Commit 7fb9b2b6 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into ck_tile/layernorm_fusion

parents 50f67a66 3d609534
...@@ -21,6 +21,14 @@ DTYPE_BITS = { ...@@ -21,6 +21,14 @@ DTYPE_BITS = {
"bf8" : 8 "bf8" : 8
} }
K0_MAX_SUBMAX_MAP = {
32 : 32,
64 : 64,
96 : 128,
128: 128,
256: 256
}
TILE_PARTITIONER_MAP = { TILE_PARTITIONER_MAP = {
"shb" : "ck_tile::FmhaFwdTilePartitioner_SHB", "shb" : "ck_tile::FmhaFwdTilePartitioner_SHB",
"hbs" : "ck_tile::FmhaFwdTilePartitioner_HBS", "hbs" : "ck_tile::FmhaFwdTilePartitioner_HBS",
...@@ -35,7 +43,7 @@ FMHA_FWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT ...@@ -35,7 +43,7 @@ FMHA_FWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
FMHA_FWD_KERNEL_BODY=""" FMHA_FWD_KERNEL_BODY="""
using fmha_dtype_{F_idx} = {F_dtype}; using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>; using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>; using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx}, using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
...@@ -87,7 +95,7 @@ using fmha_kernel_{F_idx} = ...@@ -87,7 +95,7 @@ using fmha_kernel_{F_idx} =
fmha_pipeline_{F_idx}, fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>; fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>; {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream> #include <iostream>
...@@ -125,7 +133,7 @@ FMHA_FWD_API_PER_HDIM_CASE=""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v < ...@@ -125,7 +133,7 @@ FMHA_FWD_API_PER_HDIM_CASE=""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <
FMHA_FWD_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) && FMHA_FWD_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{ ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>; using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_<trait_>(s, a); return fmha_fwd_<trait_>(s, a);
}} }}
""" """
...@@ -142,7 +150,7 @@ class FmhaFwdApiTrait: ...@@ -142,7 +150,7 @@ class FmhaFwdApiTrait:
bk0 : int # tile size along qk gemm unroll bk0 : int # tile size along qk gemm unroll
bn1 : int # tile size along v head_dim bn1 : int # tile size along v head_dim
bk1 : int # tile size along kv gemm unroll bk1 : int # tile size along kv gemm unroll
bk0blen : int bk0max : int
vlayout : str vlayout : str
mask : str mask : str
bias : str # bias : str #
...@@ -156,7 +164,7 @@ class FmhaFwdApiTrait: ...@@ -156,7 +164,7 @@ class FmhaFwdApiTrait:
@property @property
def name(self) -> str: def name(self) -> str:
return f'{self.hdim}-{self.dtype}-{self.mode}-{self.bm0}-{self.bn0}-{self.bk0}-{self.bn0}-{self.bk1}-{self.bk0blen}-'+\ return f'{self.hdim}-{self.dtype}-{self.mode}-{self.bm0}-{self.bn0}-{self.bk0}-{self.bn0}-{self.bk1}-{self.bk0max}-'+\
f'{self.vlayout}-{self.mask}-{self.bias}-{self.lse}-{self.dropout}-{self.squant}-{self.spad}-{self.skpad}-{self.dpad}-{self.dvpad}' f'{self.vlayout}-{self.mask}-{self.bias}-{self.lse}-{self.dropout}-{self.squant}-{self.spad}-{self.skpad}-{self.dpad}-{self.dvpad}'
@property @property
...@@ -188,8 +196,9 @@ class FmhaFwdApiTrait: ...@@ -188,8 +196,9 @@ class FmhaFwdApiTrait:
if self.dpad == 't': return f'a.hdim_q % {vec} == 0' if self.dpad == 't': return f'a.hdim_q % {vec} == 0'
else : assert False else : assert False
elif self.pipeline_tag in ['qr']: elif self.pipeline_tag in ['qr']:
if self.dpad == 't': return f'true /*a.hdim_q % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly) bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
else : return f'a.hdim_q % {self.bk0blen} == 0' if self.dpad == 't': return f'true /*a.hdim_q % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_q % {bk0submax} == 0'
else: assert False else: assert False
@property @property
...@@ -199,8 +208,9 @@ class FmhaFwdApiTrait: ...@@ -199,8 +208,9 @@ class FmhaFwdApiTrait:
if self.dvpad == 't': return f'a.hdim_v % {vec} == 0' if self.dvpad == 't': return f'a.hdim_v % {vec} == 0'
else : assert False else : assert False
elif self.pipeline_tag in ['qr']: elif self.pipeline_tag in ['qr']:
if self.dvpad == 't': return f'true /*a.hdim_v % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly) bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
else : return f'a.hdim_v % {self.bk0blen} == 0' if self.dvpad == 't': return f'true /*a.hdim_v % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_v % {bk0submax} == 0'
else: assert False else: assert False
@dataclass @dataclass
...@@ -271,7 +281,7 @@ class FmhaFwdApiPool: ...@@ -271,7 +281,7 @@ class FmhaFwdApiPool:
F_lse=BOOL_MAP[trait.lse], F_dropout=BOOL_MAP[trait.dropout] , F_lse=BOOL_MAP[trait.lse], F_dropout=BOOL_MAP[trait.dropout] ,
F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0blen=trait.bk0blen, F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype]) F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if' if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners) per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
...@@ -289,7 +299,7 @@ class FmhaFwdTileSize: ...@@ -289,7 +299,7 @@ class FmhaFwdTileSize:
F_bk0 : int # tile size along qk gemm unroll F_bk0 : int # tile size along qk gemm unroll
F_bn1 : int # tile size along v head_dim F_bn1 : int # tile size along v head_dim
F_bk1 : int # tile size along kv gemm unroll F_bk1 : int # tile size along kv gemm unroll
F_bk0blen : int # total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile) F_bk0max : int # total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm0 : int # number of warps for gemm0 along q seqlen F_rm0 : int # number of warps for gemm0 along q seqlen
F_rn0 : int # number of warps for gemm0 along k seqlen F_rn0 : int # number of warps for gemm0 along k seqlen
F_rk0 : int # number of warps for gemm0 along head dim q (not used) F_rk0 : int # number of warps for gemm0 along head dim q (not used)
...@@ -302,7 +312,7 @@ class FmhaFwdTileSize: ...@@ -302,7 +312,7 @@ class FmhaFwdTileSize:
F_occupancy : int # occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy F_occupancy : int # occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@property @property
def name(self) -> str: def name(self) -> str:
return f"b{self.F_bm0}x{self.F_bn0}x{self.F_bk0}x{self.F_bn1}x{self.F_bk1}x{self.F_bk0blen}" +\ return f"b{self.F_bm0}x{self.F_bn0}x{self.F_bk0}x{self.F_bn1}x{self.F_bk1}x{self.F_bk0max}" +\
f"_r{self.F_rm0}x{self.F_rn0}x{self.F_rk0}_r{self.F_rm1}x{self.F_rn1}x{self.F_rk1}" +\ f"_r{self.F_rm0}x{self.F_rn0}x{self.F_rk0}_r{self.F_rm1}x{self.F_rn1}x{self.F_rk1}" +\
f"_w{self.F_wm}x{self.F_wn}x{self.F_wk}" + ("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}") f"_w{self.F_wm}x{self.F_wn}x{self.F_wk}" + ("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}")
...@@ -335,7 +345,7 @@ class FmhaFwdKernel: ...@@ -335,7 +345,7 @@ class FmhaFwdKernel:
F_bk0 = self.F_tile.F_bk0, F_bk0 = self.F_tile.F_bk0,
F_bn1 = self.F_tile.F_bn1, F_bn1 = self.F_tile.F_bn1,
F_bk1 = self.F_tile.F_bk1, F_bk1 = self.F_tile.F_bk1,
F_bk0blen = self.F_tile.F_bk0blen, F_bk0max = self.F_tile.F_bk0max,
F_rm0 = self.F_tile.F_rm0, F_rm0 = self.F_tile.F_rm0,
F_rn0 = self.F_tile.F_rn0, F_rn0 = self.F_tile.F_rn0,
F_rk0 = self.F_tile.F_rk0, F_rk0 = self.F_tile.F_rk0,
...@@ -382,7 +392,7 @@ class FmhaFwdKernel: ...@@ -382,7 +392,7 @@ class FmhaFwdKernel:
bk0=self.F_tile.F_bk0, bk0=self.F_tile.F_bk0,
bn1=self.F_tile.F_bn1, bn1=self.F_tile.F_bn1,
bk1=self.F_tile.F_bk1, bk1=self.F_tile.F_bk1,
bk0blen=self.F_tile.F_bk0blen, bk0max=self.F_tile.F_bk0max,
vlayout=self.F_pipeline.F_vlayout, vlayout=self.F_pipeline.F_vlayout,
mask=self.F_pipeline.F_mask, mask=self.F_pipeline.F_mask,
bias=self.F_pipeline.F_bias, bias=self.F_pipeline.F_bias,
...@@ -401,6 +411,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]: ...@@ -401,6 +411,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
return { return {
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1), '32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
## '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1), '256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
} }
......
...@@ -29,6 +29,14 @@ DTYPE_BITS = { ...@@ -29,6 +29,14 @@ DTYPE_BITS = {
"bf8" : 8 "bf8" : 8
} }
K0_MAX_SUBMAX_MAP = {
32 : 32,
64 : 64,
96 : 128,
128: 128,
256: 256
}
FMHA_FWD_SPLITKV_PIPELINE_MAP = { FMHA_FWD_SPLITKV_PIPELINE_MAP = {
"qr" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVS", "qr" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVS",
"qr_async" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVSAsync", "qr_async" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVSAsync",
...@@ -41,7 +49,7 @@ using fmha_mask_{F_idx} = {F_mask}; ...@@ -41,7 +49,7 @@ using fmha_mask_{F_idx} = {F_mask};
namespace {{ namespace {{
template <bool kHasUnevenSplits> template <bool kHasUnevenSplits>
struct kernel_runner {{ struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>; using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>; using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile, using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
...@@ -103,7 +111,7 @@ static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a) ...@@ -103,7 +111,7 @@ static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
}}; }};
}} }}
using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad},
{F_dvpad}>; {F_dvpad}>;
...@@ -241,7 +249,7 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ...@@ -241,7 +249,7 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.do_fp8_static_quant == {F_squant}) && FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{ ((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>; using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, {F_lse}, {F_squant}, {F_spad}, {F_dvpad}>; using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, {F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a); return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
...@@ -260,7 +268,7 @@ class FmhaFwdSplitKVApiTrait: ...@@ -260,7 +268,7 @@ class FmhaFwdSplitKVApiTrait:
bk0 : int # tile size along qk gemm unroll bk0 : int # tile size along qk gemm unroll
bn1 : int # tile size along v head_dim bn1 : int # tile size along v head_dim
bk1 : int # tile size along kv gemm unroll bk1 : int # tile size along kv gemm unroll
bk0blen : int bk0max : int
vlayout : str vlayout : str
mask : str mask : str
bias : str # bias : str #
...@@ -274,7 +282,7 @@ class FmhaFwdSplitKVApiTrait: ...@@ -274,7 +282,7 @@ class FmhaFwdSplitKVApiTrait:
@property @property
def name(self) -> str: def name(self) -> str:
return f'{self.hdim}-{self.dtype}-{self.mode}-{self.bm0}-{self.bn0}-{self.bk0}-{self.bn0}-{self.bk1}-{self.bk0blen}-'+\ return f'{self.hdim}-{self.dtype}-{self.mode}-{self.bm0}-{self.bn0}-{self.bk0}-{self.bn0}-{self.bk1}-{self.bk0max}-'+\
f'{self.vlayout}-{self.mask}-{self.bias}-{self.lse}-{self.squant}-{self.spad}-{self.skpad}-{self.dpad}-'+\ f'{self.vlayout}-{self.mask}-{self.bias}-{self.lse}-{self.squant}-{self.spad}-{self.skpad}-{self.dpad}-'+\
f'{self.dvpad}-{self.pagedkv}' f'{self.dvpad}-{self.pagedkv}'
...@@ -307,8 +315,9 @@ class FmhaFwdSplitKVApiTrait: ...@@ -307,8 +315,9 @@ class FmhaFwdSplitKVApiTrait:
if self.dpad == 't': return f'a.hdim_q % {vec} == 0' if self.dpad == 't': return f'a.hdim_q % {vec} == 0'
else : assert False else : assert False
elif self.pipeline_tag in ['qr']: elif self.pipeline_tag in ['qr']:
if self.dpad == 't': return f'true /*a.hdim_q % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly) bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
else : return f'a.hdim_q % {self.bk0blen} == 0' if self.dpad == 't': return f'true /*a.hdim_q % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_q % {bk0submax} == 0'
else: assert False else: assert False
@property @property
...@@ -318,8 +327,9 @@ class FmhaFwdSplitKVApiTrait: ...@@ -318,8 +327,9 @@ class FmhaFwdSplitKVApiTrait:
if self.dvpad == 't': return f'a.hdim_v % {vec} == 0' if self.dvpad == 't': return f'a.hdim_v % {vec} == 0'
else : assert False else : assert False
elif self.pipeline_tag in ['qr']: elif self.pipeline_tag in ['qr']:
if self.dvpad == 't': return f'true /*a.hdim_v % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly) bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
else : return f'a.hdim_v % {self.bk0blen} == 0' if self.dvpad == 't': return f'true /*a.hdim_v % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_v % {bk0submax} == 0'
else: assert False else: assert False
@dataclass @dataclass
...@@ -414,7 +424,7 @@ class FmhaFwdSplitKVApiPool: ...@@ -414,7 +424,7 @@ class FmhaFwdSplitKVApiPool:
F_lse=BOOL_MAP[trait.lse], F_squant=BOOL_MAP[trait.squant], F_pagedkv=BOOL_MAP[trait.pagedkv], F_lse=BOOL_MAP[trait.lse], F_squant=BOOL_MAP[trait.squant], F_pagedkv=BOOL_MAP[trait.pagedkv],
F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad], F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0blen=trait.bk0blen, F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0max=trait.bk0max,
F_hdim=hdim, F_dtype=DTYPE_MAP[dtype]) F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
if_j = 'if' if j == 0 else 'else if' if_j = 'if' if j == 0 else 'else if'
per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners) per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
...@@ -458,7 +468,7 @@ class FmhaFwdSplitKVKernel: ...@@ -458,7 +468,7 @@ class FmhaFwdSplitKVKernel:
F_bk0 = self.F_tile.F_bk0, F_bk0 = self.F_tile.F_bk0,
F_bn1 = self.F_tile.F_bn1, F_bn1 = self.F_tile.F_bn1,
F_bk1 = self.F_tile.F_bk1, F_bk1 = self.F_tile.F_bk1,
F_bk0blen = self.F_tile.F_bk0blen, F_bk0max = self.F_tile.F_bk0max,
F_rm0 = self.F_tile.F_rm0, F_rm0 = self.F_tile.F_rm0,
F_rn0 = self.F_tile.F_rn0, F_rn0 = self.F_tile.F_rn0,
F_rk0 = self.F_tile.F_rk0, F_rk0 = self.F_tile.F_rk0,
...@@ -504,7 +514,7 @@ class FmhaFwdSplitKVKernel: ...@@ -504,7 +514,7 @@ class FmhaFwdSplitKVKernel:
bk0=self.F_tile.F_bk0, bk0=self.F_tile.F_bk0,
bn1=self.F_tile.F_bn1, bn1=self.F_tile.F_bn1,
bk1=self.F_tile.F_bk1, bk1=self.F_tile.F_bk1,
bk0blen=self.F_tile.F_bk0blen, bk0max=self.F_tile.F_bk0max,
vlayout=self.F_pipeline.F_vlayout, vlayout=self.F_pipeline.F_vlayout,
mask=self.F_pipeline.F_mask, mask=self.F_pipeline.F_mask,
bias=self.F_pipeline.F_bias, bias=self.F_pipeline.F_bias,
...@@ -559,6 +569,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]: ...@@ -559,6 +569,7 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
return { return {
'32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1), '32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1),
'64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
## '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1), '256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
} }
...@@ -576,6 +587,7 @@ def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[d ...@@ -576,6 +587,7 @@ def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[d
return { return {
'32' : FmhaFwdSplitKVCombineTileSize(16, 16, -1), '32' : FmhaFwdSplitKVCombineTileSize(16, 16, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, 32, -1), '64' : FmhaFwdSplitKVCombineTileSize(32, 32, -1),
## '96' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, 64, -1), '128' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, 128, -1), '256' : FmhaFwdSplitKVCombineTileSize(32, 128, -1),
} }
...@@ -604,7 +616,7 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -604,7 +616,7 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
if dtype in ['fp16', 'bf16']: if dtype in ['fp16', 'bf16']:
for mask, bias, lse, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]): for mask, bias, lse, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]):
# TODO: use async pipeline when compiler is more stable # TODO: use async pipeline when compiler is more stable
if hdim == 256 or hdim in [32, 64, 128]: if hdim == 256 or hdim in [32, 64, 128]: ### [32, 64, 96, 128]:
# if True: # if True:
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
......
...@@ -19,9 +19,9 @@ auto create_args(int argc, char* argv[]) ...@@ -19,9 +19,9 @@ auto create_args(int argc, char* argv[])
template <typename DataType> template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser) bool run(const ck_tile::ArgParser& arg_parser)
{ {
using ADataType = DataType; using XDataType = DataType;
using AccDataType = float; using ComputeDataType = float;
using BDataType = DataType; using YDataType = DataType;
ck_tile::index_t m = arg_parser.get_int("m"); ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n"); ck_tile::index_t n = arg_parser.get_int("n");
...@@ -29,35 +29,39 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -29,35 +29,39 @@ bool run(const ck_tile::ArgParser& arg_parser)
int warmup = arg_parser.get_int("warmup"); int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat"); int repeat = arg_parser.get_int("repeat");
ck_tile::HostTensor<ADataType> a_host({m, n}); ck_tile::HostTensor<XDataType> x_host({m, n});
ck_tile::HostTensor<BDataType> b_host_ref({m}); ck_tile::HostTensor<YDataType> y_host_ref({m});
ck_tile::HostTensor<BDataType> b_host_dev({m}); ck_tile::HostTensor<YDataType> y_host_dev({m});
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_host); ck_tile::FillUniformDistribution<XDataType>{-5.f, 5.f}(x_host);
ck_tile::DeviceMem a_buf(a_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_buf(b_host_dev.get_element_space_size_in_bytes()); ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
a_buf.ToDevice(a_host.data()); x_buf.ToDevice(x_host.data());
using ReduceOp = ck_tile::ReduceOp::Add;
using BlockWarps = ck_tile::sequence<4, 1>; using BlockWarps = ck_tile::sequence<4, 1>;
using BlockTile = ck_tile::sequence<128, 128>; using BlockTile = ck_tile::sequence<128, 128>;
using WarpTile = ck_tile::sequence<32, 128>; using WarpTile = ck_tile::sequence<32, 128>;
using ThreadTile = ck_tile::sequence<8, 8>; using Vector = ck_tile::sequence<8, 8>;
constexpr ck_tile::index_t kBlockSize = 256; // cross warp-reduce
// using BlockWarps = ck_tile::sequence<2, 2>;
// using BlockTile = ck_tile::sequence<2, 1024>;
// using WarpTile = ck_tile::sequence<1, 512>;
// using Vector = ck_tile::sequence<1, 8>;
constexpr ck_tile::index_t kBlockSize = 512;
constexpr ck_tile::index_t kBlockPerCu = 1; constexpr ck_tile::index_t kBlockPerCu = 1;
ck_tile::index_t kGridSize = (m / BlockTile::at(ck_tile::number<0>{})); ck_tile::index_t kGridSize = (m / BlockTile::at(ck_tile::number<0>{}));
std::cout << "grid size " << kGridSize << std::endl; std::cout << "grid size " << kGridSize << std::endl;
using Kernel = ck_tile::Reduce<ADataType, using Shape = ck_tile::Reduce2dShape<BlockWarps, BlockTile, WarpTile, Vector>;
AccDataType, using Porblem =
BDataType, ck_tile::Reduce2dProblem<XDataType, ComputeDataType, YDataType, Shape, ReduceOp>;
kBlockSize,
BlockWarps, using Kernel = ck_tile::Reduce<Porblem>;
BlockTile,
WarpTile,
ThreadTile>;
float ave_time = launch_kernel(ck_tile::stream_config{nullptr, true, 0, warmup, repeat}, float ave_time = launch_kernel(ck_tile::stream_config{nullptr, true, 0, warmup, repeat},
ck_tile::make_kernel<kBlockSize, kBlockPerCu>( ck_tile::make_kernel<kBlockSize, kBlockPerCu>(
...@@ -65,12 +69,12 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -65,12 +69,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
kGridSize, kGridSize,
kBlockSize, kBlockSize,
0, 0,
static_cast<ADataType*>(a_buf.GetDeviceBuffer()), static_cast<XDataType*>(x_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_buf.GetDeviceBuffer()), static_cast<YDataType*>(y_buf.GetDeviceBuffer()),
m, m,
n)); n));
std::size_t num_btype = sizeof(ADataType) * m * n + sizeof(BDataType) * m; std::size_t num_btype = sizeof(XDataType) * m * n + sizeof(YDataType) * m;
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
...@@ -81,9 +85,10 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -81,9 +85,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation) if(do_validation)
{ {
// reference // reference
ck_tile::reference_reduce<ADataType, AccDataType, BDataType>(a_host, b_host_ref); ck_tile::reference_reduce<XDataType, ComputeDataType, YDataType>(
b_buf.FromDevice(b_host_dev.mData.data()); x_host, y_host_ref, ReduceOp{});
pass = ck_tile::check_err(b_host_dev, b_host_ref); y_buf.FromDevice(y_host_dev.mData.data());
pass = ck_tile::check_err(y_host_dev, y_host_ref);
std::cout << "valid:" << (pass ? "y" : "n") << std::flush << std::endl; std::cout << "valid:" << (pass ? "y" : "n") << std::flush << std::endl;
} }
...@@ -103,8 +108,8 @@ int main(int argc, char* argv[]) ...@@ -103,8 +108,8 @@ int main(int argc, char* argv[])
{ {
return run<ck_tile::half_t>(arg_parser) ? 0 : -2; return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
} }
if(data_type == "bf16") // else if(data_type == "bf16")
{ // {
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2; // return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
} // }
} }
...@@ -5,20 +5,16 @@ ...@@ -5,20 +5,16 @@
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp" #include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp" #include "ck_tile/ops/reduce/block/block_reduce.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_default_policy.hpp"
namespace ck_tile { namespace ck_tile {
template <typename ADataType, template <typename BlockWarps, // num warps along seq<M, N>
typename AccDataType,
typename BDataType,
index_t kBlockSize,
typename BlockWarps, // num warps along seq<M, N>
typename BlockTile, // block size, seq<M, N> typename BlockTile, // block size, seq<M, N>
typename WarpTile, // warp size, seq<M, N> typename WarpTile, // warp size, seq<M, N>
typename ThreadTile> // contiguous pixels(vector size) along seq<M, N> typename Vector> // contiguous pixels(vector size) along seq<M, N>
struct Reduce struct Reduce2dShape
{ {
static constexpr index_t Block_M = BlockTile::at(number<0>{}); static constexpr index_t Block_M = BlockTile::at(number<0>{});
static constexpr index_t Block_N = BlockTile::at(number<1>{}); static constexpr index_t Block_N = BlockTile::at(number<1>{});
...@@ -26,93 +22,143 @@ struct Reduce ...@@ -26,93 +22,143 @@ struct Reduce
static constexpr index_t Warp_M = WarpTile::at(number<0>{}); static constexpr index_t Warp_M = WarpTile::at(number<0>{});
static constexpr index_t Warp_N = WarpTile::at(number<1>{}); static constexpr index_t Warp_N = WarpTile::at(number<1>{});
static constexpr index_t Thread_M = ThreadTile::at(number<0>{}); static constexpr index_t Vector_M = Vector::at(number<0>{});
static constexpr index_t Thread_N = ThreadTile::at(number<1>{}); static constexpr index_t Vector_N = Vector::at(number<1>{});
static constexpr index_t WarpPerBlock_M = BlockWarps::at(number<0>{}); static constexpr index_t WarpPerBlock_M = BlockWarps::at(number<0>{});
static constexpr index_t WarpPerBlock_N = BlockWarps::at(number<1>{}); static constexpr index_t WarpPerBlock_N = BlockWarps::at(number<1>{});
static constexpr index_t ThreadPerWarp_M = Warp_M / Thread_M; static constexpr index_t ThreadPerWarp_M = Warp_M / Vector_M;
static constexpr index_t ThreadPerWarp_N = Warp_N / Thread_N; static constexpr index_t ThreadPerWarp_N = Warp_N / Vector_N;
static constexpr index_t Repeat_M = Block_M / (WarpPerBlock_M * Warp_M); static constexpr index_t Repeat_M = Block_M / (WarpPerBlock_M * Warp_M);
static constexpr index_t Repeat_N = Block_N / (WarpPerBlock_N * Warp_N); static constexpr index_t Repeat_N = Block_N / (WarpPerBlock_N * Warp_N);
__device__ static constexpr auto MakeABlockTileDistribution() static constexpr index_t BlockSize =
{ warpSize * reduce_on_sequence(BlockWarps{}, multiplies{}, number<1>{});
return make_static_tile_distribution( };
tile_distribution_encoding<
sequence<>,
tuple<sequence<Repeat_M, WarpPerBlock_M, ThreadPerWarp_M, Thread_M>,
sequence<Repeat_N, WarpPerBlock_N, ThreadPerWarp_N, Thread_N>>,
tuple<sequence<1, 2>, sequence<1, 2>>,
tuple<sequence<1, 1>, sequence<2, 2>>,
sequence<1, 1, 2, 2>,
sequence<0, 3, 0, 3>>{});
}
__device__ void operator()(const ADataType* p_a, BDataType* p_b, index_t M, index_t N) const template <typename XDataType_,
typename ComputeDataType_,
typename YDataType_,
typename BlockShape_,
typename ReduceOp_>
struct Reduce2dProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using ReduceOp = ReduceOp_;
static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1;
static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1;
};
template <typename Problem_, typename Policy_ = BlockReduce2dDefaultPolicy>
struct Reduce
{
using Problem = ck_tile::remove_cvref_t<Problem_>;
using Policy = ck_tile::remove_cvref_t<Policy_>;
using XDataType = ck_tile::remove_cvref_t<typename Problem::XDataType>;
using ComputeDataType = ck_tile::remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = ck_tile::remove_cvref_t<typename Problem::YDataType>;
#if 0
CK_TILE_DEVICE void operator()(const XDataType* p_x, YDataType* p_y, index_t M, index_t N)
const
{ {
const auto a_m_n = make_naive_tensor_view<address_space_enum::global>( using S = typename Problem::BlockShape;
p_a, make_tuple(M, N), make_tuple(N, 1), number<Thread_N>{}, number<1>{});
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<S::Vector_N>{}, number<1>{});
const auto iM = get_block_id() * Block_M; const auto y_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_y, make_tuple(M), number<1>{});
// A window const auto iM = get_block_id() * S::Block_M;
auto a_block_window = make_tile_window(a_m_n,
make_tuple(number<Block_M>{}, number<Block_N>{}), auto x_window = make_tile_window(x_m_n,
make_tuple(number<S::Block_M>{}, number<S::Block_N>{}),
{iM, 0}, {iM, 0},
MakeABlockTileDistribution()); Policy::template MakeXBlockTileDistribution<Problem>());
auto y_window = make_tile_window(y_m, make_tuple(number<S::Block_M>{}), {iM});
const auto f_reduce = [](const auto& v0, const auto& v1) { return v0 + v1; }; const auto f_reduce = [](const auto& v0, const auto& v1) { return v0 + v1; };
const ADataType reduce_init_value = 0; const XDataType reduce_init_value = 0;
constexpr auto reduce_dims = sequence<1>{}; constexpr auto reduce_dims = sequence<1>{};
// Acc tile auto y_compute = decltype(block_tile_reduce<ComputeDataType>(
// TODO: support cross warp reduction load_tile(x_window), reduce_dims, f_reduce, reduce_init_value)){};
auto acc_block_tensor = decltype(block_tile_reduce<AccDataType>(
load_tile(a_block_window), reduce_dims, f_reduce, reduce_init_value)){};
// init Acc tile set_tile(y_compute, reduce_init_value);
tile_elementwise_inout(
[&](auto& acc) { acc = type_convert<AccDataType>(reduce_init_value); },
acc_block_tensor);
// loop index_t num_n_tile_iteration =
index_t iN = 0; __builtin_amdgcn_readfirstlane(integer_divide_ceil(N, S::Block_N));
do for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{ {
const auto a_block_tensor = load_tile(a_block_window); const auto x = load_tile(x_window);
block_tile_reduce(y_compute, x, reduce_dims, f_reduce);
move_tile_window(x_window, {0, S::Block_N});
}
// FIXME: support cross warp reduction block_tile_reduce_sync(y_compute, f_reduce);
block_tile_reduce(acc_block_tensor, a_block_tensor, reduce_dims, f_reduce);
move_tile_window(a_block_window, {0, Block_N}); store_tile(y_window, cast_tile<YDataType>(y_compute));
}
#else
CK_TILE_DEVICE void operator()(const XDataType* p_x, YDataType* p_y, index_t M, index_t N) const
{
using S = typename Problem::BlockShape;
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<S::Vector_N>{}, number<1>{});
iN += Block_N; const auto y_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_y, make_tuple(M), number<1>{});
} while(iN < N); const auto iM = get_block_id() * S::Block_M;
// FIXME: support cross warp reduction auto x_window = make_tile_window(x_m_n,
block_tile_reduce_sync(acc_block_tensor, f_reduce); make_tuple(number<S::Block_M>{}, number<S::Block_N>{}),
{iM, 0},
Policy::template MakeXBlockTileDistribution<Problem>());
// convert acc_block_tensor to b_block_tensor auto y_window = make_tile_window(y_m, make_tuple(number<S::Block_M>{}), {iM});
const auto b_block_tensor = tile_elementwise_in(
[](const auto& acc) { return type_convert<BDataType>(acc); }, acc_block_tensor);
// B __shared__ char smem[Policy::template GetSmemSize<Problem>()];
const auto b_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_b, make_tuple(M), number<32>{}); index_t num_n_tile_iteration =
__builtin_amdgcn_readfirstlane(integer_divide_ceil(N, S::Block_N));
auto reduce_func = typename Problem::ReduceOp{};
auto block_reduce2d = Policy::template GetBlockReduce2d<Problem>();
auto block_reduce2d_sync = Policy::template GetBlockReduce2dSync<Problem>();
auto block_reduce2d_cross_warp_sync =
Policy::template GetBlockReduce2dCrossWarpSync<Problem>();
using XTensorType = decltype(load_tile(x_window));
auto y_compute = block_reduce2d.template MakeYBlockTile<XTensorType>();
set_tile(y_compute, reduce_func.template GetIdentityValue<ComputeDataType>());
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{
const auto x = load_tile(x_window);
block_reduce2d(x, y_compute, reduce_func);
move_tile_window(x_window, {0, S::Block_N});
}
// B window block_reduce2d_sync(y_compute, reduce_func);
auto b_block_window = make_tile_window(b_m, make_tuple(number<Block_M>{}), {iM}); block_reduce2d_cross_warp_sync(y_compute, smem, reduce_func);
// store B tile store_tile(y_window, cast_tile<YDataType>(y_compute));
store_tile(b_block_window, b_block_tensor);
} }
#endif
}; };
} // namespace ck_tile } // namespace ck_tile
set(TILE_RMSNORM2D_FWD "tile_rmsnorm2d_fwd")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding ${TILE_RMSNORM2D_FWD}")
file(GLOB INSTANCE_SRCS instances/*.cpp)
add_executable(${TILE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL rmsnorm2d_fwd.cpp)
target_include_directories(${TILE_RMSNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
target_sources(${TILE_RMSNORM2D_FWD} PRIVATE ${INSTANCE_SRCS})
set(TILE_RMSNORM2D_FWD_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND TILE_RMSNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
target_compile_options(${TILE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS})
set(EXAMPLE_RMSNORM2D_FWD "tile_example_rmsnorm2d_fwd")
add_executable(${EXAMPLE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL example_rmsnorm2d_fwd.cpp)
target_compile_options(${EXAMPLE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS})
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property(GLOBAL PROPERTY RULE_MESSAGES OFF)
# Rmsnorm2D forward
This folder contains example for Rmsnorm2D forward using ck_tile tile-programming implementation.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_rmsnorm2d_fwd -j
```
This will result in an executable `build/bin/tile_rmsnorm2d_fwd`
## cmdline
```
args:
-m m dimension (default:3328)
-n m dimension (default:4096)
-e epsilon (default:1e-5)
-v cpu validation or not (default:1)
-prec precision (default:fp16)
```
#include "ck_tile/host.hpp"
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/rmsnorm2d.hpp"
#include <cstring>
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon")
.insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "0", "cold iter")
.insert("repeat", "1", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
float epsilon = arg_parser.get_float("e");
std::string data_type = arg_parser.get_str("prec");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
using XDataType = DataType;
using YDataType = DataType;
using GammaDataType = DataType;
using InvRmsDataType = ck_tile::null_type;
using ComputeDataType = float;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<GammaDataType> gamma_host({n});
ck_tile::HostTensor<YDataType> y_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<YDataType> y_host_dev({m, n}, {stride, 1});
ck_tile::HostTensor<InvRmsDataType> invRms_host_ref({m});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<GammaDataType>{-.5f, .5f}(gamma_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem gamma_buf(gamma_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
gamma_buf.ToDevice(gamma_host.data());
constexpr bool kTwoPass = true;
using BlockWarps = ck_tile::sequence<2, 2>;
using BlockTile = ck_tile::sequence<2, 128>;
using WarpTile = ck_tile::sequence<1, 64>;
using Vector = ck_tile::sequence<1, 1>;
using Shape = ck_tile::Rmsnorm2dShape<BlockTile, BlockWarps, WarpTile, Vector>;
using Problem = ck_tile::Rmsnorm2dFwdPipelineProblem<XDataType,
GammaDataType,
ComputeDataType,
YDataType,
InvRmsDataType,
Shape,
true, // kPadN
false, // kSaveInvRms
kTwoPass>;
using OnePassPipeline = ck_tile::Rmsnorm2dFwdPipelineOnePass<Problem>;
using TwoPassPipeline = ck_tile::Rmsnorm2dFwdPipelineTwoPass<Problem>;
using Pipeline = std::conditional_t<kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Kernel = ck_tile::Rmsnorm2dFwd<Pipeline>;
ck_tile::Rmsnorm2dFwdHostArgs args{x_buf.GetDeviceBuffer(),
gamma_buf.GetDeviceBuffer(),
y_buf.GetDeviceBuffer(),
nullptr,
epsilon,
m,
n,
stride};
auto kargs = Kernel::MakeKargs(args);
const dim3 grids = Kernel::GridSize(args);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = 1;
auto s = ck_tile::stream_config{nullptr, true, 0, warmup, repeat};
ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
bool pass = true;
if(do_validation)
{
// reference
ck_tile::reference_rmsnorm2d_fwd<XDataType,
GammaDataType,
ComputeDataType,
YDataType,
InvRmsDataType>(
x_host, gamma_host, y_host_ref, invRms_host_ref, epsilon);
y_buf.FromDevice(y_host_dev.data());
auto [rtol, atol] = ck_tile::make_tuple(1e-3, 1e-3);
if(stride == n)
{
pass = ck_tile::check_err(
y_host_dev, y_host_ref, std::string("OUT Error: Incorrect results!"), rtol, atol);
}
else
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<YDataType> y_host_dev_row(y_host_dev.begin() + i_r * stride,
y_host_dev.begin() + i_r * stride + n);
std::vector<YDataType> y_host_ref_row(y_host_ref.begin() + i_r * stride,
y_host_ref.begin() + i_r * stride + n);
pass &= ck_tile::check_err(y_host_dev_row,
y_host_ref_row,
std::string("OUT[") + std::to_string(i_r) +
std::string("] Error: Incorrect results!"),
rtol,
atol);
}
}
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride
<< ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "rmsnorm2d_fwd.hpp"
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveInvRms_,
bool kTwoPass_>
using trait_ = rmsnorm2d_fwd_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kSaveInvRms_,
kTwoPass_>;
template <typename data_type>
float rmsnorm2d_fwd_b16_(rmsnorm2d_fwd_traits /*t*/,
rmsnorm2d_fwd_args a,
const ck_tile::stream_config& s)
{
#if 1
float r = -1;
// clang-format off
// rm rn tm tn vn pd rms 2p
if(a.n <= 64) {
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 128) {
if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 256) {
if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 512) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 8, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 768) {
if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1,12, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 1024) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 2, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 2, 128, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 1536) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 2048) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 8, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 3072) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n <= 4096) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n > 4096) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, true>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, true>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, true>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, true>>(s, a);
}
return r;
#else
return rmsnorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 4, true, false, false>>(s, a);
#endif
// clang-format on
}
float rmsnorm2d_fwd(rmsnorm2d_fwd_traits t, rmsnorm2d_fwd_args a, const ck_tile::stream_config& s)
{
float r = -1;
if(t.data_type.compare("fp16") == 0)
{
return rmsnorm2d_fwd_b16_<ck_tile::fp16_t>(t, a, s);
}
else if(t.data_type.compare("bf16") == 0)
{
return rmsnorm2d_fwd_b16_<ck_tile::bf16_t>(t, a, s);
}
if(r < 0)
throw std::runtime_error("Without supported instances!");
return r;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
#if 0
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, true>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 12, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
#if 0
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment