Unverified Commit 7450417d authored by Mirza Halilčević's avatar Mirza Halilčević Committed by GitHub
Browse files

Merge branch 'develop' into ck_host_lib

parents 6d597346 da0c21f6
...@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16 ...@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default // 1. Default
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances< device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_instances<
3, 3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
......
...@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16 ...@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default // 1. Default
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances< device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_instances<
3, 3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NGCDHW,
GKZYXC,
NGKDHW,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_generic_instances<
3,
NGCDHW,
GKZYXC,
NGKDHW,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NGCDHW,
GKZYXC,
NGKDHW,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances<
3,
NGCDHW,
GKZYXC,
NGKDHW,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NGCDHW,
GKZYXC,
NGKDHW,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances<
3,
NGCDHW,
GKZYXC,
NGKDHW,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NGCDHW,
GKZYXC,
NGKDHW,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_generic_instances<
3,
NGCDHW,
GKZYXC,
NGKDHW,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...@@ -24,19 +24,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16 ...@@ -24,19 +24,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16
// 1. Default // 1. Default
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances<3, device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
GNDHWC, 3,
GKZYXC, GNDHWC,
GNDHWK, GKZYXC,
ConvBwdWeightDefault>{}); GNDHWK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0 // 2. Filter1x1Stride1Pad0
add_device_operation_instances(instances, add_device_operation_instances(
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances< instances,
3, device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
GNDHWC, 3,
GKZYXC, GNDHWC,
GNDHWK, GKZYXC,
ConvBwdWeightFilter1x1Stride1Pad0>{}); GNDHWK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
3,
NDHWGC,
GKZYXC,
NDHWGK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...@@ -10,13 +10,13 @@ namespace device { ...@@ -10,13 +10,13 @@ namespace device {
namespace instance { namespace instance {
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k] // Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances( void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
NDHWGK, NDHWGK,
BF16, BF16,
F32, BF16,
BF16, BF16,
PassThrough, PassThrough,
PassThrough, PassThrough,
......
# ONLY XDL_KERNELS
set(GROUPED_CONV3D_FWD_DYNAMIC_OP
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp)
add_instance_library(device_grouped_conv3d_fwd_dynamic_op_instance ${GROUPED_CONV3D_FWD_DYNAMIC_OP})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
BF16,
BF16,
ck::Tuple<>,
BF16,
PassThrough,
PassThrough,
DynamicUnaryOp>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwdDefault>{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
F16,
F16,
ck::Tuple<>,
F16,
PassThrough,
PassThrough,
DynamicUnaryOp>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwdDefault>{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
F32,
F32,
ck::Tuple<>,
F32,
PassThrough,
PassThrough,
DynamicUnaryOp>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwdDefault>{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<>,
NDHWGK,
int8_t,
int8_t,
ck::Tuple<>,
int8_t,
PassThrough,
PassThrough,
DynamicUnaryOp>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwdDefault>{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -27,11 +27,6 @@ rocm_install(FILES ${MHA_HEADERS} DESTINATION include/ck_tile/ops) ...@@ -27,11 +27,6 @@ rocm_install(FILES ${MHA_HEADERS} DESTINATION include/ck_tile/ops)
# headers for building lib # headers for building lib
file(COPY ${MHA_HEADERS} DESTINATION ${FMHA_CPP_FOLDER}) file(COPY ${MHA_HEADERS} DESTINATION ${FMHA_CPP_FOLDER})
# Delete the blob file if it exists to avoid append of old content.
if(EXISTS ${FMHA_CPP_FOLDER}/blob_list.txt)
file(REMOVE ${FMHA_CPP_FOLDER}/blob_list.txt)
endif()
set(FMHA_KNOWN_APIS "fwd,fwd_splitkv,fwd_appendkv,bwd") set(FMHA_KNOWN_APIS "fwd,fwd_splitkv,fwd_appendkv,bwd")
# generate a list of kernels, but not actually emit files at config stage # generate a list of kernels, but not actually emit files at config stage
......
...@@ -271,10 +271,12 @@ bool profile_gemm_multiply_multiply_impl(int do_verification, ...@@ -271,10 +271,12 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
<< " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch " << " TFlops, " << gb_per_sec << " GB/s, " << op_name << ", KBatch "
<< kbatch_curr << std::endl; << kbatch_curr << std::endl;
#if defined CK_ENABLE_FP8 #if defined CK_ENABLE_FP8 || defined CK_ENABLE_INT8
// set softer tolerances for fp8 // set softer tolerances for fp8
if constexpr(is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> || if constexpr((is_same_v<ADataType, f8_t> || is_same_v<BDataType, f8_t> ||
is_same_v<EDataType, f8_t>) is_same_v<EDataType, f8_t>) ||
(is_same_v<ADataType, int8_t> || is_same_v<BDataType, int8_t> ||
is_same_v<EDataType, int8_t>))
{ {
std::string msg = "Error: Incorrect results!"; std::string msg = "Error: Incorrect results!";
double rtol = 1e-1; double rtol = 1e-1;
...@@ -286,7 +288,7 @@ bool profile_gemm_multiply_multiply_impl(int do_verification, ...@@ -286,7 +288,7 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
{ {
#endif #endif
pass = pass & ck::utils::check_err(e_m_n_device_result, e_m_n_host_result); pass = pass & ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
#if defined CK_ENABLE_FP8 #if defined CK_ENABLE_FP8 || defined CK_ENABLE_INT8
} }
#endif #endif
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementOp,
typename BElementOp,
typename CElementOp,
typename DeviceOp>
bool profile_gemm_universal_batched_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int BatchStrideA,
int BatchStrideB,
int BatchStrideC,
int StrideA,
int StrideB,
int StrideC,
int BatchCount,
int n_warmup,
int n_iter,
uint64_t rotating = 0)
{
bool pass = true;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
}
else
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
}
};
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB, BatchStrideB, BLayout{}));
Tensor<CDataType> c_g_m_n_host_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_n_device_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{}));
int total_gemm_needed =
a_g_m_k.GetElementSpaceSizeInBytes() + b_g_k_n.GetElementSpaceSizeInBytes();
int rotating_count = std::max(
1,
std::min(n_iter,
static_cast<int>(std::ceil(static_cast<double>(rotating) / total_gemm_needed))));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
std::cout << "rotating count: " << rotating_count << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
if(do_verification)
{
using ReferenceBatchedGemmInstance =
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType,
CDataType,
float,
AElementOp,
BElementOp,
CElementOp>;
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
for(auto& op_ptr : op_ptrs)
{
std::unique_ptr<tensor_operation::device::BaseArgument> argument_ptr;
// false branch for multi d dl kernel
argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
BatchCount,
StrideA,
StrideB,
{},
StrideC,
BatchStrideA,
BatchStrideB,
{},
BatchStrideC,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(
argument_ptr.get(),
StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter, true, rotating_count});
std::size_t flop = std::size_t(2) * BatchCount * M * N * K;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " B = " << BatchCount << " M = " << M << " N = " << N << " K = " << K
<< " StrideA = " << StrideA << " StrideB = " << StrideB << " StrideC = " << StrideC
<< ": " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
<< " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -102,11 +102,22 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams& ...@@ -102,11 +102,22 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams&
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device( Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo)); f_host_tensor_descriptor(N, C, Do, Ho, Wo));
constexpr int inDataRangeTensor1{1};
constexpr int inDataRangeTensor2{5};
constexpr double inDataRangeTensor3{0.5};
switch(in_params.init_method) switch(in_params.init_method)
{ {
case 0: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break; case 0:
case 1: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break; in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{inDataRangeTensor1});
default: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5}); break;
case 1:
in_n_c_di_hi_wi.GenerateTensorValue(
GeneratorTensor_2<InDataType>{-inDataRangeTensor2, inDataRangeTensor2});
break;
default:
in_n_c_di_hi_wi.GenerateTensorValue(
GeneratorTensor_3<InDataType>{-inDataRangeTensor3, inDataRangeTensor3});
} }
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize()); DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize());
...@@ -229,12 +240,39 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams& ...@@ -229,12 +240,39 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams&
{ {
out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data()); out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data());
auto tolerance = 1e-3; auto number_of_accumulations = 1;
bool pass = ck::utils::check_err(out_n_c_do_ho_wo_device.mData, static_assert(
ReduceOpId == ck::ReduceTensorOp::AVG || ReduceOpId == ck::ReduceTensorOp::MAX,
"Warning: Unhandled ReduceOpId for setting up the number of accumulations!");
if constexpr(ReduceOpId == ck::ReduceTensorOp::AVG)
{
for(size_t i = 0; i < kernel_params.window_spatial_lengths.size(); ++i)
{
number_of_accumulations *= kernel_params.window_spatial_lengths.at(i);
}
}
auto absolute_error_threshold = 1.0;
switch(in_params.init_method)
{
case 0: absolute_error_threshold = static_cast<double>(inDataRangeTensor1); break;
case 1: absolute_error_threshold = static_cast<double>(inDataRangeTensor2); break;
default: absolute_error_threshold = inDataRangeTensor3;
}
absolute_error_threshold =
ck::utils::get_absolute_threshold<ComputeDataType, OutDataType>(
absolute_error_threshold, number_of_accumulations);
auto relative_error_threshold =
ck::utils::get_relative_threshold<ComputeDataType, OutDataType>(
number_of_accumulations);
bool pass = ck::utils::check_err(out_n_c_do_ho_wo_device.mData,
out_n_c_do_ho_wo_host.mData, out_n_c_do_ho_wo_host.mData,
"Error: Incorrect results", "Error: Incorrect results",
tolerance, relative_error_threshold,
tolerance); absolute_error_threshold);
if constexpr(OutputIndex) if constexpr(OutputIndex)
{ {
......
...@@ -59,6 +59,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9") ...@@ -59,6 +59,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp) list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp) list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp) list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_batched.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp) list(APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp) list(APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp) list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
...@@ -141,6 +142,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9") ...@@ -141,6 +142,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
endif() endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_batched_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_streamk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
......
...@@ -27,6 +27,7 @@ enum struct GemmDataType ...@@ -27,6 +27,7 @@ enum struct GemmDataType
F16_F8_F16, // 5 F16_F8_F16, // 5
F16_F16_F16_F8, // 6 F16_F16_F16_F8, // 6
F8_F8_BF16, // 7 F8_F8_BF16, // 7
INT8_INT8_BF16, // 8
}; };
#define OP_NAME "gemm_multiply_multiply" #define OP_NAME "gemm_multiply_multiply"
...@@ -39,7 +40,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[]) ...@@ -39,7 +40,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: " printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, " "f16->f8; 7: f8->bf16, "
"comp f8)\n"); "comp f8; 8: int8->bf16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n"); printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
...@@ -89,6 +90,8 @@ int profile_gemm_multiply_multiply(int argc, char* argv[]) ...@@ -89,6 +90,8 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
using F32 = float; using F32 = float;
using BF16 = ck::bhalf_t; using BF16 = ck::bhalf_t;
using F8 = ck::f8_t; using F8 = ck::f8_t;
using I8 = int8_t;
using I32 = int;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -162,6 +165,11 @@ int profile_gemm_multiply_multiply(int argc, char* argv[]) ...@@ -162,6 +165,11 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
return profile( return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{}); F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
} }
else if(data_type == GemmDataType::INT8_INT8_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(
I8{}, I8{}, I8{}, I32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else else
{ {
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment