Commit 7572a691 authored by coderfeli's avatar coderfeli
Browse files

merge develop

parents 7796fc73 6b6fcd37
......@@ -15,8 +15,7 @@ This will result in an executable `build/bin/tile_example_fmha_fwd`
## kernel
The kernel template is `fmha_fwd_kernel.hpp`, this is the grid-wise op in old ck_tile's terminology. We put it here purposely, to demonstrate one can construct a kernel by using various internal component from ck_tile. We may still have an implementation under ck_tile's include path (in the future) for the kernel template.
There are 3 template parameters for this kernel template.
* `TilePartitioner` is used to map the workgroup to corresponding tile, `fmha_fwd_tile_partitioner.hpp` in this folder served as this purpose.
There are 2 template parameters for this kernel template.
* `FmhaPipeline` is one of the block_tile_pipeline(under `include/ck_tile/tile_program/block_tile_pipeline`) which is a performance critical component. Indeed, we did a lot of optimization and trials to optimize the pipeline and may still workout more performance pipeline and update into that folder. People only need to replace this pipeline type and would be able to enjoy the benefit of different performant implementations (stay tuned for updated pipeline(s)).
* `EpiloguePipeline` will modify and store out the result in the last phase. People usually will do lot of post-fusion at this stage, so we also abstract this concept. Currently we didn't do much thing at the epilogue stage but leave the room for future possible support.
......
......@@ -506,6 +506,14 @@ def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
cond &= deterministic == "f"
if not cond:
continue
if receipt == 4:
cond = dtype in ['fp16', 'bf16']
cond &= bias in ['no', 'bias']
cond &= dropout in ['no', 'dropout_wg32', 'dropout_wg16']
cond &= dpad == dvpad
cond &= deterministic == "f"
if not cond:
continue
api_pool.register_dq_dk_dv_traits(k.api_trait())
gen.append(k)
......
......@@ -29,11 +29,6 @@ K0_MAX_SUBMAX_MAP = {
256: 256
}
TILE_PARTITIONER_MAP = {
"shb" : "ck_tile::FmhaFwdTilePartitioner_SHB",
"hbs" : "ck_tile::FmhaFwdTilePartitioner_HBS",
}
FMHA_FWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.\n
// auto generated by generate.py
......@@ -90,9 +85,7 @@ using fmha_epilogue_{F_idx} =
{F_spad}, {F_dvpad}>>;
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdKernel<{F_tile_partitioner}<fmha_shape_{F_idx}>,
fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>;
ck_tile::FmhaFwdKernel<fmha_pipeline_{F_idx}, fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
......@@ -329,12 +322,6 @@ class FmhaFwdKernel:
F_pipeline : FmhaFwdPipeline
mask_impl : str
def get_tp(self) -> str:
if self.F_mode == 'group':
return 'hbs'
else:
return 'shb'
@property
def template(self) -> str:
kernel_body = str()
......@@ -374,13 +361,12 @@ class FmhaFwdKernel:
F_pipeline_enum = PIPELINE_ENUM_MAP[self.F_pipeline.tag],
F_mask = get_mask_map(self.mask_impl)[self.F_pipeline.F_mask],
F_mode = MODE_MAP[self.F_mode],
F_pipeline = PIPELINE_MAP[self.F_pipeline.tag],
F_tile_partitioner = TILE_PARTITIONER_MAP[self.get_tp()])
F_pipeline = PIPELINE_MAP[self.F_pipeline.tag])
@property
def name(self) -> str:
# TODO: we don't encode idx here
return f"fmha_fwd_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_{self.get_tp()}_" + \
return f"fmha_fwd_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_" + \
self.F_tile.name + '_' + self.F_pipeline.name
@property
......@@ -501,13 +487,20 @@ def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[Fm
if kernel_filter != None:
if not fnmatch.fnmatch(k.name, kernel_filter):
continue
if receipt == 2:
if receipt in (2, 3):
cond = dtype in ['fp16', 'bf16']
cond &= pipeline.F_vlayout == 'row'
cond &= pipeline.F_bias in ['no', 'alibi']
cond &= pipeline.F_squant == 'f'
if not cond:
continue
if receipt == 4:
cond = dtype in ['fp16', 'bf16']
cond &= pipeline.F_vlayout == 'row'
cond &= pipeline.F_bias in ['no', 'bias']
cond &= pipeline.F_squant == 'f'
if not cond:
continue
api_pool.register_traits(k.api_trait())
gen.append(k)
......
......@@ -46,9 +46,7 @@ using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaFwdAppendKVPipelineProbl
using fmha_pipeline_{F_idx} = ck_tile::BlockFmhaFwdAppendKVPipeline<
fmha_pipeline_problem_{F_idx}>;
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdAppendKVKernel<ck_tile::FmhaFwdAppendKVTilePartitioner<{F_bs}, {F_bsk}, {F_bd}, {F_bdv}>,
fmha_pipeline_{F_idx}>;
using fmha_kernel_{F_idx} = ck_tile::FmhaFwdAppendKVKernel<fmha_pipeline_{F_idx}>;
using trait_{F_idx} = fmha_fwd_appendkv_traits_<{F_hdim}, {F_dtype}, {F_bs}, {F_bsk}, {F_bd}, {F_bdv}, {F_vlayout},
{F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}, {F_rope}, {F_pagedkv}>;
......
......@@ -48,8 +48,8 @@ using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
struct kernel_runner {{
template <bool kHasUnevenSplits, bool kMergeNumHeadGroupsSeqLenQ = false>
struct instance {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
......@@ -64,11 +64,12 @@ using fmha_trait = ck_tile::TileFmhaFwdSplitKVTraits<{F_spad},
{F_dpad},
{F_dvpad},
{F_bias},
false,
/*kHasBiasGrad=*/false,
{F_lse},
{F_squant},
{F_pagedkv},
kHasUnevenSplits,
kMergeNumHeadGroupsSeqLenQ,
{F_occupancy}>;
using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
......@@ -96,9 +97,7 @@ using fmha_epilogue =
{F_spad}, {F_dvpad}>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>,
fmha_pipeline,
fmha_epilogue>;
ck_tile::FmhaFwdSplitKVKernel<fmha_pipeline, fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
......@@ -117,28 +116,50 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F
#include <iostream>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wtautological-compare"
namespace {{
template <bool kHasUnevenSplits>
void run_instance(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a) {{
if constexpr ({F_hdim} == 128 && {F_bias} == ck_tile::BlockAttentionBiasEnum::NO_BIAS
&& (std::is_same_v<{F_mask}, ck_tile::SimplifiedGenericAttentionMask<false>>
|| std::is_same_v<{F_mask}, FmhaMasks::NoMask>)) {{
if (a.max_seqlen_q == 1 && a.nhead_k < a.nhead_q) {{
instance<kHasUnevenSplits, /*kMergeNumHeadGroupsSeqLenQ=*/true>::run(s, a);
}} else {{
instance<kHasUnevenSplits>::run(s, a);
}}
}} else {{
instance<kHasUnevenSplits>::run(s, a);
}}
}}
}} // anonymous namespace
#pragma clang diagnostic pop
template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if constexpr({F_mode} == false) {{ // batch mode
// we don't check every seqlen_k values for kvcache
if (a.seqlen_k_ptr != nullptr) {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
run_instance</*kHasUnevenSplits=*/false>(s, a);
}} else {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
}}
}} else {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = instance<true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......@@ -148,7 +169,7 @@ using fmha_dtype_{F_idx} = {F_dtype};
namespace {{
template <ck_tile::index_t kLogMaxSplits>
struct kernel_runner {{
struct instance {{
using fmha_trait = ck_tile::TileFmhaFwdSplitKVCombineTraits<{F_spad},
{F_dvpad},
{F_lse},
......@@ -176,11 +197,7 @@ using fmha_epilogue =
false, false>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVCombineKernel<
ck_tile::FmhaFwdSplitKVCombineTilePartitioner<
fmha_pipeline_problem::kM0, fmha_pipeline_problem::kN1>,
fmha_pipeline,
fmha_epilogue>;
ck_tile::FmhaFwdSplitKVCombineKernel<fmha_pipeline, fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
......@@ -202,22 +219,22 @@ template<>
void fmha_fwd_splitkv_combine_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if (a.num_splits <= 8) {{
kernel_runner<3>::run(s, a);
instance<3>::run(s, a);
}} else if (a.num_splits <= 16) {{
kernel_runner<4>::run(s, a);
instance<4>::run(s, a);
}} else if (a.num_splits <= 32) {{
kernel_runner<5>::run(s, a);
instance<5>::run(s, a);
}} else if (a.num_splits <= 64) {{
kernel_runner<6>::run(s, a);
instance<6>::run(s, a);
}} else if (a.num_splits <= 128) {{
kernel_runner<7>::run(s, a);
instance<7>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_combine_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<6>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = instance<6>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......
......@@ -1140,6 +1140,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
naive_t.v_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.o_layout = o_perm == 1 ? "bhsd" : "bshd";
naive_t.variation = 0; // TODO?
naive_t.quant_algo = 0;
ck_tile::DeviceMem o_naive_buf(o_host.get_element_space_size_in_bytes());
......
......@@ -400,8 +400,18 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
}
}();
dim3 grids = FmhaKernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v);
if constexpr(FmhaKernel::kIsGroupMode)
{
dim3 grids = FmhaKernel::GridSize(
args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, args.seqlen_k_ptr != nullptr);
return ck_tile::make_tuple(kargs, grids);
}
else
{
dim3 grids =
FmhaKernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, false);
return ck_tile::make_tuple(kargs, grids);
}
}
template <typename Kernel>
......@@ -500,8 +510,8 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
}
}();
dim3 grids =
Kernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, args.num_splits);
dim3 grids = Kernel::GridSize(
args.batch, args.nhead_q, args.nhead_k, args.max_seqlen_q, args.hdim_v, args.num_splits);
return ck_tile::make_tuple(kargs, grids);
}
......
......@@ -103,7 +103,8 @@ if __name__ == "__main__":
required=False,
help="codegen receipt. 0: generate only 8xhdim coverage\n" + \
" 1: generate more instance to cover all hdim\n" + \
" 2: Only generate instance for Flash attention integration"
" 2: Only generate instance for Flash attention integration\n" + \
" 4: Only generate instance for PyTorch integration"
)
args = parser.parse_args()
......
......@@ -33,7 +33,7 @@ target_sources(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${LAYERNORM2D_FWD_GEN_BLOBS})
set(EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
list(APPEND EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal --offload-compress)
target_compile_options(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS})
......
......@@ -59,7 +59,7 @@ args:
-kname print kernel name or not (default:1)
-prec_i input precision (default:fp16)
-prec_o output precision, set auto will be the same as input (default:auto)
-prec_sx output quant scale type, set auto will be the same as input. used when fquant=1 (default:auto)
-prec_sm output quant scale type, set auto will be the same as input. used when fquant=1 (default:auto)
-prec_sy output quant scale type, set auto will be the same as input. used when fquant=1 or 2 (default:auto)
-fadd fused-add, 0:no fused add, 1:preadd+store, 2:preadd only (default:0)
-fquant fused-quant, 0:no, 1:smooth-dynamic-quant, 2:dynamic-quant (default:0)
......@@ -69,7 +69,7 @@ args:
```
## limitations
Note that `fquant=2`, `fadd=2`, `prec_sx/prec_sy` other than `fp32` are not by default generated. Though our kernel template suppor this. (TBD: add some flag in generate.py) to generate those instance on demand. Beside, `N>8192` case will by default using two-pass pipeline, and `-fquant=1/2` are not supported yet. If need suport `N>8192` and `fused+residual+store`, you can use this example together with `12_smoothquant`, to construct layernorm+residual, and smoothquant, 2 kernels for this purpose.
Note that `fquant=2`, `fadd=2`, `prec_sm/prec_sy` other than `fp32` are not by default generated. Though our kernel template suppor this. (TBD: add some flag in generate.py) to generate those instance on demand. Beside, `N>8192` case will by default using two-pass pipeline, and `-fquant=1/2` are not supported yet. If need suport `N>8192` and `fused+residual+store`, you can use this example together with `12_smoothquant`, to construct layernorm+residual, and smoothquant, 2 kernels for this purpose.
```
# some case
......
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
import argparse
......@@ -23,6 +23,10 @@ def get_if_str(idx, total, lase_else = True):
else:
return 'else if'
XBIAS_ENUM_STR_MAP = [
'no',
'xbias'] # pre-norm add bias
FUSED_ADD_ENUM_STR_MAP = [
'no',
'pras', # pre-norm
......@@ -35,7 +39,8 @@ FUSED_FUSED_SWEEP_STR_MAP = [
DATA_TYPE_MAP = {'fp32' : 'float',
'fp16' : 'ck_tile::fp16_t',
'bf16' : 'ck_tile::bf16_t',
'int8' : 'ck_tile::int8_t'}
'int8' : 'ck_tile::int8_t',
'fp8' : 'ck_tile::fp8_t'}
def BOOL_MAP(b_) -> str:
if b_:
......@@ -48,7 +53,7 @@ class layernorm_fwd_codegen:
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename XDataType_,
typename YDataType_,
typename XScaleDataType_,
typename SmoothScaleDataType_,
typename YScaleDataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
......@@ -58,14 +63,16 @@ template <typename XDataType_,
bool kPadN_,
bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kWelford_,
bool kTwoPass_,
ck_tile::index_t kXbias_ = 0,
ck_tile::index_t kFusedAdd_ = 0,
ck_tile::index_t kFusedQuant_ = 0>
struct layernorm2d_fwd_traits_
{
using XDataType = ck_tile::remove_cvref_t<XDataType_>;
using YDataType = ck_tile::remove_cvref_t<YDataType_>;
using XScaleDataType = ck_tile::remove_cvref_t<XScaleDataType_>;
using SmoothScaleDataType = ck_tile::remove_cvref_t<SmoothScaleDataType_>;
using YScaleDataType = ck_tile::remove_cvref_t<YScaleDataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
......@@ -120,14 +127,16 @@ struct layernorm2d_fwd_traits_
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kFastFDiv = kFastFDiv_;
static constexpr bool kWelford = kWelford_;
static constexpr bool kTwoPass = kTwoPass_;
static constexpr ck_tile::index_t kXbias = kXbias_;
static constexpr ck_tile::index_t kFusedAdd = kFusedAdd_;
static constexpr ck_tile::index_t kFusedQuant = kFusedQuant_;
};
template <typename XDataType_,
typename YDataType_,
typename XScaleDataType_,
typename SmoothScaleDataType_,
typename YScaleDataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
......@@ -137,12 +146,14 @@ template <typename XDataType_,
bool kPadN_,
bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kWelford_,
bool kTwoPass_,
int kXbias_,
int kFusedAdd_,
int kFusedQuant_>
using traits_ = layernorm2d_fwd_traits_<XDataType_,
YDataType_,
XScaleDataType_,
SmoothScaleDataType_,
YScaleDataType_,
Repeat_M_,
Repeat_N_,
......@@ -152,13 +163,15 @@ using traits_ = layernorm2d_fwd_traits_<XDataType_,
kPadN_,
kSaveMeanInvStd_,
kFastFDiv_,
kWelford_,
kTwoPass_,
kXbias_,
kFusedAdd_,
kFusedQuant_>;
"""
API_COMMON_HEADER = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
......@@ -177,26 +190,29 @@ float layernorm2d_fwd_(const S& s, A a)
{{
using XDataType = typename Traits_::XDataType;
using YDataType = typename Traits_::YDataType;
using XScaleDataType = typename Traits_::XScaleDataType;
using SmoothScaleDataType = typename Traits_::SmoothScaleDataType;
using YScaleDataType = typename Traits_::YScaleDataType;
using ComputeDataType = typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::ComputeDataType;
using ComputeDataType = typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::ComputeDataType;
using PipelineTraits = ck_tile::Layernorm2dFwdTraits<Traits_::kPadN,
Traits_::kSaveMeanInvStd,
Traits_::kFastFDiv,
Traits_::kWelford,
Traits_::kTwoPass,
static_cast<ck_tile::Layernorm2dXBiasEnum>(Traits_::kXbias),
static_cast<ck_tile::Layernorm2dFusedAddEnum>(Traits_::kFusedAdd),
static_cast<ck_tile::Layernorm2dFusedQuantEnum>(Traits_::kFusedQuant)>;
using PipelineProblem = ck_tile::Layernorm2dFwdPipelineProblem<
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::XDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::GammaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::BetaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::ComputeDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::YDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::MeanDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::InvStdDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::XScaleDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::YScaleDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::XDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::XBiasDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::GammaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::BetaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::ComputeDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::YDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::MeanDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::InvStdDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::SmoothScaleDataType,
typename LayerNormTypeConfig<XDataType, YDataType, SmoothScaleDataType, YScaleDataType>::YScaleDataType,
typename Traits_::Shape,
PipelineTraits>;
......@@ -204,12 +220,13 @@ float layernorm2d_fwd_(const S& s, A a)
using TwoPassPipeline = ck_tile::Layernorm2dFwdPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Default2DEpilogueProblem = ck_tile::Default2DEpilogueProblem<ComputeDataType, YDataType, false, Traits_::kPadN, false>;
using Default2DEpilogueProblem = ck_tile::Default2DEpilogueProblem<ComputeDataType, YDataType, false, Traits_::kPadN, true>;
using Default2DEpilogue = ck_tile::Default2DEpilogue<Default2DEpilogueProblem>;
static constexpr bool UseSmoothInputScale = Traits_::kFusedQuant == 1;
using DynamicQuantEpilogueProblem = ck_tile::DynamicQuantEpilogueProblem<ComputeDataType, XScaleDataType, YScaleDataType, YDataType, typename Traits_::Shape,
ck_tile::DynamicQuantEpilogueTraits<false, Traits_::kPadN, UseSmoothInputScale, false, true/*max3*/>>;
static constexpr bool UseRawStore = sizeof(YDataType) == 4;
using DynamicQuantEpilogueProblem = ck_tile::DynamicQuantEpilogueProblem<ComputeDataType, SmoothScaleDataType, YScaleDataType, YDataType, typename Traits_::Shape,
ck_tile::DynamicQuantEpilogueTraits<false, Traits_::kPadN, UseSmoothInputScale, UseRawStore, true/*max3*/>>;
using DynamicQuantEpilogue = ck_tile::DynamicQuantEpilogue<DynamicQuantEpilogueProblem>;
......@@ -233,7 +250,7 @@ float layernorm2d_fwd_(const S& s, A a)
API_BASE = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
......@@ -269,12 +286,12 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
INSTANCE_BASE = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_api_common.hpp"
// clang-format off
// prec_i prec_o prec_sy rm rn tm tn vn pd mv rpcf 2p add sweep
// prec_i prec_o prec_sy rm rn tm tn vn pd mv rpcf welford 2p xbias add sweep
{F_instance_def}
// clang-format on
......@@ -284,6 +301,10 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
self.working_path = working_path
self.kernel_filter = kernel_filter
class k_xbias_enum(IntEnum):
F_NO_XBIAS = 0
F_ADD_XBIAS = 1
class k_fuesd_add_enum(IntEnum):
F_NO_ADD = 0
F_PRE_ADD = 1
......@@ -299,6 +320,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
F_kPadN : bool
F_kSaveMeanInvStd : bool
F_kTwoPass : bool
F_kXbias : Any #: layernorm_fwd_codegen.k_bias_enum
F_kFusedAdd : Any #: layernorm_fwd_codegen.k_fuesd_add_enum
F_kFusedQuant : Any #: layernorm_fwd_codegen.k_fused_sweep_enum
......@@ -315,6 +337,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
@dataclass
class k_problem:
F_XDataType : str
F_XBiasDataType : str
F_GammaDataType : str
F_BetaDataType : str
F_ComputeDataType : str
......@@ -352,7 +375,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
class h_traits:
F_XDataType : str
F_YDataType : str
F_XScaleDataType : str
F_SmoothScaleDataType : str
F_YScaleDataType : str
F_Repeat_M : int
F_Repeat_N : int
......@@ -362,15 +385,17 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
F_kPadN : bool
F_kSaveMeanInvStd_ : bool
F_kFastFDiv_ : bool
F_kWelford_ : bool
F_kTwoPass_ : bool
F_kXbias_ : int
F_kFusedAdd : int
F_kFusedQuant : int
@property
def trait_name(self) ->str:
t_ = f'{DATA_TYPE_MAP[self.F_XDataType]}, {DATA_TYPE_MAP[self.F_YDataType]}, {DATA_TYPE_MAP[self.F_XScaleDataType]}, {DATA_TYPE_MAP[self.F_YScaleDataType]}, {self.F_Repeat_M:2}, {self.F_Repeat_N:2}, {self.F_ThreadPerBlock_M:2}, {self.F_ThreadPerBlock_N:4}'
t_ += f', {self.F_Vector_N:2}, {BOOL_MAP(self.F_kPadN):5}, {BOOL_MAP(self.F_kSaveMeanInvStd_):5}, {BOOL_MAP(self.F_kFastFDiv_):5}'
t_ += f', {BOOL_MAP(self.F_kTwoPass_):5}, {self.F_kFusedAdd:4}, {self.F_kFusedQuant:4}'
t_ = f'{DATA_TYPE_MAP[self.F_XDataType]}, {DATA_TYPE_MAP[self.F_YDataType]}, {DATA_TYPE_MAP[self.F_SmoothScaleDataType]}, {DATA_TYPE_MAP[self.F_YScaleDataType]}, {self.F_Repeat_M:2}, {self.F_Repeat_N:2}, {self.F_ThreadPerBlock_M:2}, {self.F_ThreadPerBlock_N:4}'
t_ += f', {self.F_Vector_N:2}, {BOOL_MAP(self.F_kPadN):5}, {BOOL_MAP(self.F_kSaveMeanInvStd_):5}, {BOOL_MAP(self.F_kFastFDiv_):5}, {BOOL_MAP(self.F_kWelford_):5}'
t_ += f', {BOOL_MAP(self.F_kTwoPass_):5}, {self.F_kXbias:4}, {self.F_kFusedAdd:4}, {self.F_kFusedQuant:4}'
return t_
# string when calling this kernel
......@@ -388,6 +413,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
class h_instance:
F_DataTypePair : str
F_N : str
F_xbias : int
F_add : int
F_sweep : int
instance_list : List[Any] # List[h_traits]
......@@ -397,6 +423,8 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
prec_i, prec_o = self.F_DataTypePair.split(',')
dtype_str = f'{prec_i}' if prec_i == prec_o else f'{prec_i}_{prec_o}'
nnn = f'layernorm2d_fwd_{dtype_str}_n{self.F_N}'
if self.F_xbias != 0:
nnn = nnn + '_' + XBIAS_ENUM_STR_MAP[self.F_xbias]
if self.F_add != 0:
nnn = nnn + '_' + FUSED_ADD_ENUM_STR_MAP[self.F_add]
if self.F_sweep != 0:
......@@ -422,11 +450,10 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
def name_common_header(self) -> str:
return 'layernorm2d_fwd_api_common'
@property
def content_api(self) -> str:
def content_api(self, args) -> str:
# 1 sort based on dtype
t_dtype_dict = dict()
blobs = self.get_blobs()
blobs = self.get_blobs(args)
for blob in blobs:
if blob.F_DataTypePair not in t_dtype_dict:
t_dtype_dict[blob.F_DataTypePair] = {}
......@@ -451,19 +478,19 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
if ins.F_kFusedQuant == 0:
_sweep_cond = 't.fused_quant == {f_fused_sweep}'.format(f_fused_sweep = ins.F_kFusedQuant)
elif ins.F_kFusedQuant == 1:
_sweep_cond = 't.fused_quant == {f_fused_sweep} && (t.prec_sx == \"{f_sx_type}\" && t.prec_sy == \"{f_sy_type}\")'.format(
f_fused_sweep = ins.F_kFusedQuant, f_sx_type=ins.F_XScaleDataType, f_sy_type=ins.F_YScaleDataType)
_sweep_cond = 't.fused_quant == {f_fused_sweep} && (t.prec_sm == \"{f_sx_type}\" && t.prec_sy == \"{f_sy_type}\")'.format(
f_fused_sweep = ins.F_kFusedQuant, f_sx_type=ins.F_SmoothScaleDataType, f_sy_type=ins.F_YScaleDataType)
elif ins.F_kFusedQuant == 2:
_sweep_cond = 't.fused_quant == {f_fused_sweep} && (t.prec_sy == \"{f_sy_type}\")'.format(
f_fused_sweep = ins.F_kFusedQuant, f_sy_type=ins.F_YScaleDataType)
_cond = '((a.n % {f_vec_n} == 0) && (t.fused_add == {f_fused_add}) && ({f_sweep_cond}))'.format(
f_vec_n = ins.F_Vector_N, f_fused_add = ins.F_kFusedAdd,
_cond = '((a.n % {f_vec_n} == 0) && (t.xbias == {f_xbias}) && (t.fused_add == {f_fused_add}) && ({f_sweep_cond}))'.format(
f_vec_n = ins.F_Vector_N, f_xbias = ins.F_kXbias, f_fused_add = ins.F_kFusedAdd,
f_sweep_cond = _sweep_cond)
inner_str += self.API_INNER_CASE.format(F_if = get_if_str(idx_in_n, len_in_n, False),
F_VEC_COND = _cond, F_instance_func=ins.call_name)
#inner_str = inner_str + vec_str
n_cnd = f'(a.n <= {n_})' if (i_n < len(blob_per_t) - 1) else ''
n_str += self.API_PER_N_CASE.format(F_if = get_if_str(i_n, len(blob_per_t)), F_N_COND=n_cnd, F_inner_dispatch=inner_str)
n_cnd = f'(a.n <= {n_})' if isinstance(n_, int) else ''
n_str += self.API_PER_N_CASE.format(F_if = get_if_str(i_n, len(blob_per_t), not isinstance(n_, int)), F_N_COND=n_cnd, F_inner_dispatch=inner_str)
prec_i, prec_o = dtype_.split(',')
d_str += self.API_PER_DTYPE.format(F_if = get_if_str(i_d, len(t_dtype_dict), False), F_i_type=prec_i, F_o_type=prec_o, F_per_n_case=n_str)
......@@ -474,77 +501,80 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
def content_common_header(self) -> str:
return self.API_COMMON_HEADER.format(F_traits_define=self.API_TRAITS_DEFINE)
def get_blobs(self):
def get_blobs(self, args):
h_traits = layernorm_fwd_codegen.h_traits
h_instance = layernorm_fwd_codegen.h_instance
dynamic_quant_out_dtype = ['int8']
dynamic_quant_out_dtype = ['int8', 'fp8']
# some predefined support range
# (prec_i,prec_o) for simplicity this string will be used as key for dict
scale_list = [('fp32,fp32')]
dtype_list = [('fp16,fp16'), ('bf16,bf16'),
('fp16,int8'), ('bf16,int8')] # NOTE: only fused-dynamic-quant use int8 out
('fp16,int8'), ('bf16,int8'),
('fp16,fp8'), ('bf16,fp8')] # NOTE: only fused-dynamic-quant use int8 or fp8 out
types_8bit = ('int8', 'fp8')
types_16bit = ('int16', 'fp16', 'bf16')
#fused_add_list = [0, 1, 2]
#fused_sweep_list = [0, 1, 2] # NOTE: only single pass can use fused dynamic quant
xbias_list = [0, 1]
fused_add_list = [0, 1]
fused_sweep_list = [0, 1] # NOTE: only single pass can use fused dynamic quant
# rm rn tm tn vn pd mv fdiv 2p add sweep
h_trait_dict = {'64' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 8, 8, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 1, True, False, True, False, 0, 0)],
'128' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 1, True, False, True, False, 0, 0)],
'256' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 1, True, False, True, False, 0, 0)],
'512' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 4, 64, 1, True, False, True, False, 0, 0)],
'768' : [ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 12, 4, 64, 1, True, False, True, False, 0, 0)],
'1024' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 2, 128, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 2, 128, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 2, 128, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 1, True, False, True, False, 0, 0)],
'1536' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 2, 128, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 1, True, False, True, False, 0, 0)],
'2048' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1, 256, 1, True, False, True, False, 0, 0)],
'3072' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 128, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 1, True, False, True, False, 0, 0)],
'4096' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, False, 0, 0)],
'6144' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 512, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1,1024, 1, True, False, True, False, 0, 0)],
'8192' :[ h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 512, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1,1024, 1, True, False, True, False, 0, 0)],
'big' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, 0, 0)]}
# rm rn tm tn vn pd mv fdiv welford 2p xbias add sweep
h_trait_dict = {'64' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 8, 8, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 1, True, False, True, True, False, 0, 0, 0)],
'128' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 1, True, False, True, True, False, 0, 0, 0)],
'256' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 1, True, False, True, True, False, 0, 0, 0)],
'512' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 4, 64, 1, True, False, True, True, False, 0, 0, 0)],
'768' : [ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 4, 64, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 12, 4, 64, 1, True, False, True, True, False, 0, 0, 0)],
'1024' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 2, 128, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 2, 128, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 2, 128, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 1, True, False, True, True, False, 0, 0, 0)],
'1536' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 2, 128, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 1, True, False, True, True, False, 0, 0, 0)],
'2048' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 1, 256, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1, 256, 1, True, False, True, True, False, 0, 0, 0)],
'3072' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 128, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 1, True, False, True, True, False, 0, 0, 0)],
'4096' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, False, 0, 0, 0)],
'6144' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 512, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1,1024, 1, True, False, True, True, False, 0, 0, 0)],
'8192' :[ h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 8, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 512, 4, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 2, True, False, True, True, False, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1,1024, 1, True, False, True, True, False, 0, 0, 0)],
'big' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, True, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, True, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, True, 0, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, True, 0, 0, 0)]}
total_blob = list()
for hs_key in h_trait_dict:
hs = h_trait_dict[hs_key]
current_n = hs[0].F_Repeat_N * hs[0].F_ThreadPerBlock_N * hs[0].F_Vector_N
for dtype, scale_type, fused_add, fused_quant in itertools.product(dtype_list, scale_list, fused_add_list, fused_sweep_list):
for dtype, scale_type, xbias, fused_add, fused_quant in itertools.product(dtype_list, scale_list, xbias_list, fused_add_list, fused_sweep_list):
prec_i, prec_o = dtype.split(',')
scale_x, scale_y = scale_type.split(',')
scale_sm, scale_y = scale_type.split(',')
if prec_o in dynamic_quant_out_dtype and fused_quant != 1:
continue # skip non dynamic quant case
if fused_quant == 1 and hs_key == 'big':
......@@ -554,20 +584,32 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
h_ = copy.copy(chs_) # copy the base instance out
h_.F_XDataType = prec_i
h_.F_YDataType = prec_o
h_.F_XScaleDataType = scale_y
h_.F_YScaleDataType = scale_x
h_.F_SmoothScaleDataType = scale_sm
h_.F_YScaleDataType = scale_y
h_.F_kXbias = xbias
h_.F_kFusedAdd = fused_add
h_.F_kFusedQuant = fused_quant
# disable welford update for 8bit and 16 bit smallN
if not h_.F_kTwoPass_:
#disable 16 bit when set args disable_16b_welford
if args.disable_16b_welford and prec_i in types_16bit:
h_.F_kWelford_ = False
#disable 8bit by default
elif prec_i in types_8bit or prec_o in types_8bit:
h_.F_kWelford_ = False
#disable 16bit small N
elif prec_i in types_16bit and hs_key == '64':
h_.F_kWelford_ = False
current_hs.append(h_) # + "\n"
#f.write(str(f.parent / GEN_DIR / (blobs.api_common_header_
current_n_str = 'big' if hs_key == 'big' else current_n
total_blob.append(h_instance(dtype, current_n_str, fused_add, fused_quant, current_hs))
total_blob.append(h_instance(dtype, current_n_str, xbias, fused_add, fused_quant, current_hs))
return total_blob
def list_blobs(self) -> None:
def list_blobs(self, args) -> None:
w_p = Path(self.working_path)
list_p = w_p / 'layernorm2d_fwd_blobs.txt'
blobs = self.get_blobs()
blobs = self.get_blobs(args)
with list_p.open('w') as list_f:
# api related file
list_f.write(str(w_p / (self.name_api + ".cpp")) + "\n")
......@@ -576,11 +618,12 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
for b in blobs:
list_f.write(str(w_p / (b.name + ".cpp")) + "\n")
def gen_blobs(self) -> None:
def gen_blobs(self, args) -> None:
w_p = Path(self.working_path)
(w_p / (self.name_api + ".cpp")).write_text(self.content_api)
w_str = self.content_api(args)
(w_p / (self.name_api + ".cpp")).write_text(w_str)
(w_p / (self.name_common_header + ".hpp")).write_text(self.content_common_header)
blobs = self.get_blobs()
blobs = self.get_blobs(args)
for b in blobs:
(w_p / (b.name + ".cpp")).write_text(b.content)
......@@ -588,14 +631,14 @@ def list_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).list_blobs()
layernorm_fwd_codegen(args.working_path, args.filter).list_blobs(args)
def gen_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).gen_blobs()
layernorm_fwd_codegen(args.working_path, args.filter).gen_blobs(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
......@@ -663,6 +706,13 @@ if __name__ == "__main__":
help="codegen receipt."
)
parser.add_argument(
"--disable_16b_welford",
default=False,
required=False,
help="enable/disable welford for 16bit datatype n > 64"
)
args = parser.parse_args()
# print(f'{args.list_blobs}-{args.gen_blobs}')
......
......@@ -20,6 +20,14 @@ auto get_elimit<ck_tile::bf16_t>()
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::int8_t>()
{
double rtol = 1e-2;
double atol = 1.0;
return ck_tile::make_tuple(rtol, atol);
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
......@@ -35,12 +43,13 @@ auto create_args(int argc, char* argv[])
.insert("kname", "1", "print kernel name or not")
.insert("prec_i", "fp16", "input precision")
.insert("prec_o", "auto", "output precision, set auto will be the same as input")
.insert("prec_sx",
.insert("prec_sm",
"auto",
"output quant scale type, set auto will use fp32. used when fquant=1")
.insert("prec_sy",
"auto",
"output quant scale type, set auto will use fp32. used when fquant=1 or 2")
.insert("xbias", "0", "add bias, 0:no add, 1:add bias before fadd")
.insert("fadd", "0", "fused-add, 0:no fused add, 1:preadd+store, 2:preadd only")
.insert("fquant", "0", "fused-quant, 0:no, 1:smooth-dynamic-quant, 2:dynamic-quant")
.insert("warmup", "5", "cold iter")
......@@ -52,7 +61,7 @@ auto create_args(int argc, char* argv[])
template <typename InDataType,
typename OutDataType,
typename XScaleDataType,
typename SmoothScaleDataType,
typename YScaleDataType,
bool SaveMeanVar>
bool run(const ck_tile::ArgParser& arg_parser)
......@@ -74,15 +83,15 @@ bool run(const ck_tile::ArgParser& arg_parser)
float epsilon = arg_parser.get_float("e");
std::string prec_i = arg_parser.get_str("prec_i");
std::string prec_o = arg_parser.get_str("prec_o");
std::string prec_sx = arg_parser.get_str("prec_sx");
std::string prec_sm = arg_parser.get_str("prec_sm");
std::string prec_sy = arg_parser.get_str("prec_sy");
if(prec_o == "auto")
{
prec_o = prec_i;
}
if(prec_sx == "auto")
if(prec_sm == "auto")
{
prec_sx = "fp32";
prec_sm = "fp32";
}
if(prec_sy == "auto")
{
......@@ -93,20 +102,25 @@ bool run(const ck_tile::ArgParser& arg_parser)
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
int xbias = arg_parser.get_int("xbias");
int fused_add = arg_parser.get_int("fadd");
int fused_quant = arg_parser.get_int("fquant");
if(fused_quant == 1 && prec_o != "int8")
if(fused_quant == 1 && prec_o != "int8" && prec_o != "fp8")
{
std::cout << "if fused_quant is 1, only support \"-prec_o=int8\" case" << std::endl;
std::cout
<< "if fused_quant is 1 or 2, only support \"-prec_o=int8\" or \"-prec_o=fp8\" cases."
<< std::endl;
return false;
}
assert(x_stride >= n);
using TypeConfig = LayerNormTypeConfig<InDataType, OutDataType, XScaleDataType, YScaleDataType>;
using TypeConfig =
LayerNormTypeConfig<InDataType, OutDataType, SmoothScaleDataType, YScaleDataType>;
using XDataType = typename TypeConfig::XDataType;
using YDataType = typename TypeConfig::YDataType;
using XBiasDataType = typename TypeConfig::XBiasDataType;
using GammaDataType = typename TypeConfig::GammaDataType;
using BetaDataType = typename TypeConfig::BetaDataType;
using XResidualDataType = XDataType;
......@@ -121,6 +135,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XBiasDataType> x_bias_host({n});
ck_tile::HostTensor<GammaDataType> gamma_host({n});
ck_tile::HostTensor<BetaDataType> beta_host({n});
......@@ -135,30 +150,33 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::HostTensor<YScaleDataType> y_scale_host_ref({m});
ck_tile::HostTensor<YScaleDataType> y_scale_host_dev({m});
ck_tile::HostTensor<XScaleDataType> x_scale_host({n});
ck_tile::HostTensor<XScaleDataType> x_scale_host_dev({n});
ck_tile::HostTensor<SmoothScaleDataType> sm_scale_host({n});
ck_tile::HostTensor<SmoothScaleDataType> sm_scale_host_dev({n});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XResidualDataType>{-.5f, .5f}(x_residual_host);
ck_tile::FillUniformDistribution<XScaleDataType>{-1.f, 1.f}(x_scale_host);
ck_tile::FillUniformDistribution<SmoothScaleDataType>{-1.f, 1.f}(sm_scale_host);
ck_tile::FillUniformDistribution<XBiasDataType>{-.5f, .5f}(x_bias_host);
ck_tile::FillUniformDistribution<GammaDataType>{-.5f, .5f}(gamma_host);
ck_tile::FillUniformDistribution<BetaDataType>{-.5f, .5f}(beta_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem x_bias_buf(x_bias_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem gamma_buf(gamma_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem beta_buf(beta_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_scale_buf(y_scale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem x_scale_buf(x_scale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem sm_scale_buf(sm_scale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem x_residual_buf(x_residual_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_residual_buf(y_residual_host.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
x_bias_buf.ToDevice(x_bias_host.data());
gamma_buf.ToDevice(gamma_host.data());
beta_buf.ToDevice(beta_host.data());
x_residual_buf.ToDevice(x_residual_host.data());
x_scale_buf.ToDevice(x_scale_host.data());
sm_scale_buf.ToDevice(sm_scale_host.data());
auto prec_str = [&]() {
auto base_str = prec_i;
......@@ -179,11 +197,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
<< ", yr_stride:" << yr_stride << std::flush;
layernorm2d_fwd_traits traits{
prec_i, prec_o, prec_sx, prec_sy, SaveMeanVar, fused_add, fused_quant};
prec_i, prec_o, prec_sm, prec_sy, SaveMeanVar, xbias, fused_add, fused_quant};
layernorm2d_fwd_args args{x_buf.GetDeviceBuffer(),
fused_add != 0 ? x_residual_buf.GetDeviceBuffer() : nullptr,
fused_quant == 1 ? x_scale_buf.GetDeviceBuffer() : nullptr,
fused_quant == 1 ? sm_scale_buf.GetDeviceBuffer() : nullptr,
x_bias_buf.GetDeviceBuffer(),
gamma_buf.GetDeviceBuffer(),
beta_buf.GetDeviceBuffer(),
......@@ -210,8 +229,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
return false;
}
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(GammaDataType) * n +
sizeof(BetaDataType) * n + sizeof(YDataType) * m * n;
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XBiasDataType) * n +
sizeof(GammaDataType) * n + sizeof(BetaDataType) * n +
sizeof(YDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
......@@ -221,6 +241,22 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
// reference
if(xbias != 0)
{
// add bias before fadd
int M = x_host.mDesc.get_lengths()[0];
int N = x_host.mDesc.get_lengths()[1];
for(int idx_m = 0; idx_m < M; ++idx_m)
{
for(int idx_n = 0; idx_n < N; ++idx_n)
{
x_host(idx_m, idx_n) = ck_tile::type_convert<XDataType>(
ck_tile::type_convert<ComputeDataType>(x_host(idx_m, idx_n)) +
ck_tile::type_convert<ComputeDataType>(x_bias_host(idx_n)));
}
}
}
if(fused_add != 0)
{
// fused pre_add/pre_add_store
......@@ -254,8 +290,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
for(int n_ = 0; n_ < N_; n_++)
{
// input smooth outlier
acc_(m_, n_) =
acc_(m_, n_) * ck_tile::type_convert<ComputeDataType>(x_scale_host(n_));
acc_(m_, n_) = acc_(m_, n_) *
ck_tile::type_convert<ComputeDataType>(sm_scale_host(n_));
}
}
ComputeDataType absmax = static_cast<ComputeDataType>(0);
......@@ -265,7 +301,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
absmax = a > absmax ? a : absmax;
}
// printf("cpu:absmax:%f\n", absmax);
ComputeDataType y_scale = absmax / static_cast<ComputeDataType>(127.0);
constexpr ComputeDataType kMaxY =
std::is_same<YDataType, ck_tile::fp8_t>::value ? 240.0
: std::is_same<YDataType, ck_tile::int8_t>::value ? 127.0
: 0.0;
ComputeDataType y_scale = absmax / kMaxY;
y_scale_host_ref(m_) = ck_tile::type_convert<YScaleDataType>(y_scale);
for(int n_ = 0; n_ < N_; n_++)
{
......@@ -308,7 +348,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
y_residual_buf.FromDevice(y_residual_host_dev.data());
}
auto [rtol, atol] = get_elimit<InDataType>();
auto [rtol, atol] = get_elimit<OutDataType>();
if(x_stride == n)
{
......@@ -377,16 +417,16 @@ int main(int argc, char* argv[])
std::string prec_i = arg_parser.get_str("prec_i");
std::string prec_o = arg_parser.get_str("prec_o");
std::string prec_sx = arg_parser.get_str("prec_sx");
std::string prec_sm = arg_parser.get_str("prec_sm");
std::string prec_sy = arg_parser.get_str("prec_sy");
if(prec_o == "auto")
{
prec_o = prec_i;
}
if(prec_sx == "auto")
if(prec_sm == "auto")
{
prec_sx = "fp32";
prec_sm = "fp32";
}
if(prec_sy == "auto")
{
......@@ -395,37 +435,47 @@ int main(int argc, char* argv[])
int save_mv = arg_parser.get_int("save_mv");
// no dynamic quant case
if(prec_i == "fp16" && prec_o == "fp16" && prec_sx == "fp32" && prec_sy == "fp32" && save_mv)
if(prec_i == "fp16" && prec_o == "fp16" && prec_sm == "fp32" && prec_sy == "fp32" && save_mv)
{
return run<ck_tile::half_t, ck_tile::half_t, float, float, true>(arg_parser) ? 0 : -2;
}
else if(prec_i == "fp16" && prec_o == "fp16" && prec_sx == "fp32" && prec_sy == "fp32" &&
else if(prec_i == "fp16" && prec_o == "fp16" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::half_t, ck_tile::half_t, float, float, false>(arg_parser) ? 0 : -2;
}
else if(prec_i == "bf16" && prec_o == "bf16" && prec_sx == "fp32" && prec_sy == "fp32" &&
else if(prec_i == "bf16" && prec_o == "bf16" && prec_sm == "fp32" && prec_sy == "fp32" &&
save_mv)
{
return run<ck_tile::bf16_t, ck_tile::bf16_t, float, float, true>(arg_parser) ? 0 : -2;
}
else if(prec_i == "bf16" && prec_o == "bf16" && prec_sx == "fp32" && prec_sy == "fp32" &&
else if(prec_i == "bf16" && prec_o == "bf16" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::bf16_t, ck_tile::bf16_t, float, float, true>(arg_parser) ? 0 : -2;
}
// dynamic quant case, only in inference
else if(prec_i == "fp16" && prec_o == "int8" && prec_sx == "fp32" && prec_sy == "fp32" &&
else if(prec_i == "fp16" && prec_o == "int8" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::half_t, ck_tile::int8_t, float, float, false>(arg_parser) ? 0 : -2;
}
else if(prec_i == "bf16" && prec_o == "int8" && prec_sx == "fp32" && prec_sy == "fp32" &&
else if(prec_i == "bf16" && prec_o == "int8" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::bf16_t, ck_tile::int8_t, float, float, false>(arg_parser) ? 0 : -2;
}
else if(prec_i == "fp16" && prec_o == "fp8" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::half_t, ck_tile::fp8_t, float, float, false>(arg_parser) ? 0 : -2;
}
else if(prec_i == "bf16" && prec_o == "fp8" && prec_sm == "fp32" && prec_sy == "fp32" &&
!save_mv)
{
return run<ck_tile::bf16_t, ck_tile::fp8_t, float, float, false>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,34 +8,39 @@
#include "ck_tile/ops/layernorm2d.hpp"
#include <string>
template <typename InType, typename OutType, typename XScaleDataType_, typename YScaleDataType_>
template <typename InType,
typename OutType,
typename SmoothSScaleDataType_,
typename YScaleDataType_>
struct LayerNormTypeConfig;
template <typename OutType, typename XScaleDataType_, typename YScaleDataType_>
struct LayerNormTypeConfig<ck_tile::half_t, OutType, XScaleDataType_, YScaleDataType_>
template <typename OutType, typename SmoothScaleDataType_, typename YScaleDataType_>
struct LayerNormTypeConfig<ck_tile::half_t, OutType, SmoothScaleDataType_, YScaleDataType_>
{
using XDataType = ck_tile::half_t;
using YDataType = OutType;
using XBiasDataType = ck_tile::half_t;
using GammaDataType = ck_tile::half_t;
using BetaDataType = ck_tile::half_t;
using MeanDataType = ck_tile::half_t;
using InvStdDataType = ck_tile::half_t;
using ComputeDataType = float;
using XScaleDataType = XScaleDataType_;
using SmoothScaleDataType = SmoothScaleDataType_;
using YScaleDataType = YScaleDataType_;
};
template <typename OutType, typename XScaleDataType_, typename YScaleDataType_>
struct LayerNormTypeConfig<ck_tile::bf16_t, OutType, XScaleDataType_, YScaleDataType_>
template <typename OutType, typename SmoothScaleDataType_, typename YScaleDataType_>
struct LayerNormTypeConfig<ck_tile::bf16_t, OutType, SmoothScaleDataType_, YScaleDataType_>
{
using XDataType = ck_tile::bf16_t;
using YDataType = OutType;
using XBiasDataType = ck_tile::bf16_t;
using GammaDataType = ck_tile::bf16_t;
using BetaDataType = ck_tile::bf16_t;
using MeanDataType = ck_tile::bf16_t;
using InvStdDataType = ck_tile::bf16_t;
using ComputeDataType = float;
using XScaleDataType = XScaleDataType_;
using SmoothScaleDataType = SmoothScaleDataType_;
using YScaleDataType = YScaleDataType_;
};
......@@ -50,13 +55,14 @@ struct layernorm2d_fwd_traits
std::string prec_i; // input precision
std::string prec_o; // output precision
// if fused_quant == 1, need set prec_sx/prec_sy to proper string, otherwise can set
// if fused_quant == 1, need set prec_sm/prec_sy to proper string, otherwise can set
// arbitrary(will skip check) if fused_quant == 2, need set prec_sy to proper string, otherwise
// can set arbitrary(will skip check)
std::string prec_sx; // x-scale, used for [1*N] input smooth quant
std::string prec_sm; // x-scale, used for [1*N] input smooth quant
std::string prec_sy; // y-scale, used for [M*1] output for next layer
bool save_mean_var; //
int xbias; // 0:no-bias, 1:add bias
int fused_add; // 0:no-add, 1:pre-add-store, 2:pre-add
int fused_quant; // 0:no-sweep, 1:smooth-dynamic-quant, 2:dynamic-quant
};
......
#!/bin/sh
EXE="$(find . -name tile_example_layernorm2d_fwd -type f | head -n 1)"
for fquant in "" "-fquant=1 -prec_o=int8"; do
for fquant in "" "-fquant=1 -prec_o=int8" "-fquant=1 -prec_o=fp8"; do
for pr_i in "fp16" "bf16" ; do
for fadd in "0" "1"; do
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=99 -n=13
......@@ -27,7 +27,8 @@ $EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=7 -n=2734
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=3182
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=9 -n=4096
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=8192
#$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=10547
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=9120
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=10547
#$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=17134
done
done
......
add_executable(tile_example_gemm_basic EXCLUDE_FROM_ALL gemm_basic.cpp)
add_executable(tile_example_universal_gemm EXCLUDE_FROM_ALL universal_gemm.cpp)
add_executable(tile_example_gemm_universal EXCLUDE_FROM_ALL universal_gemm.cpp)
target_compile_options(tile_example_gemm_universal PRIVATE
-mllvm -enable-noalias-to-md-conversion=0
)
......@@ -11,9 +11,9 @@ sh ../script/cmake-ck-dev.sh ../ <arch>
# The basic pipeline method on the gemm calculation
make tile_example_gemm_basic -j
# The memory bound pipeline on the gemm calculation
make tile_example_gemm_mem_pipeline -j
make tile_example_gemm_universal -j
```
This will result in an executable `build/bin/tile_example_gemm_basic`
This will result in an executable `build/bin/tile_example_gemm_basic` & `build/bin/tile_example_gemm_universal`
## example
```
......@@ -22,6 +22,9 @@ args:
-m m dimension (default:1024)
-n n dimension (default:2048)
-k k dimension (default:64)
-a_layout Tensor A data layout (default: R)
-b_layout Tensor B data layout (default: R)
-c_layout Tensor C data layout (default: R)
-stride_a Tensor A stride (default:0)
-stride_b Tensor B stride (default:0)
-stride_c Tensor C stride (default:0)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include <hip/hip_runtime.h>
......@@ -9,12 +9,16 @@
#include <string>
#include <tuple>
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/host.hpp"
#include "gemm_basic.hpp"
template <typename ALayout, typename BLayout, typename CLayout>
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
{
// The kPadM, kPadN, kPadK & kBlockPerCu should also come from the Codegen part.
......@@ -22,16 +26,12 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr bool kPadN = false;
constexpr bool kPadK = false;
constexpr bool kTilePermute = false;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
constexpr int kBlockPerCu = 1;
// This part comes from the Codegen
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
constexpr ck_tile::index_t K_Tile = 64;
constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2;
......@@ -39,42 +39,33 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr bool CShuffleEpilogue =
std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>;
constexpr ck_tile::index_t K_Warp_Tile = 16;
using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<CodegenGemmShape>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
kPadM,
kPadN,
kTilePermute,
kOutputRank,
1,
0,
TilePartitioner::kM,
TilePartitioner::kN>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>>;
using TilePartitioner = ck_tile::GemmTile1DPartitioner<CodegenGemmShape>;
using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
using GemmEpilogue = ck_tile::CShuffleEpilogue<
ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
CLayout,
CodegenPipelineProblem::kBlockSize,
TilePartitioner::MPerBlock,
TilePartitioner::NPerBlock,
M_Warp,
N_Warp,
M_Warp_Tile,
N_Warp_Tile,
K_Warp_Tile,
CodegenPipelineProblem::TransposeC>>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::GemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
......@@ -91,8 +82,11 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
std::cout << "Launching kernel with args: " << Kernel::GetName() << '\n'
<< "shape: " << CodegenGemmShape::GetName() << '\n'
<< "problem: " << CodegenPipelineProblem::GetName() << '\n'
<< "pipeline: " << CodegenGemmPipeline::GetName() << '\n'
<< "grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
<< std::endl;
}
......@@ -105,4 +99,46 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
#include "run_gemm_example.inc"
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string data_type = arg_parser.get_str("prec");
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "C")
{
if(data_type == "fp16")
{
return run_gemm_example_with_layouts<ck_tile::half_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "bf16")
{
return run_gemm_example_with_layouts<ck_tile::bf16_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "fp8")
{
return run_gemm_example_with_layouts<ck_tile::fp8_t>(argc, argv, Row{}, Col{}, Row{});
}
else if(data_type == "bf8")
{
return run_gemm_example_with_layouts<ck_tile::bf8_t>(argc, argv, Row{}, Col{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data_type!");
}
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -8,6 +8,32 @@
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#define CK_TILE_PIPELINE_COMPUTE_V3 1
#define CK_TILE_PIPELINE_MEMORY 2
#define CK_TILE_PIPELINE_COMPUTE_V4 3
#ifndef CK_TILE_PIPELINE_DEFAULT
#define CK_TILE_PIPELINE_DEFAULT CK_TILE_PIPELINE_COMPUTE_V3
#endif
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_MEMORY)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrMem
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrMem
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Interwave
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE_V3)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrCompV3
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrCompV3
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Intrawave
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE_V4)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrCompV4
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrCompV4
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Intrawave
#else
#error "unsupported CK_TILE_PIPELINE_DEFAULT value"
#endif
template <typename DataType>
struct GemmBasicTypeConfig;
......@@ -22,6 +48,33 @@ struct GemmBasicTypeConfig<ck_tile::half_t>
// ToDo: Add more bias config to support different categories of GEMM.
};
template <>
struct GemmBasicTypeConfig<ck_tile::bf16_t>
{
using ADataType = ck_tile::bf16_t;
using BDataType = ck_tile::bf16_t;
using AccDataType = float;
using CDataType = ck_tile::bf16_t;
};
template <>
struct GemmBasicTypeConfig<ck_tile::fp8_t>
{
using ADataType = ck_tile::fp8_t;
using BDataType = ck_tile::fp8_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
};
template <>
struct GemmBasicTypeConfig<ck_tile::bf8_t>
{
using ADataType = ck_tile::bf8_t;
using BDataType = ck_tile::bf8_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
};
template <typename T>
struct DataTypeTraits;
......@@ -43,23 +96,32 @@ struct DataTypeTraits<ck_tile::half_t>
static constexpr const char* name = "fp16";
};
using Types = GemmBasicTypeConfig<ck_tile::half_t>;
template <>
struct DataTypeTraits<ck_tile::bf16_t>
{
static constexpr const char* name = "bf16";
};
// Specific type aliases for easy access
using ADataType = Types::ADataType;
using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
template <>
struct DataTypeTraits<ck_tile::fp8_t>
{
static constexpr const char* name = "fp8";
};
template <>
struct DataTypeTraits<ck_tile::bf8_t>
{
static constexpr const char* name = "bf8";
};
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("b", "1", "batch size")
.insert("m", "3840", "m dimension")
arg_parser.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "2048", "k dimension")
.insert("a_layout", "R", "A tensor data layout - Row by default")
.insert("b_layout", "R", "B tensor data layout - Row by default")
.insert("b_layout", "C", "B tensor data layout - Column by default")
.insert("c_layout", "R", "C tensor data layout - Row by default")
.insert("stride_a", "0", "Tensor A stride")
.insert("stride_b", "0", "Tensor B stride")
......@@ -68,7 +130,9 @@ auto create_args(int argc, char* argv[])
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value")
.insert("init", "0", "0:random, 1:linear, 2:constant(1)");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename ALayout, typename BLayout, typename CLayout>
template <typename Layout>
static constexpr inline auto is_row_major(Layout layout_)
{
return ck_tile::bool_constant<std::is_same_v<ck_tile::remove_cvref_t<decltype(layout_)>,
ck_tile::tensor_layout::gemm::RowMajor>>{};
}
template <typename ADataType, typename BDataType, typename AccDataType, typename CDataType>
auto calculate_rtol_atol(const ck_tile::index_t K,
const ck_tile::index_t kbatch,
const float max_accumulated_value)
{
using ComputeType =
std::conditional_t<sizeof(ADataType) < sizeof(BDataType), ADataType, BDataType>;
// Calculate thresholds
const auto rtol = ck_tile::get_relative_threshold<ComputeType, CDataType, AccDataType>(
ck_tile::integer_divide_ceil(K, kbatch));
const auto atol = ck_tile::get_absolute_threshold<ComputeType, CDataType, AccDataType>(
max_accumulated_value / kbatch, ck_tile::integer_divide_ceil(K, kbatch));
// Calculate error due to split_k accumulation
const auto rtol_split_k =
ck_tile::get_relative_threshold<CDataType, CDataType, CDataType>(kbatch);
const auto atol_split_k = ck_tile::get_absolute_threshold<CDataType, CDataType, CDataType>(
max_accumulated_value, kbatch);
// Use higher threshold
return ck_tile::make_tuple(std::max(rtol, rtol_split_k), std::max(atol, atol_split_k));
}
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::DeviceMem& b_k_n_dev_buf,
ck_tile::DeviceMem& c_m_n_dev_buf,
......@@ -28,7 +62,8 @@ float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
args.stride_B = stride_B;
args.stride_C = stride_C;
float ave_time = gemm_calc<ALayout, BLayout, CLayout>(
float ave_time =
gemm_calc<ADataType, BDataType, AccDataType, CDataType, ALayout, BLayout, CLayout>(
args, ck_tile::stream_config{nullptr, true, 1, n_warmup, n_repeat});
std::size_t flop = std::size_t(2) * M * N * K;
......@@ -39,13 +74,16 @@ float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
std::cout << "Run Gemm kernel with M =" << M << " N =" << N << " K =" << K
<< " StrideA =" << stride_A << " StrideB =" << stride_B << " StrideC =" << stride_C
<< " : " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< std::endl;
<< " A_Layout =" << ALayout::name << " B_Layout =" << BLayout::name
<< " C_Layout =" << CLayout::name << " A Type = " << DataTypeTraits<ADataType>::name
<< " B Type = " << DataTypeTraits<BDataType>::name
<< " C Type = " << DataTypeTraits<CDataType>::name << " : " << ave_time << " ms, "
<< tflops << " TFlops, " << gb_per_sec << " GB/s, " << std::endl;
return ave_time;
}
template <typename ALayout, typename BLayout, typename CLayout>
template <typename PrecType, typename ALayout, typename BLayout, typename CLayout>
int run_gemm_example_with_layouts(int argc,
char* argv[],
const ALayout a_layout = ALayout{},
......@@ -56,6 +94,11 @@ int run_gemm_example_with_layouts(int argc,
if(!result)
return -1;
using ADataType = typename GemmBasicTypeConfig<PrecType>::ADataType;
using BDataType = typename GemmBasicTypeConfig<PrecType>::BDataType;
using CDataType = typename GemmBasicTypeConfig<PrecType>::CDataType;
using AccDataType = typename GemmBasicTypeConfig<PrecType>::AccDataType;
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k");
......@@ -64,56 +107,35 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t batch_size = arg_parser.get_int("b");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t init_method = arg_parser.get_int("init");
using namespace ck_tile::literals;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
stride_A = ck_tile::get_default_stride(M, K, stride_A, is_row_major(a_layout));
stride_B = ck_tile::get_default_stride(K, N, stride_B, is_row_major(b_layout));
stride_C = ck_tile::get_default_stride(M, N, stride_C, is_row_major(CLayout{}));
stride_A = f_get_default_stride(M, K, stride_A, a_layout);
stride_B = f_get_default_stride(K, N, stride_B, b_layout);
stride_C = f_get_default_stride(M, N, stride_C, CLayout{});
ck_tile::HostTensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, a_layout));
ck_tile::HostTensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, b_layout));
ck_tile::HostTensor<ADataType> a_m_k(
ck_tile::host_tensor_descriptor(M, K, stride_A, is_row_major(a_layout)));
ck_tile::HostTensor<BDataType> b_k_n(
ck_tile::host_tensor_descriptor(K, N, stride_B, is_row_major(b_layout)));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
// TODO: add different init types
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n);
ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
if (init_method == 0) {
ck_tile::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
} else if (init_method == 1) {
ck_tile::FillMonotonicSeq<ADataType>{}(a_m_k);
ck_tile::FillMonotonicSeq<BDataType>{}(b_k_n);
} else if (init_method == 2) {
ck_tile::FillConstant<ADataType>{static_cast<ADataType>(1)}(a_m_k);
ck_tile::FillConstant<BDataType>{static_cast<BDataType>(1)}(b_k_n);
} else {
a_m_k.SetZero();
b_k_n.SetZero();
}
ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes());
......@@ -124,7 +146,8 @@ int run_gemm_example_with_layouts(int argc,
c_m_n_dev_buf.SetZero();
c_m_n_dev_result.SetZero();
invoke_gemm<ALayout, BLayout, CLayout>(a_m_k_dev_buf,
invoke_gemm<ADataType, BDataType, AccDataType, CDataType, ALayout, BLayout, CLayout>(
a_m_k_dev_buf,
b_k_n_dev_buf,
c_m_n_dev_buf,
M,
......@@ -133,7 +156,7 @@ int run_gemm_example_with_layouts(int argc,
stride_A,
stride_B,
stride_C,
batch_size,
kbatch,
n_warmup,
n_repeat);
......@@ -143,20 +166,30 @@ int run_gemm_example_with_layouts(int argc,
if(arg_parser.get_int("v") == 1)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k, b_k_n, c_m_n_host_ref);
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_host_ref);
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
const float max_accumulated_value =
*std::max_element(c_m_n_host_ref.mData.begin(), c_m_n_host_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol<ADataType, BDataType, AccDataType, CDataType>(
K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_host_ref,
"Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}),
rtol_atol.at(ck_tile::number<1>{}));
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl;
std::cout << "The CPU verification result is:" << (pass ? "correct" : "fail") << std::endl;
}
else if(arg_parser.get_int("v") == 2)
{
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes());
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
......@@ -196,46 +229,21 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::hip_check_error(hipFree(d_C));
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref);
std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl;
const float max_accumulated_value =
*std::max_element(c_m_n_gpu_ref.mData.begin(), c_m_n_gpu_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol<ADataType, BDataType, AccDataType, CDataType>(
K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_gpu_ref,
"Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}),
rtol_atol.at(ck_tile::number<1>{}));
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl;
std::cout << "The GPU verification result is: " << (pass ? "correct" : "fail") << std::endl;
}
return pass;
}
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
// TODO: Fixme: with latest changes to GemmPipelineAGmemBGmemCRegV1DefaultPolicy below do not
// work.
// else if(a_layout == "C" && b_layout == "C")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
// }
// else if(a_layout == "C" && b_layout == "R")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
// }
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
#!/bin/sh
EXE="$(find . -name tile_example_gemm_basic -type f | head -n 1)"
VALID=1
for b_matrix_layout in "C"; do
for m in "64" "512" "1024" "2048"; do
for n in "512" "1024" "2048"; do
for k in "64" "512" "1024" "2048"; do
$EXE -prec=fp16 -m=$m -n=$n -k=$k -a_layout="R" -b_layout="$b_matrix_layout" -c_layout="R" -v=$VALID
done
done
done
done
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment