1, 1}); : std::array<ck_tile::index_t, 5>{1, 1, 1, 1, 1});
// batch mode of lse data layout is [batch, nhead, seqlen_q] // batch mode of lse data layout is [batch, nhead, seqlen_q]
...@@ -739,6 +761,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -739,6 +761,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
need_append_kvcache ? cache_seqlen_ks.size() * sizeof(int32_t) : 0); need_append_kvcache ? cache_seqlen_ks.size() * sizeof(int32_t) : 0);
ck_tile::DeviceMem rotary_cos_buf(rotary_cos_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem rotary_cos_buf(rotary_cos_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem rotary_sin_buf(rotary_sin_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem rotary_sin_buf(rotary_sin_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem randval_buf(randval_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem randval_buf(randval_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem block_table_buf(block_table_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem block_table_buf(block_table_host.get_element_space_size_in_bytes());
...@@ -757,6 +781,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -757,6 +781,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
cache_seqlen_k_buf.ToDevice(need_append_kvcache ? cache_seqlen_ks.data() : nullptr); cache_seqlen_k_buf.ToDevice(need_append_kvcache ? cache_seqlen_ks.data() : nullptr);
rotary_cos_buf.ToDevice(rotary_cos_host.data()); rotary_cos_buf.ToDevice(rotary_cos_host.data());
rotary_sin_buf.ToDevice(rotary_sin_host.data()); rotary_sin_buf.ToDevice(rotary_sin_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data()); alibi_slope_buf.ToDevice(alibi_slope_host.data());
block_table_buf.ToDevice(block_table_host.data()); block_table_buf.ToDevice(block_table_host.data());
cache_batch_idx_buf.ToDevice(cache_batch_idx_host.data()); cache_batch_idx_buf.ToDevice(cache_batch_idx_host.data());
...@@ -854,7 +880,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -854,7 +880,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
}(); }();
const ck_tile::index_t stride_bias = (i_perm ? shape_seqlen_k : 1 * shape_seqlen_k); const ck_tile::index_t stride_bias = (i_perm ? shape_seqlen_k : 1 * shape_seqlen_k);
const ck_tile::index_t stride_randval = (max_seqlen_k); const ck_tile::index_t stride_randval = (max_seqlen_k);
const ck_tile::index_t stride_o_acc = hdim_v; const ck_tile::index_t stride_o_acc = (o_perm ? hdim_v : nhead * hdim_v);
const ck_tile::index_t stride_o = (o_perm ? hdim_v : nhead * hdim_v); const ck_tile::index_t stride_o = (o_perm ? hdim_v : nhead * hdim_v);
// setup nhead_stride_* arguments // setup nhead_stride_* arguments
const ck_tile::index_t nhead_stride_q = (i_perm ? shape_seqlen_q * hdim_q : hdim_q); const ck_tile::index_t nhead_stride_q = (i_perm ? shape_seqlen_q * hdim_q : hdim_q);
...@@ -881,7 +907,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -881,7 +907,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
const ck_tile::index_t nhead_stride_randval = (shape_seqlen_q * max_seqlen_k); const ck_tile::index_t nhead_stride_randval = (shape_seqlen_q * max_seqlen_k);
const ck_tile::index_t nhead_stride_lse = shape_seqlen_q; const ck_tile::index_t nhead_stride_lse = shape_seqlen_q;
const ck_tile::index_t nhead_stride_lse_acc = shape_seqlen_q; const ck_tile::index_t nhead_stride_lse_acc = shape_seqlen_q;
const ck_tile::index_t nhead_stride_o_acc = (max_seqlen_q * hdim_v); const ck_tile::index_t nhead_stride_o_acc = (o_perm ? shape_seqlen_q * hdim_v : hdim_v);
const ck_tile::index_t nhead_stride_o = (o_perm ? shape_seqlen_q * hdim_v : hdim_v); const ck_tile::index_t nhead_stride_o = (o_perm ? shape_seqlen_q * hdim_v : hdim_v);
// setup batch_stride_* arguments // setup batch_stride_* arguments
const ck_tile::index_t batch_stride_q = (nhead * shape_seqlen_q * hdim_q); const ck_tile::index_t batch_stride_q = (nhead * shape_seqlen_q * hdim_q);
...@@ -897,12 +923,12 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -897,12 +923,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
const ck_tile::index_t batch_stride_randval = (nhead * shape_seqlen_q * max_seqlen_k); const ck_tile::index_t batch_stride_randval = (nhead * shape_seqlen_q * max_seqlen_k);
const ck_tile::index_t batch_stride_lse = (nhead * shape_seqlen_q); const ck_tile::index_t batch_stride_lse = (nhead * shape_seqlen_q);
const ck_tile::index_t batch_stride_lse_acc = (nhead * shape_seqlen_q); const ck_tile::index_t batch_stride_lse_acc = (nhead * shape_seqlen_q);
const ck_tile::index_t batch_stride_o_acc = (nhead * max_seqlen_q * hdim_v); const ck_tile::index_t batch_stride_o_acc = (nhead * shape_seqlen_q * hdim_v);
const ck_tile::index_t batch_stride_o = (nhead * shape_seqlen_q * hdim_v); const ck_tile::index_t batch_stride_o = (nhead * shape_seqlen_q * hdim_v);
const ck_tile::index_t batch_stride_block_table = (max_num_page_blocks / batch); const ck_tile::index_t batch_stride_block_table = (max_num_page_blocks / batch);
// setup split_stride_* arguments (only used in split-kv kernel) // setup split_stride_* arguments (only used in split-kv kernel)
const ck_tile::index_t split_stride_lse_acc = (shape_batch * nhead * shape_seqlen_q); const ck_tile::index_t split_stride_lse_acc = (shape_batch * nhead * shape_seqlen_q);
const ck_tile::index_t split_stride_o_acc = (batch * nhead * max_seqlen_q * hdim_v); const ck_tile::index_t split_stride_o_acc = (shape_batch * nhead * shape_seqlen_q * hdim_v);
args.q_ptr = q_buf.GetDeviceBuffer(); args.q_ptr = q_buf.GetDeviceBuffer();
args.k_ptr = k_buf.GetDeviceBuffer(); args.k_ptr = k_buf.GetDeviceBuffer();
...@@ -996,9 +1022,17 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -996,9 +1022,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.nhead_stride_randval = nhead_stride_randval; args.nhead_stride_randval = nhead_stride_randval;
args.batch_stride_randval = batch_stride_randval; args.batch_stride_randval = batch_stride_randval;
args.p_drop = p_drop; args.p_drop = p_drop;
args.s_randval = s_randval; args.s_randval = s_randval;
args.drop_seed_offset = std::tie(drop_seed, drop_offset); if(drop_prefs)
{
args.drop_seed_offset = std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
args.drop_seed_offset = std::make_pair(drop_seed, drop_offset);
}
} }
else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>) else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>)
{ {
......
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
#include "rotary.hpp" #include "rotary.hpp"
#include <type_traits> #include <type_traits>
#include <utility>
#include <variant>
template <typename DataType> template <typename DataType>
struct FmhaFwdTypeConfig; struct FmhaFwdTypeConfig;
...@@ -144,7 +146,9 @@ struct fmha_fwd_args ...@@ -144,7 +146,9 @@ struct fmha_fwd_args
float p_drop; float p_drop;
bool s_randval; bool s_randval;
std::tuple<uint64_t, uint64_t> drop_seed_offset;
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
}; };
struct fmha_fwd_splitkv_args struct fmha_fwd_splitkv_args
...@@ -398,10 +402,8 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -398,10 +402,8 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.nhead_stride_bias, args.nhead_stride_bias,
args.nhead_stride_lse_acc, args.nhead_stride_lse_acc,
args.nhead_stride_o_acc, args.nhead_stride_o_acc,
args.batch_stride_k, args.batch_stride_k, // only used for paged-kvcache
args.batch_stride_v, args.batch_stride_v, // only used for paged-kvcache
args.batch_stride_lse_acc,
args.batch_stride_o_acc,
args.split_stride_lse_acc, args.split_stride_lse_acc,
args.split_stride_o_acc, args.split_stride_o_acc,
args.window_size_left, args.window_size_left,
...@@ -475,7 +477,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -475,7 +477,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.lse_ptr, args.lse_ptr,
args.o_ptr, args.o_ptr,
args.batch, args.batch,
args.max_seqlen_q,
args.seqstart_q_ptr, args.seqstart_q_ptr,
args.hdim_v, args.hdim_v,
args.num_splits, args.num_splits,
...@@ -486,7 +487,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -486,7 +487,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.nhead_stride_o_acc, args.nhead_stride_o_acc,
args.nhead_stride_lse, args.nhead_stride_lse,
args.nhead_stride_o, args.nhead_stride_o,
args.batch_stride_o_acc,
args.split_stride_lse_acc, args.split_stride_lse_acc,
args.split_stride_o_acc); args.split_stride_o_acc);
} }
...@@ -497,7 +497,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args) ...@@ -497,7 +497,6 @@ auto fmha_fwd_splitkv_combine_create_kargs_and_grids(fmha_fwd_splitkv_args args)
args.lse_ptr, args.lse_ptr,
args.o_ptr, args.o_ptr,
args.batch, args.batch,
args.max_seqlen_q,
args.seqlen_q, args.seqlen_q,
args.hdim_v, args.hdim_v,
args.num_splits, args.num_splits,
......
...@@ -35,7 +35,9 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t, ...@@ -35,7 +35,9 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
YDataType, YDataType,
MeanDataType, MeanDataType,
InvStdDataType, InvStdDataType,
Shape>; Shape,
true,
true>;
using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>; using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>;
......
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
add_executable(tile_example_img2col EXCLUDE_FROM_ALL image_to_column.cpp)
# Image to Column
This folder contains example for Image to Column using ck_tile tile-programming implementation.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_img2col -j
```
This will result in an executable `build/bin/tile_example_img2col`
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment