"tests/test_models/test_dense_heads/test_ssn.py" did not exist on "3a939d7fd958ef2c6018bf223e1118138ecbc265"
Commit 7b7a3978 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents b24d93a1 7e8230da
# Change Log for Composable Kernel
# Changelog for Composable Kernel
Full documentation for Composable Kernel is not yet available.
## (Unreleased) CK for ROCm 6.0.0
### Fixed
### Fixes
- Fixed a hazard associated with inline v_dot (#808)
- Fixed two bugs in grouped convolution backward data without K padding (#848 #876)
### Optimizations
None
### Added
- Added image to column (#867) and column to image kernels (#930).
### Additions
- Added an image to a column kernel (#867)
- Added a column to an image kernel (#930)
- Support for 3D grouped convolution forward on RDNA 3 GPUs (#935)
- Grouped convolution support for small K and C (#822 #879 #897)
- Support for NHWGC (2D and 3D) grouped convolution backward weight (#769 #804)
- Support for bf16/f32/f16 and NHWGC (2D and 3d) grouped convolution backward data (#757 #799)
- Support for Batched Gemm DL (#732)
### Changed
### Changes
- Changed the grouped convolution API to maintain consistency with other convolution kernels (#817)
## CK 0.2.0 for ROCm 5.7.0
## CK 0.2.0 for ROCm 5.5.0
### Fixed
- Fixed a bug in 6-dimensional kernels (#555).
- Fixed grouped ConvBwdWeight test case failure (#524).
### Fixes
- Fixed a bug in 6-dimensional kernels (#555)
- Fixed a test case failure with grouped convolution backward weight (#524)
### Optimizations
- Improve proformance of normalization kernel
### Added
- Added new cmake flag "DL_KERNELS" must be set to "ON" in order to build the gemm_dl and batched_gemm_multi_d_dl instances.
- Added new cmake flag "DTYPES" which could be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build instance of select data types.
- Added new cmake flag "INSTANCES_ONLY" which will only build CK library and instances without the tests, examples, or profiler.
- Added new feature: if GPU_TARGETS is not set on cmake command line, CK will be built for all targets supported by compiler.
- Added support on MI300A/MI300X.
- Added support on NAVI3x.
- Added user tutorial (#563).
- Added more instances for irregular GEMM sizes (#560).
- Added inter-wave consumer-producer programming model for GEMM kernels (#310).
- Added multi-D GEMM client APIs (#534).
- Added multi-embeddings support (#542).
- Added Navi3x blockwise GEMM and real GEMM support (#541).
- Added Navi grouped ConvBwdWeight support (#505).
- Added MaxPool, AvgPool forward (#815).
- Added MaxPool backward (#750).
### Changed
- Improved the performance of the normalization kernel
### Additions
- New CMake flags:
- "DL_KERNELS"-- Must be set to "ON" in order to build the gemm_dl and batched_gemm_multi_d_dl instances
- "DTYPES" -- Can be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build an instance of the specified data types
- "INSTANCES_ONLY" -- Only builds CK library and instances without tests, examples, or profiler
- New feature: if GPU_TARGETS is not set in the CMake command line, CK will be built for all targets supported by the compiler
- Support for MI300A/MI300X
- Support for AMD RDNA 3
- New user tutorial (#563)
- Additional instances for irregular GEMM sizes (#560)
- New inter-wave consumer-producer programming model for GEMM kernels (#310)
- GEMM with support multiple elementwise fusions (multi-D) (#534)
- Multi-embeddings support (#542)
- AMD RDNA 3 blockwise GEMM and real GEMM support (#541)
- AMD RDNA grouped convolution backward weight support (#505)
- MaxPool and AvgPool forward (#815); MaxPool backward (#750)
### Changes
None
......@@ -106,7 +106,7 @@ message("checking which targets are supported")
#Setting GPU_TARGETS on command line will override this list
if(NOT PROFILER_ONLY)
rocm_check_target_ids(DEFAULT_GPU_TARGETS
TARGETS "gfx900;gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102")
TARGETS "gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102")
else()
add_definitions(-DPROFILER_ONLY)
set(GPU_TARGETS "" CACHE STRING "" FORCE)
......@@ -114,7 +114,7 @@ else()
message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, or gfx11")
endif()
if(GPU_ARCH MATCHES "gfx90")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx900;gfx906;gfx908;gfx90a")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a")
elseif(GPU_ARCH MATCHES "gfx94")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx940;gfx941;gfx942")
elseif(GPU_ARCH MATCHES "gfx10")
......
FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
ARG ROCMVERSION=5.6
ARG ROCMVERSION=5.7
ARG compiler_version=""
ARG compiler_commit=""
......
......@@ -713,8 +713,8 @@ pipeline {
}
agent{ label rocmnode("gfx908 || gfx90a") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
......
......@@ -67,13 +67,20 @@ add_example_executable(example_gemm_xdl_streamk gemm_xdl_streamk.cpp)
if(GPU_TARGETS MATCHES "gfx940" OR GPU_TARGETS MATCHES "gfx941" OR GPU_TARGETS MATCHES "gfx942")
add_example_executable(example_gemm_xdl_f8 gemm_xdl_f8.cpp)
add_example_executable(example_gemm_xdl_fp8 gemm_xdl_fp8.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_xdl example_gemm_xdl_f8)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp8)
endif()
endif()
add_example_executable(example_gemm_xdl_fp16_f8 gemm_xdl_fp16_f8.cpp)
if(GPU_TARGETS MATCHES "gfx940" OR GPU_TARGETS MATCHES "gfx941" OR GPU_TARGETS MATCHES "gfx942")
add_example_executable(example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp8_bf8)
endif()
endif()
add_example_executable(example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp16_f8)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::bf8_t;
using CDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::f8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto LoopSched = ck::make_default_loop_scheduler();
static constexpr auto PipelineVer = ck::PipelineVersion::v1;
using ComputeTypeA = ck::f8_t;
using ComputeTypeB = ck::bf8_t;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16, LoopSched, PipelineVer, ComputeTypeA, ComputeTypeB>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp,
ComputeTypeA,
ComputeTypeB>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
add_custom_target(example_contraction)
add_custom_target(example_contraction_scale)
add_custom_target(example_contraction_bilinear)
# FP32
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32)
add_example_executable(example_contraction_bilinear_xdl_fp32_compute_bf16 contraction_bilinear_xdl_fp32_compute_bf16.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_bf16)
add_example_executable(example_contraction_scale_xdl_fp32_compute_bf16 contraction_scale_xdl_fp32_compute_bf16.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_bf16)
add_example_executable(example_contraction_bilinear_xdl_fp32_compute_fp16 contraction_bilinear_xdl_fp32_compute_fp16.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_fp16)
add_example_executable(example_contraction_scale_xdl_fp32_compute_fp16 contraction_scale_xdl_fp32_compute_fp16.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_fp16)
# FP64
add_example_executable(example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64)
add_example_executable(example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64)
add_example_executable(example_contraction_bilinear_xdl_fp64_compute_fp32 contraction_bilinear_xdl_fp64_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64_compute_fp32)
add_example_executable(example_contraction_scale_xdl_fp64_compute_fp32 contraction_scale_xdl_fp64_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64_compute_fp32)
# FP16
add_example_executable(example_contraction_bilinear_xdl_fp16_compute_fp32 contraction_bilinear_xdl_fp16_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp16_compute_fp32)
add_example_executable(example_contraction_scale_xdl_fp16_compute_fp32 contraction_scale_xdl_fp16_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp16_compute_fp32)
# BF16
add_example_executable(example_contraction_bilinear_xdl_bf16_compute_fp32 contraction_bilinear_xdl_bf16_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_bf16_compute_fp32)
add_example_executable(example_contraction_scale_xdl_bf16_compute_fp32 contraction_scale_xdl_bf16_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_bf16_compute_fp32)
add_dependencies(example_contraction example_contraction_scale)
add_dependencies(example_contraction example_contraction_bilinear)
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DDataType = BF16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = BF16;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
using ComputeDataType = BF16;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
using ComputeDataType = F16;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F64;
using BDataType = F64;
using AccDataType = F32;
using CShuffleDataType = F64;
using DDataType = F64;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F64;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
using DeviceOpInstanceKKNN = DeviceOpInstanceKK_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNNN = DeviceOpInstanceKN_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKNN = DeviceOpInstanceMK_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNNN = DeviceOpInstanceMN_FP64<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
#include "run_contraction_bilinear_example.inc"
int main(int argc, char* argv[]) { return run_contraction_bilinear_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;
using DeviceOpInstanceKKN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKN;
#include "run_contraction_scale_example.inc"
int main(int argc, char* argv[]) { return run_contraction_scale_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ComputeDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;
using DeviceOpInstanceKKN = DeviceOpInstanceKK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceKNN = DeviceOpInstanceKN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMKN = DeviceOpInstanceMK_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstanceMNN = DeviceOpInstanceMN_Generic<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
ComputeDataType,
AElementOp,
BElementOp,
CDEElementOp>;
using DeviceOpInstance = DeviceOpInstanceKKN;
#include "run_contraction_scale_example.inc"
int main(int argc, char* argv[]) { return run_contraction_scale_example(argc, argv); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment