Unverified Commit 764164b4 authored by Haocong WANG's avatar Haocong WANG Committed by GitHub
Browse files

[GEMM] UniversalGemm update (#1262)



* Add bf16 instances

* Add bf16 gemm universal example

* tempsave

* Add guard to navi compilation

* workground on a specific mixed gemm instance ( bring back it when compiler fix upload)

* fix formatting condition statement issue

* solve conflict

---------
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
parent f044ff71
......@@ -28,6 +28,8 @@ add_example_executable(example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_v3)
add_example_executable(example_gemm_xdl_fp16_fp8_v3 gemm_xdl_fp16_fp8_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8_v3)
add_example_executable(example_gemm_xdl_bf16_v3 gemm_xdl_bf16_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_bf16_v3)
add_example_executable(example_gemm_xdl_wavelet_fp16 gemm_xdl_wavelet_fp16.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_wavelet_fp16)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
128, 128,
64, 8, 8,
16, 16,
4, 4,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
#include "run_gemm_example_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
......@@ -3,6 +3,88 @@
#pragma once
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
......@@ -180,7 +262,11 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
#endif
}
......
......@@ -140,8 +140,10 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t WgpPerCU =
(4 * warpSize / BlockSize) >= 1 ? 4 * warpSize / BlockSize : 1;
static constexpr index_t FullMemBandPrefetchStages = math::integer_divide_ceil(
32768 / (4 * warpSize / BlockSize),
32768 / WgpPerCU,
(MPerBlock * sizeof(ADataType) + NPerBlock * sizeof(BDataType)) * KPerBlock);
static constexpr index_t PrefetchStages =
FullMemBandPrefetchStages >= 2
......@@ -631,8 +633,10 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
static constexpr index_t KPerInnerLoop = math::max(KPerThread / NumMacClusters, KPack);
static constexpr index_t KRepeat = KPerThread / KPerInnerLoop;
static constexpr index_t WgpPerCU =
(4 * warpSize / BlockSize) >= 1 ? 4 * warpSize / BlockSize : 1;
static constexpr index_t FullMemBandPrefetchStages = math::integer_divide_ceil(
32768 / (4 * warpSize / BlockSize),
32768 / WgpPerCU,
(MPerBlock * sizeof(ADataType) + NPerBlock * sizeof(BDataType)) * KPerBlock);
static constexpr index_t PrefetchStages =
FullMemBandPrefetchStages >= 2
......
......@@ -184,19 +184,22 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
constexpr auto ds_read_b_issue_cycle =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16 ? 8 : 4;
constexpr auto ds_read_a_mfma_rate =
(mfma_cycle - 8 + ds_read_a_issue_cycle - 1) / ds_read_a_issue_cycle;
(mfma_cycle - 4 + 2 * ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
constexpr auto ds_read_b_mfma_rate =
(mfma_cycle - 8 + ds_read_b_issue_cycle - 1) / ds_read_b_issue_cycle;
(mfma_cycle - 4 + 2 * ds_read_b_issue_cycle - 1) / (2 * ds_read_b_issue_cycle);
constexpr auto num_dsread_a_mfma =
(num_ds_read_inst_a + ds_read_a_mfma_rate - 1) / ds_read_a_mfma_rate;
constexpr auto num_dsread_b_mfma =
(num_ds_read_inst_b + ds_read_b_mfma_rate - 1) / ds_read_b_mfma_rate;
// stage 1
// Separate this part?
constexpr auto num_mfma_per_ds_read = sizeof(ComputeDataType) / sizeof(ADataType) >
sizeof(ComputeDataType) / sizeof(BDataType)
? sizeof(ComputeDataType) / sizeof(ADataType)
: sizeof(ComputeDataType) / sizeof(BDataType);
constexpr auto num_mfma_stage1 =
num_mfma_inst - num_mfma_per_ds_read * (num_ds_read_inst_a / ds_read_a_mfma_rate +
num_ds_read_inst_b / ds_read_b_mfma_rate);
// constexpr auto num_mfma_per_ds_read = sizeof(ComputeDataType) / sizeof(ADataType) >
// sizeof(ComputeDataType) / sizeof(BDataType)
// ? sizeof(ComputeDataType) / sizeof(ADataType)
// : sizeof(ComputeDataType) / sizeof(BDataType);
constexpr auto num_mfma_stage1 = num_mfma_inst - (num_dsread_a_mfma + num_dsread_b_mfma);
constexpr auto num_mfma_per_issue =
num_mfma_stage1 / (num_buffer_load_inst_a + num_buffer_load_inst_b);
constexpr auto num_dswrite_per_issue_a = num_ds_write_inst_a / num_buffer_load_inst_a;
......@@ -226,16 +229,36 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
});
// stage 2
static_for<0, num_ds_read_inst_a / ds_read_a_mfma_rate, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_a_mfma_rate, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, num_mfma_per_ds_read, 0); // MFMA
static_for<0, num_dsread_a_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_a - (i + 1) * ds_read_a_mfma_rate) >=
ds_read_a_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_a_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_a - (num_dsread_a_mfma - 1) *
ds_read_a_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
static_for<0, num_ds_read_inst_b / ds_read_b_mfma_rate, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_b_mfma_rate, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, num_mfma_per_ds_read, 0); // MFMA
static_for<0, num_dsread_b_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_b - (i + 1) * ds_read_b_mfma_rate) >=
ds_read_b_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_b_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_b - (num_dsread_b_mfma - 1) *
ds_read_b_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
}
......
......@@ -194,9 +194,9 @@ struct BlockwiseGemmXdlops_pipeline_v5<BlockGemmPipelineScheduler::Intrawave,
constexpr auto ds_read_b_issue_cycle =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16 ? 8 : 4;
constexpr auto ds_read_a_mfma_rate =
(mfma_cycle - 8 + ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
(mfma_cycle - 4 + 2 * ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
constexpr auto ds_read_b_mfma_rate =
(mfma_cycle - 8 + ds_read_b_issue_cycle - 1) / (2 * ds_read_b_issue_cycle);
(mfma_cycle - 4 + 2 * ds_read_b_issue_cycle - 1) / (2 * ds_read_b_issue_cycle);
constexpr auto num_dsread_stage1_a = num_ds_read_inst_a / KRepeat * (KRepeat - 1);
constexpr auto num_dsread_stage1_b = num_ds_read_inst_b / KRepeat * (KRepeat - 1);
......
......@@ -168,11 +168,15 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
// rotating mem
rotating_mem.Next();
// clear c mem
if(arg_.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg_.p_c_grid,
0,
arg_.M * arg_.N * sizeof(CDataType),
stream_config.stream_id_));
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
if(arg_.KBatch > 1)
hipGetErrorString(
hipMemsetAsync(arg_.p_c_grid,
0,
arg_.M * arg_.N * sizeof(CDataType),
stream_config.stream_id_));
}
};
ave_time = ck::utility::launch_and_time_kernel_with_preprocess<false>(
......@@ -186,11 +190,14 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
}
else
{
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
}
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
......@@ -208,12 +215,15 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
{
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
}
else
{
......@@ -230,113 +240,118 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
TailNumber::One>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
TailNumber::Full>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
......@@ -458,25 +473,28 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
......@@ -507,25 +525,28 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
{
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
......@@ -558,14 +579,18 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
if constexpr(!is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
}
else
{
......
......@@ -1080,6 +1080,19 @@ struct GridwiseGemm_xdl_cshuffle_v3
}
}
if constexpr(is_same<remove_cvref_t<CDataType>, bhalf_t>::value)
{
#if DEBUG_LOG
std::cout << " KBatch: " << karg.KBatch << " > 1 is not support yet" << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
if(karg.KBatch > 1)
{
return false;
}
}
// check gridwise gemm pipeline
const auto num_k_loop = karg.AK0 / (KPerBlock / AK1Value);
......
......@@ -315,6 +315,107 @@ void add_device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instanc
DeviceGemmV2<Row, Col, Row, F8, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
#endif
template <typename ADataType,
typename BDataType,
......@@ -494,6 +595,64 @@ struct DeviceOperationInstanceFactory<
op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<ADataType, bhalf_t> && is_same_v<BDataType, bhalf_t> &&
is_same_v<CDataType, bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instances(
op_ptrs);
add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instances(
op_ptrs);
}
}
#endif
return op_ptrs;
}
......
......@@ -22,7 +22,6 @@ list(APPEND GEMM_UNIVERSAL_INSTANCES
device_gemm_xdl_universal_f16_f16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_f16_f16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_f16_f16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_default_instance.cpp
device_gemm_xdl_universal_f16_f8_f16/device_gemm_xdl_universal_f16_f8_f16_mk_kn_mn_comp_kpadding_instance.cpp
......@@ -65,6 +64,27 @@ list(APPEND GEMM_UNIVERSAL_INSTANCES
device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_f8_f16_f16/device_gemm_xdl_universal_f8_f16_f16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_mnkpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_xdl_universal_bf16_bf16_bf16/device_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_mnkpadding_instance.cpp
)
add_instance_library(device_gemm_universal_instance ${GEMM_UNIVERSAL_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = bhalf_t;
using F32 = float;
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
template <index_t... Is>
using S = Sequence<Is...>;
using PassThrough = element_wise::PassThrough;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 224, 256, 64, 8, 8, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 0, 1, 2, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 128, 32, 8, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>
// clang-format on
>;
template <BlockGemmPipelineScheduler BlkGemmPipeSched, GemmSpecialization GemmSpec>
using device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances = std::tuple<
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 8, 4, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 32, 64, 8, 2, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 256, 16, 64, 8, 2, 16, 16, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, 0, 1, 1, S<1, 32, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 32, 64, 8, 4, 32, 32, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 128, 16, 64, 8, 4, 16, 16, 4, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 32, 64, 8, 4, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 64, 16, 64, 8, 4, 16, 16, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 0, 1, 1, S<1, 16, 1, 8>, 2, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 128, 8, 4, 16, 16, 1, 1, S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 64, 16, 16, 64, 8, 4, 16, 16, 1, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 4>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 32, 64, 8, 4, 16, 16, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 64, 64, 8, 4, 16, 16, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 64, 64, 8, 4, 32, 32, 1, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 8>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 4, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGemm_Xdl_CShuffleV3< Row, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmSpec, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 16, 1, 16>, 8, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances<GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances<GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_comp_instances<GemmMNPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances<Intrawave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances<Intrawave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances<Intrawave,
GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances<Interwave, GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<
DeviceGemmV2<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_universal_bf16_bf16_bf16_mk_kn_mn_mem_instances<Interwave, GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment