Commit 7f65ac05 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 687d2b7e 7e5c81fe
# ONLY XDL_KERNELS
add_instance_library(device_grouped_gemm_fastgelu_instance
device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_nk_mn_instance.cpp
......
# ONLY XDL_KERNELS
set(GROUPED_GEMM_FIXED_NK_INSTANCES)
list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16_f16_f16_mk_kn_mn_instance.cpp
......
add_instance_library(device_permute_scale_instance
device_permute_scale_1d_instances.cpp
device_permute_scale_2d_instances.cpp
device_permute_scale_3d_instances.cpp
device_permute_scale_4d_instances.cpp
device_permute_scale_5d_instances.cpp
device_permute_scale_6d_instances.cpp)
device_permute_scale_1d_fp16_instances.cpp
device_permute_scale_2d_fp16_instances.cpp
device_permute_scale_3d_fp16_instances.cpp
device_permute_scale_4d_fp16_instances.cpp
device_permute_scale_5d_fp16_instances.cpp
device_permute_scale_6d_fp16_instances.cpp
device_permute_scale_1d_fp32_instances.cpp
device_permute_scale_2d_fp32_instances.cpp
device_permute_scale_3d_fp32_instances.cpp
device_permute_scale_4d_fp32_instances.cpp
device_permute_scale_5d_fp32_instances.cpp
device_permute_scale_6d_fp32_instances.cpp)
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_1d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 1>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<1>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_1d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 1>>>& instances)
void add_device_permute_scale_1d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 1>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<1>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<1, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_1d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 1>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<1, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_2d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 2>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<2>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_2d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 2>>>& instances)
void add_device_permute_scale_2d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 2>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<2>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<2, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_2d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 2>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<2, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_3d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 3>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<3>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_3d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 3>>>& instances)
void add_device_permute_scale_3d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 3>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<3>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<3, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_3d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 3>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<3, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_4d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 4>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<4>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_4d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 4>>>& instances)
void add_device_permute_scale_4d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 4>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<4>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<4, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_4d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 4>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<4, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_5d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 5>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<5>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_5d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 5>>>& instances)
void add_device_permute_scale_5d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 5>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<5>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<5, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_5d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 5>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<5, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -9,18 +9,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_6d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 6>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<6>{});
}
using Scale = element_wise::Scale;
void add_device_permute_scale_6d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 6>>>& instances)
void add_device_permute_scale_6d_f16_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Scale, 6>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<6>{});
add_device_operation_instances(instances, device_permute_scale_f16_instances<6, Scale>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Scale = element_wise::Scale;
void add_device_permute_scale_6d_f32_instances(
std::vector<std::unique_ptr<DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Scale, 6>>>&
instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<6, Scale>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_AND_DL_KERNELS
set(CONV2D_PERLAYER_QUANT_SRC conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp)
set(CONV2D_PERCHANNEL_QUANT_SRC conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp)
set(CONV2D_BIAS_PERLAYER_QUANT_SRC conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -31,7 +31,9 @@ template <ck::index_t NDimSpatial,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool profile_grouped_conv_fwd_impl(int do_verification,
int init_method,
bool do_log,
......@@ -209,7 +211,9 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
OutElementOp,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multiple_d_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_grouped_gemm_two_stage_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
#if DEBUG_LOG
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
#endif // DEBUG_LOG
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemm<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_c,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
DeviceMem gemm_desc_workspace(gemm_ptr->GetWorkSpaceSize(argument_ptr.get()));
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString();
using DeviceOpSplitK =
ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// skip non-splitk grouped_gemm
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) == nullptr)
{
continue;
}
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
{
kbatch_list = {kbatch};
}
for(std::size_t j = 0; j < kbatch_list.size(); j++)
{
auto kbatch_curr = kbatch_list[j];
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
DeviceMem gemm_arg_dev_mem(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->GetDeviceKernelArgSize(argument_ptr.get()));
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetDeviceKernelArgs(argument_ptr.get(), gemm_arg_dev_mem.GetDeviceBuffer());
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
gemm_desc_workspace.SetZero();
for(std::size_t i = 0; i < gemm_descs.size(); i++)
c_device_buf[i]->SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
if(time_kernel)
{
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << ", KBatch = " << best_kbatch
<< std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -8,12 +8,14 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_scale.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -21,25 +23,6 @@
#include "ck/library/utility/literals.hpp"
namespace ck {
template <typename HostTensorA,
typename HostTensorB,
typename AElementOp,
typename BElementOp,
typename ScaleElementOp>
void reference_permute_scale(HostTensorB& b_tensor,
const HostTensorA& a_tensor,
AElementOp a_tensor_op,
BElementOp b_tensor_op,
ScaleElementOp scale_op)
{
b_tensor.ForEach([&](auto& self, auto idx) {
auto tmp_val = a_tensor(idx);
b_tensor_op(tmp_val, tmp_val);
scale_op(tmp_val, tmp_val);
a_tensor_op(self(idx), tmp_val);
});
}
namespace profiler {
template <typename ADataType, typename BDataType, index_t NumDim>
......@@ -54,12 +37,11 @@ bool profile_permute_scale_impl(int do_verification,
bool pass = true;
bool instance_found = false;
using ElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using ElementOp = ck::tensor_operation::element_wise::Scale;
float scale = 2.f;
Tensor<ADataType> a(lengths_vector, input_strides_vector);
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(lengths_vector, input_strides_vector)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(lengths_vector, output_strides_vector);
Tensor<BDataType> host_b(lengths_vector, output_strides_vector);
......@@ -80,12 +62,8 @@ bool profile_permute_scale_impl(int do_verification,
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
ElementOp,
UnaryOp,
Scale,
NumDim>;
using DeviceOp = ck::tensor_operation::device::
DeviceElementwise<ck::Tuple<ADataType>, ck::Tuple<BDataType>, ElementOp, NumDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -100,7 +78,14 @@ bool profile_permute_scale_impl(int do_verification,
if(do_verification)
{
reference_permute_scale(host_b, a, ElementOp{}, UnaryOp{}, Scale{scale});
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, ElementOp>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, ElementOp{scale});
ref_invoker.Run(ref_argument);
}
auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
......@@ -113,14 +98,8 @@ bool profile_permute_scale_impl(int do_verification,
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
{input_strides},
{output_strides},
input,
output,
ElementOp{},
UnaryOp{},
Scale{scale});
auto argument_ptr = op_ptr->MakeArgumentPointer(
lengths, {input_strides}, {output_strides}, input, output, ElementOp{scale});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......@@ -141,6 +120,7 @@ bool profile_permute_scale_impl(int do_verification,
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "host_b: ", host_b.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl;
}
}
......
......@@ -2,19 +2,6 @@
set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_multiply.cpp
profile_gemm_multiply_add.cpp
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
profile_batched_gemm_reduce.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_bwd_data.cpp
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm_bwd_data.cpp
profile_groupnorm_fwd.cpp
......@@ -29,36 +16,58 @@ set(PROFILER_SOURCES
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
profile_transpose.cpp
profile_permute_scale.cpp
)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
set(PROFILER_EXECUTABLE ckProfiler)
......@@ -68,25 +77,6 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility getopt::getopt)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
......@@ -96,39 +86,65 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment