Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
7450417d
Unverified
Commit
7450417d
authored
Nov 20, 2024
by
Mirza Halilčević
Committed by
GitHub
Nov 20, 2024
Browse files
Merge branch 'develop' into ck_host_lib
parents
6d597346
da0c21f6
Changes
483
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
813 additions
and
35 deletions
+813
-35
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
...wo_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
...wo_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
+1
-1
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
...o_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
...wo_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instance.cpp
...eight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instance.cpp
+15
-13
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
...eight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
+48
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...v3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+3
-3
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
...instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
+8
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
...fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
..._fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
..._fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
+58
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
...fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
+57
-0
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
+0
-5
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
.../include/profiler/profile_gemm_multiply_multiply_impl.hpp
+6
-4
profiler/include/profiler/profile_gemm_universal_batched_impl.hpp
.../include/profiler/profile_gemm_universal_batched_impl.hpp
+280
-0
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
+45
-7
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_gemm_multiply_multiply.cpp
profiler/src/profile_gemm_multiply_multiply.cpp
+9
-1
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instance.cpp
View file @
7450417d
...
...
@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances
<
device_grouped_conv_bwd_weight_two_stage_
nhwgc_
xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instance.cpp
View file @
7450417d
...
...
@@ -25,7 +25,7 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances
<
device_grouped_conv_bwd_weight_two_stage_
nhwgc_
xdl_c_shuffle_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_generic_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_two_stage_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_generic_instances
<
3
,
NGCDHW
,
GKZYXC
,
NGKDHW
,
ConvBwdWeightDefault
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
→
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_
f32_bf16_
instance.cpp
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...
...
@@ -24,19 +24,21 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightDefault
>
{});
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
GNDHWC
,
GKZYXC
,
GNDHWK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
ConvBwdWeightFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_bwd_weight/xdl/device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18-2023
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
24
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...
...
@@ -10,13 +10,13 @@ namespace device {
namespace
instance
{
// Compilation parameters for in[n, hi, wi, g, c] * wei[g, k, y, x, c] = out[n, ho, wo, g, k]
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_
f32_bf16_
instances
(
void
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdWeight
<
3
,
NDHWGC
,
GKZYXC
,
NDHWGK
,
BF16
,
F32
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/CMakeLists.txt
0 → 100644
View file @
7450417d
# ONLY XDL_KERNELS
set
(
GROUPED_CONV3D_FWD_DYNAMIC_OP
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
)
add_instance_library
(
device_grouped_conv3d_fwd_dynamic_op_instance
${
GROUPED_CONV3D_FWD_DYNAMIC_OP
}
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
BF16
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_bf16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F16
,
F16
,
ck
::
Tuple
<>
,
F16
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f16_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_f32_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd_dynamic_op/xdl/device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instance.cpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_dynamic_op_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_conv3d_fwd_xdl_dynamic_op_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
int8_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
PassThrough
,
PassThrough
,
DynamicUnaryOp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances
<
3
,
NDHWGC
,
GKZYXC
,
Tuple
<>
,
NDHWGK
,
ConvFwdDefault
>
{});
#if 0 // Enable with dynamic op optimizations (at now generating a lot of virtual functions cause
// long compilation time)
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv_fwd_xdl_dynamic_op_int8_instances<3,
NDHWGC,
GKZYXC,
Tuple<>,
NDHWGK,
ConvFwd1x1S1P0>{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/mha/CMakeLists.txt
View file @
7450417d
...
...
@@ -27,11 +27,6 @@ rocm_install(FILES ${MHA_HEADERS} DESTINATION include/ck_tile/ops)
# headers for building lib
file
(
COPY
${
MHA_HEADERS
}
DESTINATION
${
FMHA_CPP_FOLDER
}
)
# Delete the blob file if it exists to avoid append of old content.
if
(
EXISTS
${
FMHA_CPP_FOLDER
}
/blob_list.txt
)
file
(
REMOVE
${
FMHA_CPP_FOLDER
}
/blob_list.txt
)
endif
()
set
(
FMHA_KNOWN_APIS
"fwd,fwd_splitkv,fwd_appendkv,bwd"
)
# generate a list of kernels, but not actually emit files at config stage
...
...
profiler/include/profiler/profile_gemm_multiply_multiply_impl.hpp
View file @
7450417d
...
...
@@ -271,10 +271,12 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
#if defined CK_ENABLE_FP8
|| defined CK_ENABLE_INT8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
if
constexpr
((
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
EDataType
,
f8_t
>
)
||
(
is_same_v
<
ADataType
,
int8_t
>
||
is_same_v
<
BDataType
,
int8_t
>
||
is_same_v
<
EDataType
,
int8_t
>
))
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
...
...
@@ -286,7 +288,7 @@ bool profile_gemm_multiply_multiply_impl(int do_verification,
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#if defined CK_ENABLE_FP8
#if defined CK_ENABLE_FP8
|| defined CK_ENABLE_INT8
}
#endif
...
...
profiler/include/profiler/profile_gemm_universal_batched_impl.hpp
0 → 100644
View file @
7450417d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multi_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CElementOp
,
typename
DeviceOp
>
bool
profile_gemm_universal_batched_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
BatchStrideA
,
int
BatchStrideB
,
int
BatchStrideC
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
BatchCount
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_g_m_k
.
GetElementSpaceSizeInBytes
()
+
b_g_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
if
(
do_verification
)
{
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_g_m_n_device_result
.
mData
.
data
());
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
unique_ptr
<
tensor_operation
::
device
::
BaseArgument
>
argument_ptr
;
// false branch for multi d dl kernel
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
BatchCount
,
StrideA
,
StrideB
,
{},
StrideC
,
BatchStrideA
,
BatchStrideB
,
{},
BatchStrideC
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
true
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_g_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_g_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" B = "
<<
BatchCount
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
": "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_pool3d_fwd_impl.hpp
View file @
7450417d
...
...
@@ -102,11 +102,22 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams&
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
));
constexpr
int
inDataRangeTensor1
{
1
};
constexpr
int
inDataRangeTensor2
{
5
};
constexpr
double
inDataRangeTensor3
{
0.5
};
switch
(
in_params
.
init_method
)
{
case
0
:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
break
;
case
1
:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
case
0
:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
inDataRangeTensor1
});
break
;
case
1
:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
inDataRangeTensor2
,
inDataRangeTensor2
});
break
;
default:
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
inDataRangeTensor3
,
inDataRangeTensor3
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_di_hi_wi
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -229,12 +240,39 @@ bool profile_pool3d_fwd_impl(PoolFwdInputParams& in_params, PoolFwdKernelParams&
{
out_device_buf
.
FromDevice
(
out_n_c_do_ho_wo_device
.
mData
.
data
());
auto
tolerance
=
1e-3
;
bool
pass
=
ck
::
utils
::
check_err
(
out_n_c_do_ho_wo_device
.
mData
,
auto
number_of_accumulations
=
1
;
static_assert
(
ReduceOpId
==
ck
::
ReduceTensorOp
::
AVG
||
ReduceOpId
==
ck
::
ReduceTensorOp
::
MAX
,
"Warning: Unhandled ReduceOpId for setting up the number of accumulations!"
);
if
constexpr
(
ReduceOpId
==
ck
::
ReduceTensorOp
::
AVG
)
{
for
(
size_t
i
=
0
;
i
<
kernel_params
.
window_spatial_lengths
.
size
();
++
i
)
{
number_of_accumulations
*=
kernel_params
.
window_spatial_lengths
.
at
(
i
);
}
}
auto
absolute_error_threshold
=
1.0
;
switch
(
in_params
.
init_method
)
{
case
0
:
absolute_error_threshold
=
static_cast
<
double
>
(
inDataRangeTensor1
);
break
;
case
1
:
absolute_error_threshold
=
static_cast
<
double
>
(
inDataRangeTensor2
);
break
;
default:
absolute_error_threshold
=
inDataRangeTensor3
;
}
absolute_error_threshold
=
ck
::
utils
::
get_absolute_threshold
<
ComputeDataType
,
OutDataType
>
(
absolute_error_threshold
,
number_of_accumulations
);
auto
relative_error_threshold
=
ck
::
utils
::
get_relative_threshold
<
ComputeDataType
,
OutDataType
>
(
number_of_accumulations
);
bool
pass
=
ck
::
utils
::
check_err
(
out_n_c_do_ho_wo_device
.
mData
,
out_n_c_do_ho_wo_host
.
mData
,
"Error: Incorrect results"
,
tolerance
,
tolerance
);
relative_error_threshold
,
absolute_error_threshold
);
if
constexpr
(
OutputIndex
)
{
...
...
profiler/src/CMakeLists.txt
View file @
7450417d
...
...
@@ -59,6 +59,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_batched.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp
)
...
...
@@ -141,6 +142,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
endif
()
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_batched_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
...
...
profiler/src/profile_gemm_multiply_multiply.cpp
View file @
7450417d
...
...
@@ -27,6 +27,7 @@ enum struct GemmDataType
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
INT8_INT8_BF16
,
// 8
};
#define OP_NAME "gemm_multiply_multiply"
...
...
@@ -39,7 +40,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8)
\n
"
);
"comp f8
; 8: int8->bf16
)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
...
...
@@ -89,6 +90,8 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
F8
=
ck
::
f8_t
;
using
I8
=
int8_t
;
using
I32
=
int
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -162,6 +165,11 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
return
profile
(
F8
{},
F8
{},
F8
{},
F32
{},
F32
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
INT8_INT8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
I8
{},
I8
{},
I8
{},
I32
{},
F32
{},
F32
{},
BF16
{},
Row
{},
Col
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
Prev
1
…
19
20
21
22
23
24
25
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment