Commit 72c9f129 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents 241c261f ded0d83d
......@@ -117,6 +117,15 @@ using int32x16_t = int32_t __attribute__((ext_vector_type(16)));
using int32x32_t = int32_t __attribute__((ext_vector_type(32)));
using int32x64_t = int32_t __attribute__((ext_vector_type(64)));
// u32
// using uint32_t = ...
using uint32x2_t = uint32_t __attribute__((ext_vector_type(2)));
using uint32x4_t = uint32_t __attribute__((ext_vector_type(4)));
using uint32x8_t = uint32_t __attribute__((ext_vector_type(8)));
using uint32x16_t = uint32_t __attribute__((ext_vector_type(16)));
using uint32x32_t = uint32_t __attribute__((ext_vector_type(32)));
using uint32x64_t = uint32_t __attribute__((ext_vector_type(64)));
// i16
// using int16_t = ...
using int16x2_t = int16_t __attribute__((ext_vector_type(2)));
......
......@@ -746,8 +746,9 @@ CK_TILE_HOST_DEVICE constexpr auto slice_distribution_from_x(
return make_tuple(
make_static_tile_distribution(
tile_distribution_encoding<typename Encoding::RsLengths,
decltype(sliced_h_lengths), // only need to change the
// h_lengths type
remove_cvref_t<decltype(sliced_h_lengths)>, // only need to
// change the
// h_lengths type
typename Encoding::Ps2RHssMajor,
typename Encoding::Ps2RHssMinor,
typename Encoding::Ys2RHsMajor,
......
......@@ -214,6 +214,12 @@ struct tile_window_with_static_distribution
CK_TILE_DEVICE constexpr auto get_window_origin() const { return window_origin_; }
CK_TILE_DEVICE constexpr void
set_bottom_tensor_view_data_ptr(typename BottomTensorView::DataType* data)
{
bottom_tensor_view_.buf_.p_data_ = data;
}
// move thread's window adaptor coordinate and bottom tensor coordinate
// [p0, p1, ..., y0, y1, ...] ==> [x0, x1, ...] ==> [x0', x1', ...] ==> [offset]
CK_TILE_DEVICE void move_window_adaptor_and_bottom_tensor_thread_coordinate(
......@@ -393,7 +399,8 @@ struct tile_window_with_static_distribution
bottom_tensor_thread_coord,
bool_constant<oob_conditional_check>{},
pre_nop_);
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE || \
CK_TILE_WORKAROUND_ROCM_6_2_SCRATCH_MEMORY_ISSUE
asm volatile(
""); // this is starting from rocm-6.2, but same sympton, reuse this flag
#endif
......@@ -843,6 +850,17 @@ struct tile_window_with_static_lengths
CK_TILE_DEVICE constexpr auto get_window_origin() const { return window_origin_; }
CK_TILE_DEVICE void set_window_origin(const BottomTensorIndex& new_window_origin)
{
window_origin_ = new_window_origin;
}
CK_TILE_DEVICE constexpr void
set_bottom_tensor_view_data_ptr(typename BottomTensorView::DataType* data)
{
bottom_tensor_view_.buf_.p_data_ = data;
}
// move window-origin
CK_TILE_DEVICE void move(const BottomTensorIndex& step) { window_origin_ += step; }
......@@ -871,6 +889,39 @@ make_tile_window(const TensorView_& tensor_view,
tensor_view, window_lengths, origin};
}
// duplicate tile window and replace its origin
template <typename TensorView, typename WindowLengths>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const multi_index<TensorView::get_num_of_dimension()>& origin)
{
return tile_window_with_static_lengths<TensorView, WindowLengths>{
tile_window.get_bottom_tensor_view(), tile_window.get_window_lengths(), origin};
}
template <typename TensorView, typename WindowLengths, typename StaticTileDistribution>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const multi_index<TensorView::get_num_of_dimension()>& origin,
const StaticTileDistribution& tile_distribution)
{
return make_tile_window(tile_window.get_bottom_tensor_view(),
tile_window.get_window_lengths(),
origin,
tile_distribution);
}
template <typename TensorView, typename WindowLengths, typename StaticTileDistribution>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const StaticTileDistribution& tile_distribution)
{
return make_tile_window(tile_window.get_bottom_tensor_view(),
tile_window.get_window_lengths(),
tile_window.get_window_origin(),
tile_distribution);
}
template <typename TensorView_, typename WindowLengths_>
CK_TILE_DEVICE void move_tile_window(
tile_window_with_static_lengths<TensorView_, WindowLengths_>& window,
......
......@@ -53,6 +53,39 @@ class philox
out_tmp[3] = tmp_ph.w;
}
CK_TILE_HOST_DEVICE void get_random_8x8(uint8_t* out,
const unsigned long long subsequence,
const index_t start_idx) const
{
uint4 tmp_ph;
tmp_ph = get_philox_4x32(subsequence);
uint32x4_t tmp;
tmp[0] = tmp_ph.x;
tmp[1] = tmp_ph.y;
tmp[2] = tmp_ph.z;
tmp[3] = tmp_ph.w;
uint32_t* out_tmp = reinterpret_cast<uint32_t*>(&out[0]);
out_tmp[0] = tmp[start_idx];
out_tmp[1] = tmp[start_idx + 2];
}
CK_TILE_HOST_DEVICE void get_random_4x8(uint8_t* out,
const unsigned long long subsequence,
const index_t start_idx) const
{
uint4 tmp_ph;
tmp_ph = get_philox_4x32(subsequence);
uint32x4_t tmp;
tmp[0] = tmp_ph.x;
tmp[1] = tmp_ph.y;
tmp[2] = tmp_ph.z;
tmp[3] = tmp_ph.w;
uint32_t* out_tmp = reinterpret_cast<uint32_t*>(&out[0]);
out_tmp[0] = tmp[start_idx];
}
private:
struct ull2
{
......
......@@ -22,6 +22,23 @@ using remove_cvref_t = remove_cv_t<std::remove_reference_t<T>>;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename From, typename To>
struct copy_const
{
static_assert(!std::is_const_v<From>);
using type = To;
};
template <typename From, typename To>
struct copy_const<const From, To>
{
using type = std::add_const_t<typename copy_const<From, To>::type>;
};
template <typename From, typename To>
using copy_const_t = typename copy_const<From, To>::type;
namespace detail {
template <class Default, class AlwaysVoid, template <class...> class Op, class... Args>
struct detector
......
......@@ -15,6 +15,7 @@
#include "ck_tile/host/reference/reference_batched_elementwise.hpp"
#include "ck_tile/host/reference/reference_batched_gemm.hpp"
#include "ck_tile/host/reference/reference_batched_masking.hpp"
#include "ck_tile/host/reference/reference_batched_rotary_position_embedding.hpp"
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
......
......@@ -155,7 +155,12 @@ struct HostTensorDescriptor
return space;
}
std::size_t get_length(std::size_t dim) const { return mLens[dim]; }
const std::vector<std::size_t>& get_lengths() const { return mLens; }
std::size_t get_stride(std::size_t dim) const { return mStrides[dim]; }
const std::vector<std::size_t>& get_strides() const { return mStrides; }
template <typename... Is>
......@@ -325,8 +330,12 @@ struct HostTensor
{
}
std::size_t get_length(std::size_t dim) const { return mDesc.get_length(dim); }
decltype(auto) get_lengths() const { return mDesc.get_lengths(); }
std::size_t get_stride(std::size_t dim) const { return mDesc.get_stride(dim); }
decltype(auto) get_strides() const { return mDesc.get_strides(); }
std::size_t get_num_of_dimension() const { return mDesc.get_num_of_dimension(); }
......
......@@ -73,17 +73,17 @@ CK_TILE_HOST float launch_kernel(const stream_config& s, Callables... callables)
{
// clang-format off
if(!s.time_kernel_) {
(callables(s),...); hip_check_error(hipGetLastError());
(callables(s),...); HIP_CHECK_ERROR(hipGetLastError());
return 0;
}
if(s.is_gpu_timer_) {
gpu_timer timer {};
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.stop(s.stream_id_);
return timer.duration() / s.nrepeat_;
......@@ -92,10 +92,10 @@ CK_TILE_HOST float launch_kernel(const stream_config& s, Callables... callables)
cpu_timer timer {};
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.stop(s.stream_id_);
return timer.duration() / s.nrepeat_;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include <cassert>
#include <thread>
namespace ck_tile {
template <typename DataType, typename ComputeDataType = float>
CK_TILE_HOST void reference_batched_rotary_position_embedding(const HostTensor<DataType>& input_bsd,
const HostTensor<DataType>& cos_sd,
const HostTensor<DataType>& sin_sd,
bool interleaved,
HostTensor<DataType>& output_bsd,
bool use_1_row_sin_cos = false)
{
assert(cos_sd.get_num_of_dimension() == 2 && sin_sd.get_num_of_dimension() == 2);
assert(cos_sd.get_length(0) == sin_sd.get_length(0) &&
cos_sd.get_length(1) == sin_sd.get_length(1));
const index_t rotary_dim = cos_sd.get_length(1) * 2;
assert(static_cast<std::size_t>(rotary_dim) <= input_bsd.get_length(2));
output_bsd.ForEach([&](auto& self, auto i) {
const index_t i_d = i[2];
if(rotary_dim <= i_d)
{
self(i) = input_bsd(i);
return;
}
assert(i_d < rotary_dim);
const index_t i_s = i[1];
const index_t i_s_cos_sin = (use_1_row_sin_cos ? 0 : i_s);
const ComputeDataType cos = type_convert<ComputeDataType>(
interleaved ? cos_sd(i_s_cos_sin, i_d / 2)
: cos_sd(i_s_cos_sin, i_d % cos_sd.get_length(1)));
const ComputeDataType sin = type_convert<ComputeDataType>(
interleaved ? sin_sd(i_s_cos_sin, i_d / 2)
: sin_sd(i_s_cos_sin, i_d % sin_sd.get_length(1)));
const ComputeDataType half_rotated_input = [&] {
const index_t i_b = i[0];
if(interleaved)
{
const bool is_even = (i_d % 2 == 0);
const index_t pos = i_d + (is_even ? 1 : -1);
const ComputeDataType sign = (is_even ? -1 : 1);
return sign * type_convert<ComputeDataType>(input_bsd(i_b, i_s, pos));
}
else
{
const index_t half_rdim = (rotary_dim / 2);
const index_t pos = (i_d + half_rdim) % rotary_dim;
const ComputeDataType sign = (pos < half_rdim ? 1 : -1);
return sign * type_convert<ComputeDataType>(input_bsd(i_b, i_s, pos));
}
}();
ComputeDataType result =
type_convert<ComputeDataType>(input_bsd(i)) * cos + half_rotated_input * sin;
self(i) = type_convert<DataType>(result);
});
}
} // namespace ck_tile
......@@ -7,30 +7,29 @@
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/fmha/block/block_masking.hpp"
#include "ck_tile/ops/fmha/block/block_position_encoding.hpp"
#include "ck_tile/ops/fmha/block/block_rotary_embedding.hpp"
#include "ck_tile/ops/fmha/block/page_block_navigator.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_bwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_bwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_convert_dq.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_kts_vr.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_kts_vr_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_vr.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_vr_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_qs_ks_vr_dos.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_qs_ks_vr_dos_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_kr_ktr_vr.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_kr_ktr_vr_iglp.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
......
......@@ -286,11 +286,226 @@ struct BlockDropout
});
}
ck_tile::philox ph;
const float rp_undrop;
const uint8_t p_undrop_in_uint8_t;
const bool is_store_randval;
};
template <bool IsDropout_, bool IsWG32_, bool IsStoreRandval_>
struct BlockDropoutBwd;
template <bool IsWG32_, bool IsStoreRandval_>
struct BlockDropoutBwd<false, IsWG32_, IsStoreRandval_>
{
static constexpr bool IsDropout = false;
static constexpr bool IsStoreRandval = IsStoreRandval_;
template <typename BlockGemm, bool IsFwd = true, typename RandValDramBlockWindowTmp>
__host__ __device__ static constexpr auto
MakeRandvalDramWindow(RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
index_t seqlen_qk_start)
{
(void)randval_dram_block_window_tmp;
(void)seqlen_qk_start;
return make_null_tile_window(make_tuple(number<0>{}, number<0>{}));
}
};
template <bool IsWG32_, bool IsStoreRandval_>
struct BlockDropoutBwd<true, IsWG32_, IsStoreRandval_>
{
static constexpr bool IsDropout = true;
// true: 32*32 warp gemm
// false: 16*16 warp gemm
static constexpr bool IsWG32 = IsWG32_;
static constexpr bool IsStoreRandval = IsStoreRandval_;
CK_TILE_HOST_DEVICE BlockDropoutBwd(index_t i_batch,
index_t i_head,
index_t nheads,
unsigned long long seed,
unsigned long long offset,
float rp_undrop_,
uint8_t p_undrop_in_uint8_t_)
: ph(seed,
offset + (i_batch * nheads + i_head) * get_warp_size() +
(IsWG32 ? get_lane_id() : ((get_lane_id() & 47) + ((get_warp_id() & 1) << 4)))),
rp_undrop(rp_undrop_),
p_undrop_in_uint8_t(p_undrop_in_uint8_t_)
{
}
template <typename BlockGemm, bool IsFwd = true, typename RandValDramBlockWindowTmp>
CK_TILE_HOST_DEVICE static constexpr auto
MakeRandvalDramWindow(RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
index_t seqlen_qk_start)
{
constexpr auto config =
BlockGemm::Policy::template GetWarpGemmMWarpNWarp<typename BlockGemm::Problem>();
using BlockGemmShape = remove_cvref_t<typename BlockGemm::BlockGemmShape>;
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t kMPerBlock = BlockGemmShape::kM;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr bool MBwdWG16MultiIterCheck = (!IsFwd) && (!IsWG32) && (kMPerBlock > 16);
constexpr index_t kMPerStep = [&]() {
if constexpr(MBwdWG16MultiIterCheck)
{
return MWarp * WG::kM * 2;
}
else
{
return MWarp * WG::kM;
}
}();
constexpr index_t kNPerStep = NWarp * WG::kN;
const auto block_origin = randval_dram_block_window_tmp.get_window_origin();
auto randval_dram_window = [&]() {
if constexpr(IsFwd)
{
return make_tile_window(
randval_dram_block_window_tmp.get_bottom_tensor_view(),
ck_tile::make_tuple(number<kMPerStep>{}, number<kNPerStep>{}),
{block_origin.at(number<0>{}), seqlen_qk_start}); // M/N
}
else
{
return make_tile_window(
randval_dram_block_window_tmp.get_bottom_tensor_view(),
ck_tile::make_tuple(number<kMPerStep>{}, number<kNPerStep>{}),
{seqlen_qk_start, block_origin.at(number<1>{})}); // M/N
}
}();
return randval_dram_window;
}
template <typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeRandValLdsBlockDescriptor()
{
constexpr auto config =
BlockGemm::Policy::template GetWarpGemmMWarpNWarp<typename BlockGemm::Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t kMPerStep = MWarp * WG::kM;
constexpr index_t kNPerStep = WG::kN;
constexpr index_t kN1 = 8;
constexpr index_t kN0 = kNPerStep / kN1;
constexpr auto randval_lds_block_desc_0 = make_naive_tensor_descriptor(
ck_tile::make_tuple(number<kN0>{}, number<kMPerStep>{}, number<kN1>{}),
ck_tile::make_tuple(number<(kMPerStep + 1) * kN1>{}, number<kN1>{}, number<1>{}),
number<kN1>{},
number<1>{});
constexpr auto randval_lds_block_desc = transform_tensor_descriptor(
randval_lds_block_desc_0,
ck_tile::make_tuple(
make_pass_through_transform(number<kMPerStep>{}),
make_merge_transform(ck_tile::make_tuple(number<kN0>{}, number<kN1>{}))),
ck_tile::make_tuple(sequence<1>{}, sequence<0, 2>{}),
ck_tile::make_tuple(sequence<0>{}, sequence<1>{}));
return randval_lds_block_desc;
}
template <typename BlockGemm, bool IsFwd = true>
CK_TILE_HOST_DEVICE static constexpr auto MakeRandValTileDistribution()
{
constexpr auto config =
BlockGemm::Policy::template GetWarpGemmMWarpNWarp<typename BlockGemm::Problem>();
using BlockGemmShape = remove_cvref_t<typename BlockGemm::BlockGemmShape>;
constexpr index_t kMPerBlock = BlockGemmShape::kM;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr bool MBwdWG16MultiIterCheck = (!IsFwd) && (!IsWG32) && (kMPerBlock > 16);
constexpr index_t MIterPerWarp = [&]() {
if constexpr(MBwdWG16MultiIterCheck)
{
return 2;
}
else
{
return 1;
}
}();
constexpr index_t NIterPerWarp = 1;
constexpr auto randval_block_outer_part_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
// Use Bwd WarpGemm to ensure that Fwd's random values ​​are consistent with Bwd.
// except headdim256.
constexpr auto randval_block_inner_part_dstr_encoding = []() {
if constexpr(std::is_same_v<typename BlockGemm::ADataType, half_t> &&
std::is_same_v<typename BlockGemm::BDataType, half_t> &&
std::is_same_v<typename BlockGemm::CDataType, float>)
{
if constexpr(IsWG32)
return typename WarpGemmMfmaF16F16F32M32N32K16SwizzleA::CWarpDstrEncoding{};
else
return typename WarpGemmMfmaF16F16F32M16N16K16::CWarpDstrEncoding{};
}
else
{
if constexpr(IsWG32)
return typename WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA::CWarpDstrEncoding{};
else
return typename WarpGemmMfmaBf16Bf16F32M16N16K16::CWarpDstrEncoding{};
}
}();
constexpr auto randval_block_part_dstr_encode =
detail::make_embed_tile_distribution_encoding(randval_block_outer_part_dstr_encoding,
randval_block_inner_part_dstr_encoding);
return make_static_tile_distribution(randval_block_part_dstr_encode);
}
template <typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeRandValLdsShuffleTileDistribution()
{
constexpr auto config =
BlockGemm::Policy::template GetWarpGemmMWarpNWarp<typename BlockGemm::Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = 1;
constexpr index_t NIterPerWarp = 1;
constexpr auto randval_block_outer_part_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
tuple<sequence<1, 2>>,
tuple<sequence<1, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto randval_block_part_dstr_encode =
detail::make_embed_tile_distribution_encoding(randval_block_outer_part_dstr_encoding,
typename WG::CWarpDstrEncoding{});
return make_static_tile_distribution(randval_block_part_dstr_encode);
}
template <typename BlockGemm,
typename PComputeDataType,
typename RandValOutputDataType,
typename PComputeWindow,
typename RandValDramWindow>
CK_TILE_HOST_DEVICE void Run(const index_t start_m0_idx,
CK_TILE_HOST_DEVICE void Run(void* randval_ptr,
const index_t start_m0_idx,
const index_t start_n0_idx,
PComputeWindow& p_compute,
RandValDramWindow& randval_dram_window) const
{
......@@ -305,30 +520,177 @@ struct BlockDropout
constexpr index_t kMPerStep = MWarp * WG::kM;
constexpr index_t kNPerStep = NWarp * WG::kN;
// randval tile in LDS
auto randval_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<uint8_t*>(randval_ptr), MakeRandValLdsBlockDescriptor<BlockGemm>());
auto randval_lds_window = make_tile_window(
randval_lds, MakeRandValLdsBlockDescriptor<BlockGemm>().get_lengths(), {0, 0});
// register distribute
auto randval =
auto randval_dist_generated =
make_static_distributed_tensor<uint8_t>(MakeRandValTileDistribution<BlockGemm>());
static_assert(randval.kThreadElementSpaceSize == 16);
static_assert(randval_dist_generated.kThreadElementSpaceSize == 16);
const int start_n0_idx = randval_dram_window.get_window_origin().at(number<1>{});
static_for<0, kNPerBlock / kNPerStep, 1>{}([&](auto i_n0) {
static_for<0, kMPerBlock / kMPerStep, 1>{}([&](auto i_m0) {
int block_row_start = (start_m0_idx / WG::kM) + i_m0;
int block_col_start = (start_n0_idx / WG::kN) + (i_n0 * NWarp) + get_warp_id();
auto randval_lds_read_window =
make_tile_window(randval_lds_window.get_bottom_tensor_view(),
randval_lds_window.get_window_lengths(),
randval_lds_window.get_window_origin(),
MakeRandValLdsShuffleTileDistribution<BlockGemm>());
static_for<0, kMPerBlock / kMPerStep, 1>{}([&](auto i_m0) {
static_for<0, kNPerBlock / kNPerStep, 1>{}([&](auto i_n0) {
int block_row_start = (start_m0_idx / WG::kM) + (i_m0 * MWarp) + get_warp_id();
int block_col_start = (start_n0_idx / WG::kN) + i_n0;
uint2 rowcol = make_uint2(block_row_start, block_col_start);
// generate random number
uint8_t random_uint8_t[16];
ph.get_random_16x8(random_uint8_t, reinterpret_cast<unsigned long long&>(rowcol));
constexpr auto randval_dist_generated_spans =
decltype(randval_dist_generated)::get_distributed_spans();
int i_random_idx = 0;
sweep_tile_span(randval_dist_generated_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(randval_dist_generated_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = ck_tile::make_tuple(idx0, idx1);
randval_dist_generated(i_j_idx) = random_uint8_t[i_random_idx++];
});
});
// save to LDS
store_tile(randval_lds_window, randval_dist_generated);
block_sync_lds();
// read from LDS to register
auto randval = load_tile(randval_lds_read_window);
constexpr auto randval_spans = decltype(randval)::get_distributed_spans();
int i_random_idx = 0;
sweep_tile_span(randval_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(randval_spans[number<1>{}], [&](auto idx1) {
constexpr auto p_idx0 = tile_distributed_index<i_m0>{};
constexpr auto p_idx1 =
tile_distributed_index<i_n0, idx1.impl_.at(1), idx1.impl_.at(2)>{};
constexpr auto p_idx = ck_tile::make_tuple(p_idx0, p_idx1);
constexpr auto r_idx = ck_tile::make_tuple(idx0, idx1);
randval(r_idx) = random_uint8_t[i_random_idx++];
constexpr auto p_idx0 =
tile_distributed_index<i_m0, idx0.impl_.at(1), idx0.impl_.at(2)>{};
p_compute(p_idx) = randval[r_idx] <= p_undrop_in_uint8_t
? p_compute[p_idx] * rp_undrop
: PComputeDataType(0);
});
});
// save to Global
if constexpr(IsStoreRandval)
{
const auto randval_store = cast_tile<RandValOutputDataType>(randval);
store_tile(randval_dram_window, randval_store);
move_tile_window(randval_dram_window, {0, kNPerStep});
}
});
if constexpr(IsStoreRandval)
{
move_tile_window(randval_dram_window, {kMPerStep, -kNPerBlock});
}
});
if constexpr(IsStoreRandval)
{
move_tile_window(randval_dram_window, {-kMPerBlock, kNPerBlock});
}
}
template <typename BlockGemm,
typename RandValOutputDataType,
typename PComputeWindow,
typename RandValDramWindow>
CK_TILE_HOST_DEVICE void Run(const index_t start_m0_idx,
const index_t start_n0_idx,
PComputeWindow& p_compute,
RandValDramWindow& randval_dram_window) const
{
constexpr auto config =
BlockGemm::Policy::template GetWarpGemmMWarpNWarp<typename BlockGemm::Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
using BlockGemmShape = remove_cvref_t<typename BlockGemm::BlockGemmShape>;
constexpr index_t kMPerBlock = BlockGemmShape::kM;
constexpr index_t kNPerBlock = BlockGemmShape::kN;
constexpr bool MBwdWG16MultiIterCheck = (!IsWG32) && (kMPerBlock > 16);
constexpr bool MBwdWG16SingleIterCheck = (!IsWG32) && (kMPerBlock == 16);
constexpr index_t kMPerStep = [&]() {
if constexpr(MBwdWG16MultiIterCheck)
{
return MWarp * WG::kM * 2;
}
else
{
return MWarp * WG::kM;
}
}();
constexpr index_t kNPerStep = NWarp * WG::kN;
// register distribute
auto randval = make_static_distributed_tensor<uint8_t>(
MakeRandValTileDistribution<BlockGemm, false>());
if constexpr(IsWG32)
static_assert(randval.kThreadElementSpaceSize == 16);
else
static_assert(randval.kThreadElementSpaceSize == 4 ||
randval.kThreadElementSpaceSize == 8);
static_for<0, kNPerBlock / kNPerStep, 1>{}([&](auto i_n0) {
static_for<0, kMPerBlock / kMPerStep, 1>{}([&](auto i_m0) {
int block_row_start, block_col_start;
if constexpr(IsWG32)
{
block_row_start = (start_m0_idx / WG::kM) + i_m0;
block_col_start = (start_n0_idx / WG::kN) + (i_n0 * NWarp) + get_warp_id();
}
else
{
block_row_start = start_m0_idx / 32 + i_m0;
block_col_start = (start_n0_idx / 32) + get_warp_id() / 2 + i_n0 * 2;
}
uint2 rowcol = make_uint2(block_row_start, block_col_start);
// generate random number
uint8_t* random_uint8_t_;
if constexpr(MBwdWG16SingleIterCheck)
{
uint8_t random_uint8_t[4];
// m0t0 ~m0t15/m0t32~m0t47: 0
// m0t16~m0t31/m0t48~m0t63: 1
// m1t0 ~m1t15/m1t32~m1t47: 2
// m1t16~m1t31/m1t48~m1t63: 3
const index_t start_idx =
((get_lane_id() >> 4) & 1) + (((start_m0_idx >> 4) & 1) << 1);
ph.get_random_4x8(
random_uint8_t, reinterpret_cast<unsigned long long&>(rowcol), start_idx);
random_uint8_t_ = random_uint8_t;
}
else if constexpr(MBwdWG16MultiIterCheck)
{
uint8_t random_uint8_t[8];
// t0 ~t15/t32~t47: 0
// t16~t31/t48~t63: 1
const index_t start_idx = (get_lane_id() >> 4) & 1;
ph.get_random_8x8(
random_uint8_t, reinterpret_cast<unsigned long long&>(rowcol), start_idx);
random_uint8_t_ = random_uint8_t;
}
else
{
uint8_t random_uint8_t[16];
ph.get_random_16x8(random_uint8_t,
reinterpret_cast<unsigned long long&>(rowcol));
random_uint8_t_ = random_uint8_t;
}
constexpr auto randval_spans = decltype(randval)::get_distributed_spans();
int i_random_idx = 0;
sweep_tile_span(randval_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(randval_spans[number<1>{}], [&](auto idx1) {
constexpr auto r_idx = ck_tile::make_tuple(idx0, idx1);
randval(r_idx) = random_uint8_t_[i_random_idx++];
constexpr auto p_idx0 = tile_distributed_index<i_m0 + idx0.impl_.at(0),
idx0.impl_.at(1),
idx0.impl_.at(2)>{};
constexpr auto p_idx1 = tile_distributed_index<i_n0>{};
constexpr auto p_idx = ck_tile::make_tuple(p_idx0, p_idx1);
p_compute(p_idx) = randval[r_idx] <= p_undrop_in_uint8_t
......@@ -337,19 +699,19 @@ struct BlockDropout
});
});
// save to Global
if(is_store_randval)
if constexpr(IsStoreRandval)
{
const auto randval_store = cast_tile<RandValOutputDataType>(randval);
store_tile(randval_dram_window, randval_store);
move_tile_window(randval_dram_window, {kMPerStep, 0});
}
});
if(is_store_randval)
if constexpr(IsStoreRandval)
{
move_tile_window(randval_dram_window, {-kMPerBlock, kNPerStep});
}
});
if(is_store_randval)
if constexpr(IsStoreRandval)
{
move_tile_window(randval_dram_window, {kMPerBlock, -kNPerBlock});
}
......@@ -358,7 +720,6 @@ struct BlockDropout
ck_tile::philox ph;
const float rp_undrop;
const uint8_t p_undrop_in_uint8_t;
const bool is_store_randval;
};
} // namespace ck_tile
......@@ -43,9 +43,12 @@ enum struct AlibiMode
FROM_BOTTOM_RIGHT = 2,
};
template <typename DataType, bool RowMajor = true>
template <typename DataType, bool RowMajor = true, unsigned LogMaxSadOprndSize = 16>
struct Alibi
{
static_assert(1 <= LogMaxSadOprndSize && LogMaxSadOprndSize <= 32,
"for LogMaxSadOprndSize <= 16, we use SAD uint16_t, otherwise, use SAD uint32_t");
// RowMajor here means if pixel within the same thread are along the row, or col
// this may impact the performance of update(), while the result are the same.
// e.g. fwd prefer use RowMajor=true, bwd some cases prefer use RowMajor=false
......@@ -79,6 +82,19 @@ struct Alibi
mode = mode_;
}
CK_TILE_HOST uint32_t sad(uint32_t x, uint32_t y, uint32_t acc) { return sad_u32(x, y, acc); }
CK_TILE_DEVICE uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
{
if constexpr(LogMaxSadOprndSize <= 16)
{
return sad_u16(
static_cast<uint16_t>(x), static_cast<uint16_t>(y), static_cast<uint16_t>(acc));
}
return sad_u32(x, y, acc);
}
CK_TILE_HOST_DEVICE void update(DataType& pixel, index_t row_idx, index_t col_idx)
{
if constexpr(RowMajor)
......@@ -128,7 +144,7 @@ struct EmptyPositionEncoding
// can convert from the FA style left/right to our generic coordinate
// if left_size < 0 && right_size = 0, it is normal causal mask
// local is left_size >=0 or right_size >=0
template <typename DataType, bool RowMajor = true>
template <typename DataType, bool RowMajor = true, unsigned LogMaxSadOprndSize = 16>
CK_TILE_HOST_DEVICE auto make_alibi_from_lr_mask(DataType slope,
index_t window_left_size,
index_t window_right_size,
......@@ -142,7 +158,7 @@ CK_TILE_HOST_DEVICE auto make_alibi_from_lr_mask(DataType slope,
AlibiMode alibi_mode =
is_causal ? AlibiMode::VERTICAL
: static_cast<AlibiMode>(mask_enum) /*either top-left or bottom-right*/;
return Alibi<DataType, RowMajor>{slope, y_total, x_total, alibi_mode};
return Alibi<DataType, RowMajor, LogMaxSadOprndSize>{slope, y_total, x_total, alibi_mode};
}
// https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
namespace ck_tile {
// This class is used for codegen pattern matching
enum class RotaryEmbeddingEnum
{
NONE = 0,
INTERLEAVED = 1, // combine dimensions 0 & 1, 2 & 3, etc
HALF_ROTATED = 2, // combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1, etc
};
template <RotaryEmbeddingEnum>
struct RotaryEmbeddingEnumToStr;
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::NONE>
{
static constexpr const char* name = "";
};
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::INTERLEAVED>
{
static constexpr const char* name = "inter";
};
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::HALF_ROTATED>
{
static constexpr const char* name = "half";
};
template <RotaryEmbeddingEnum RotaryEnum, typename ComputeDataType = float>
struct BlockRotaryEmbedding
{
template <typename DistributedTensor,
typename OtherDramBlockWindow,
typename RotaryCosDramBlockWindow,
typename RotarySinDramBlockWindow>
CK_TILE_HOST_DEVICE static void apply(DistributedTensor& tile,
OtherDramBlockWindow other_window,
RotaryCosDramBlockWindow rotary_cos_window,
RotarySinDramBlockWindow rotary_sin_window,
index_t rotary_dim,
index_t thread_end)
{
using DataType = typename remove_cvref_t<DistributedTensor>::DataType;
if constexpr(RotaryEnum == RotaryEmbeddingEnum::INTERLEAVED)
{
auto rotary_cos_tile = load_tile(rotary_cos_window);
auto rotary_sin_tile = load_tile(rotary_sin_window);
if(thread_end <= rotary_dim)
{
constexpr index_t thread_buffer_size = decltype(tile.thread_buf_)::size();
static_for<0, thread_buffer_size, 2>{}([&](auto idx) {
const auto left = type_convert<ComputeDataType>(tile.thread_buf_[idx]);
const auto right = type_convert<ComputeDataType>(tile.thread_buf_[idx + 1]);
const auto cos =
type_convert<ComputeDataType>(rotary_cos_tile.thread_buf_[idx / 2]);
const auto sin =
type_convert<ComputeDataType>(rotary_sin_tile.thread_buf_[idx / 2]);
tile.thread_buf_[idx] = type_convert<DataType>(left * cos - right * sin);
tile.thread_buf_[idx + 1] = type_convert<DataType>(right * cos + left * sin);
});
}
}
else if constexpr(RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
if(thread_end <= rotary_dim)
{
const bool is_left = (thread_end <= (rotary_dim / 2));
move_tile_window(other_window, {0, is_left ? rotary_dim / 2 : -(rotary_dim / 2)});
auto other_tile = load_tile(other_window);
move_tile_window(rotary_cos_window, {0, is_left ? 0 : -(rotary_dim / 2)});
auto rotary_cos_tile = load_tile(rotary_cos_window);
move_tile_window(rotary_sin_window, {0, is_left ? 0 : -(rotary_dim / 2)});
auto rotary_sin_tile = load_tile(rotary_sin_window);
constexpr index_t thread_buffer_size = decltype(tile.thread_buf_)::size();
static_for<0, thread_buffer_size, 1>{}([&](auto idx) {
const auto curr = type_convert<ComputeDataType>(tile.thread_buf_[idx]);
const auto other = type_convert<ComputeDataType>(other_tile.thread_buf_[idx]);
const auto cos =
type_convert<ComputeDataType>(rotary_cos_tile.thread_buf_[idx]);
const auto sin =
type_convert<ComputeDataType>(rotary_sin_tile.thread_buf_[idx]);
tile.thread_buf_[idx] =
type_convert<DataType>(curr * cos + other * (is_left ? -sin : sin));
});
}
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/core/tensor/tile_window.hpp"
namespace ck_tile {
// assume that we have only 1 page-block/tensor view
template <typename TensorView>
struct TrivialPageBlockNavigator
{
using DataType = typename TensorView::DataType;
using WindowOrigin = multi_index<2>;
CK_TILE_HOST_DEVICE constexpr TrivialPageBlockNavigator(const TensorView& tensor_view_)
: tensor_view(tensor_view_)
{
}
template <typename WindowLengths>
CK_TILE_HOST_DEVICE constexpr auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin) const
{
return make_tuple(/*block_index=*/0,
ck_tile::make_tile_window(tensor_view, window_lengths, window_origin));
}
template <typename WindowLengths, typename TileDistribution>
CK_TILE_HOST_DEVICE constexpr auto
make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin,
const TileDistribution& tile_distribution) const
{
return make_tuple(
/*block_index=*/0,
ck_tile::make_tile_window(
tensor_view, window_lengths, window_origin, tile_distribution));
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE static index_t
move_tile_window(index_t /*block_index*/,
TileWindow& tile_window,
const typename remove_cvref_t<TileWindow>::BottomTensorIndex& step)
{
ck_tile::move_tile_window(tile_window, step);
return /*block_index=*/0;
}
CK_TILE_HOST_DEVICE static constexpr WindowOrigin
to_local_window_origin(const WindowOrigin& global_window_origin)
{
return global_window_origin;
}
CK_TILE_HOST_DEVICE static constexpr WindowOrigin
to_global_window_origin(index_t /*block_index*/, const WindowOrigin& local_window_origin)
{
return local_window_origin;
}
private:
TensorView tensor_view;
};
// default page-block navigator, assume that tensor view size is same as page-block size or smaller
// if tile window on last page-block
template <typename DataType_, index_t VirtualDim, typename TensorView>
struct PageBlockNavigator
{
using DataType = DataType_;
static_assert(std::is_same_v<DataType, typename TensorView::DataType>);
static_assert(VirtualDim == 0 || VirtualDim == 1, "only support 2d tile window");
using WindowOrigin = multi_index<2>;
CK_TILE_HOST_DEVICE constexpr PageBlockNavigator(copy_const_t<DataType, void>* physical_blocks_,
long_index_t block_stride_,
long_index_t fixed_offset_,
const int32_t* physical_block_indices_,
index_t num_blocks_,
index_t page_block_size_,
const TensorView& complete_view_,
const TensorView& last_view_)
: physical_blocks(reinterpret_cast<DataType*>(physical_blocks_)),
block_stride(block_stride_),
fixed_offset(fixed_offset_),
physical_block_indices(physical_block_indices_),
num_blocks(num_blocks_),
page_block_size(page_block_size_),
complete_view(complete_view_),
last_view(last_view_)
{
}
template <typename WindowLengths>
CK_TILE_HOST_DEVICE auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin) const
{
const index_t block_index = get_block_index(window_origin);
const WindowOrigin local_window_origin = to_local_window_origin(window_origin);
auto new_tile_window =
ck_tile::make_tile_window(is_last_block(block_index) ? last_view : complete_view,
window_lengths,
local_window_origin);
new_tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(block_index));
return make_tuple(block_index, new_tile_window);
}
template <typename WindowLengths, typename TileDistribution>
CK_TILE_HOST_DEVICE auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin,
const TileDistribution& tile_distribution) const
{
const index_t block_index = get_block_index(window_origin);
const WindowOrigin local_window_origin = to_local_window_origin(window_origin);
auto new_tile_window =
ck_tile::make_tile_window(is_last_block(block_index) ? last_view : complete_view,
window_lengths,
local_window_origin,
tile_distribution);
new_tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(block_index));
return make_tuple(block_index, new_tile_window);
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE index_t
move_tile_window(index_t block_index,
TileWindow& tile_window,
const typename remove_cvref_t<TileWindow>::BottomTensorIndex& step) const
{
ck_tile::move_tile_window(tile_window, step);
const WindowOrigin global_window_origin =
to_global_window_origin(block_index, tile_window.get_window_origin());
const WindowOrigin local_window_origin = to_local_window_origin(global_window_origin);
const index_t new_block_index = get_block_index(global_window_origin);
/// TODO: only update necessary attributes
tile_window.bottom_tensor_view_.desc_ =
(is_last_block(new_block_index) ? last_view : complete_view).get_tensor_descriptor();
tile_window.set_window_origin(local_window_origin);
tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(new_block_index));
return new_block_index;
}
CK_TILE_HOST_DEVICE bool is_last_block(index_t block_index) const
{
return block_index == num_blocks - 1;
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE bool is_cross_block(index_t block_index,
const TileWindow& tile_window) const
{
const index_t origin = tile_window.get_window_origin().at(number<VirtualDim>{});
const index_t length = tile_window.get_window_lengths().at(number<VirtualDim>{});
return (block_index < num_blocks - 1) && (page_block_size < origin + length);
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE void
move_to_block(index_t block_index, TileWindow& tile_window, index_t new_block_index) const
{
const multi_index<2> step = [&]() {
const index_t origin_diff = (block_index - new_block_index) * page_block_size;
if constexpr(VirtualDim == 0)
{
return make_multi_index(origin_diff, 0);
}
else
{
return make_multi_index(0, origin_diff);
}
}();
/// TODO: only update necessary attributes
tile_window.bottom_tensor_view_.desc_ =
(is_last_block(new_block_index) ? last_view : complete_view).get_tensor_descriptor();
tile_window.set_window_origin(tile_window.get_window_origin() + step);
tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(new_block_index));
}
CK_TILE_HOST_DEVICE WindowOrigin
to_local_window_origin(const WindowOrigin& global_window_origin) const
{
if constexpr(VirtualDim == 0)
{
const index_t length = global_window_origin.at(number<0>{});
const index_t num_complete_blocks = integer_divide_floor(length, page_block_size);
return make_multi_index(length - page_block_size * num_complete_blocks,
global_window_origin.at(number<1>{}));
}
else
{
const index_t length = global_window_origin.at(number<1>{});
const index_t num_complete_blocks = integer_divide_floor(length, page_block_size);
return make_multi_index(global_window_origin.at(number<0>{}),
length - page_block_size * num_complete_blocks);
}
}
CK_TILE_HOST_DEVICE WindowOrigin
to_global_window_origin(index_t block_index, const WindowOrigin& local_window_origin) const
{
if constexpr(VirtualDim == 0)
{
return make_multi_index(block_index * page_block_size +
local_window_origin.at(number<0>{}),
local_window_origin.at(number<1>{}));
}
else
{
return make_multi_index(local_window_origin.at(number<0>{}),
block_index * page_block_size +
local_window_origin.at(number<1>{}));
}
}
private:
CK_TILE_HOST_DEVICE
DataType* get_block_ptr(index_t block_index) const
{
return physical_blocks + physical_block_indices[block_index] * block_stride + fixed_offset;
}
CK_TILE_HOST_DEVICE int32_t get_block_index(const WindowOrigin& global_window_origin) const
{
return integer_divide_floor(global_window_origin.at(number<VirtualDim>{}), page_block_size);
}
DataType* physical_blocks;
long_index_t block_stride;
long_index_t fixed_offset;
const int32_t* physical_block_indices;
index_t num_blocks;
index_t page_block_size;
TensorView complete_view;
TensorView last_view;
};
template <typename TensorView>
CK_TILE_HOST_DEVICE auto make_page_block_navigator(const TensorView& tensor_view)
{
return TrivialPageBlockNavigator<TensorView>(tensor_view);
}
template <typename DataType, index_t VirtualDim, typename TensorView>
CK_TILE_HOST_DEVICE auto make_page_block_navigator(copy_const_t<DataType, void>* physical_blocks,
long_index_t block_stride,
long_index_t fixed_offset,
const int32_t* physical_block_indices,
index_t num_blocks,
index_t page_block_size,
const TensorView& complete_view,
const TensorView& last_view)
{
return PageBlockNavigator<DataType, VirtualDim, TensorView>(physical_blocks,
block_stride,
fixed_offset,
physical_block_indices,
num_blocks,
page_block_size,
complete_view,
last_view);
}
} // namespace ck_tile
......@@ -23,13 +23,9 @@
namespace ck_tile {
template <typename TilePartitioner_,
typename FmhaPipeline_,
typename KGradEpiloguePipeline_,
typename VGradEpiloguePipeline_>
template <typename FmhaPipeline_, typename KGradEpiloguePipeline_, typename VGradEpiloguePipeline_>
struct FmhaBwdDQDKDVKernel
{
using TilePartitioner = ck_tile::remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = ck_tile::remove_cvref_t<FmhaPipeline_>;
using KGradEpiloguePipeline = ck_tile::remove_cvref_t<KGradEpiloguePipeline_>;
using VGradEpiloguePipeline = ck_tile::remove_cvref_t<VGradEpiloguePipeline_>;
......@@ -59,9 +55,12 @@ struct FmhaBwdDQDKDVKernel
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr auto BiasEnum = FmhaPipeline::BiasEnum;
static constexpr bool kHasBiasGrad = FmhaPipeline::kHasBiasGrad;
static constexpr bool kHasDropout = FmhaPipeline::kHasDropout;
using FmhaMask = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaMask>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
using FmhaDropout = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaDropout>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
static constexpr bool kHasDropout = FmhaDropout::IsDropout;
static constexpr bool kIsStoreRandval = FmhaDropout::IsStoreRandval;
static constexpr bool kIsDeterministic = FmhaPipeline::kIsDeterministic;
// clang-format off
template <typename T> struct t2s;
......@@ -73,9 +72,12 @@ struct FmhaBwdDQDKDVKernel
{
// sync with generate.py
// clang-format off
using bfs = typename FmhaPipeline::BlockFmhaShape;
using gbr = typename bfs::Gemm0BlockWarps;
using gwt = typename bfs::Gemm0WarpTile;
using bfs = typename FmhaPipeline::BlockFmhaShape;
using gbr0 = typename bfs::Gemm0BlockWarps;
using gbr1 = typename bfs::Gemm1BlockWarps;
using gbr4 = typename bfs::Gemm4BlockWarps;
using gwt0 = typename bfs::Gemm0WarpTile;
using gwt1 = typename bfs::Gemm1WarpTile;
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
......@@ -88,13 +90,17 @@ struct FmhaBwdDQDKDVKernel
return
_SS_("fmha_bwd_d") + _TS_(bfs::kQKHeaddim) + "_" + _SS_(t2s<QDataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_" +
"b" + _TS_(bfs::kM0) + "x" + _TS_(bfs::kN0) + "x" + _TS_(bfs::kK0) + "x" +
_TS_(bfs::kQKHeaddim) + "x" + _TS_(bfs::kVHeaddim) + "_" +
"r" + _TS_(gbr::at(ck_tile::number<0>{})) + "x" + _TS_(gbr::at(ck_tile::number<1>{})) + "x" + _TS_(gbr::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
"b" + _TS_(bfs::kM0) + "x" + _TS_(bfs::kN0) + "x" + _TS_(bfs::kK0) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kK2) + "x" + _TS_(bfs::kK3) + "x" +
_TS_(bfs::kK4) + "x" + _TS_(bfs::kQKHeaddim) + "x" + _TS_(bfs::kVHeaddim) + "_" +
"r" + _TS_(gbr0::at(ck_tile::number<0>{})) + "x" + _TS_(gbr0::at(ck_tile::number<1>{})) + "x" + _TS_(gbr0::at(ck_tile::number<2>{})) + "_" +
"r" + _TS_(gbr1::at(ck_tile::number<0>{})) + "x" + _TS_(gbr1::at(ck_tile::number<1>{})) + "x" + _TS_(gbr1::at(ck_tile::number<2>{})) + "_" +
"r" + _TS_(gbr4::at(ck_tile::number<0>{})) + "x" + _TS_(gbr4::at(ck_tile::number<1>{})) + "x" + _TS_(gbr4::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt0::at(ck_tile::number<0>{})) + "x" + _TS_(gwt0::at(ck_tile::number<1>{})) + "x" + _TS_(gwt0::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt1::at(ck_tile::number<0>{})) + "x" + _TS_(gwt1::at(ck_tile::number<1>{})) + "x" + _TS_(gwt1::at(ck_tile::number<2>{})) + "_" +
("o" + _TS_(kBlockPerCu) + "_") + _SS_(FmhaPipeline::name) + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasBiasGrad ? "_dbias" : "") + (kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kHasDropout ? "_dropout" : "" );
(kHasBiasGrad ? "_dbias" : "") + (kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kHasDropout ? "_dropout" : "" ) +
(kIsStoreRandval ? "_storerandval" : "" ) + (kIsDeterministic ? "_deterministic" : "" );
#undef _SS_
#undef _TS_
// clang-format on
......@@ -117,7 +123,7 @@ struct FmhaBwdDQDKDVKernel
const void* lse_ptr;
const void* do_ptr;
const void* d_ptr;
void* dq_ptr;
void* dq_acc_ptr;
void* dk_ptr;
void* dv_ptr;
......@@ -131,14 +137,13 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t num_head_q;
ck_tile::index_t nhead_ratio_qk;
float raw_scale;
#if CK_TILE_FMHA_FWD_FAST_EXP2
float scale;
#endif
ck_tile::index_t stride_q;
ck_tile::index_t stride_k;
ck_tile::index_t stride_v;
ck_tile::index_t stride_do;
ck_tile::index_t stride_dq_acc;
ck_tile::index_t stride_dk;
ck_tile::index_t stride_dv;
......@@ -147,8 +152,9 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t nhead_stride_v;
ck_tile::index_t nhead_stride_do;
ck_tile::index_t nhead_stride_lsed;
ck_tile::index_t batch_stride_lsed;
ck_tile::index_t nhead_stride_dq_acc;
ck_tile::index_t nhead_stride_dk;
ck_tile::index_t nhead_stride_dv;
};
struct FmhaBwdCommonBiasKargs
......@@ -206,7 +212,6 @@ struct FmhaBwdDQDKDVKernel
float rp_undrop = 1;
float scale_rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
bool is_store_randval = false;
uint64_t drop_seed = 1;
uint64_t drop_offset = 0;
void* rand_val_ptr = nullptr;
......@@ -218,6 +223,10 @@ struct FmhaBwdDQDKDVKernel
{
ck_tile::index_t batch_stride_randval = 0;
};
struct FmhaBwdDeterministicKargs
{
ck_tile::index_t split_stride_dq_acc = 0;
};
struct FmhaBwdBatchModeKargs
: FmhaBwdCommonKargs,
......@@ -228,12 +237,15 @@ struct FmhaBwdDQDKDVKernel
FmhaBwdEmptyKargs<0>>>,
std::conditional_t<kHasBiasGrad, FmhaBwdBatchModeBiasGradKargs, FmhaBwdEmptyKargs<1>>,
std::conditional_t<kHasMask, FmhaBwdMaskKargs, FmhaBwdEmptyKargs<2>>,
std::conditional_t<kHasDropout, FmhaBwdBatchModeDropoutKargs, FmhaBwdEmptyKargs<3>>
std::conditional_t<kHasDropout, FmhaBwdBatchModeDropoutKargs, FmhaBwdEmptyKargs<3>>,
std::conditional_t<kIsDeterministic, FmhaBwdDeterministicKargs, FmhaBwdEmptyKargs<4>>
{
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_do;
ck_tile::index_t batch_stride_lsed;
ck_tile::index_t batch_stride_dq_acc;
ck_tile::index_t batch_stride_dk;
ck_tile::index_t batch_stride_dv;
};
......@@ -247,7 +259,8 @@ struct FmhaBwdDQDKDVKernel
FmhaBwdEmptyKargs<0>>>,
std::conditional_t<kHasBiasGrad, FmhaBwdCommonBiasGradKargs, FmhaBwdEmptyKargs<1>>,
std::conditional_t<kHasMask, FmhaBwdMaskKargs, FmhaBwdEmptyKargs<2>>,
std::conditional_t<kHasDropout, FmhaBwdCommonDropoutKargs, FmhaBwdEmptyKargs<3>>
std::conditional_t<kHasDropout, FmhaBwdCommonDropoutKargs, FmhaBwdEmptyKargs<3>>,
std::conditional_t<kIsDeterministic, FmhaBwdDeterministicKargs, FmhaBwdEmptyKargs<4>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
......@@ -266,10 +279,10 @@ struct FmhaBwdDQDKDVKernel
const void* do_ptr,
const void* d_ptr,
void* rand_val_ptr,
void* dq_ptr,
void* dk_ptr,
void* dv_ptr,
void* dbias_ptr,
void* dq_acc_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
......@@ -283,6 +296,7 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_do,
ck_tile::index_t stride_dq_acc,
ck_tile::index_t stride_dk,
ck_tile::index_t stride_dv,
ck_tile::index_t stride_dbias,
......@@ -293,6 +307,9 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_do,
ck_tile::index_t nhead_stride_lsed,
ck_tile::index_t nhead_stride_dq_acc,
ck_tile::index_t nhead_stride_dk,
ck_tile::index_t nhead_stride_dv,
ck_tile::index_t nhead_stride_dbias,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
......@@ -301,14 +318,15 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_do,
ck_tile::index_t batch_stride_lsed,
ck_tile::index_t batch_stride_dq_acc,
ck_tile::index_t batch_stride_dk,
ck_tile::index_t batch_stride_dv,
ck_tile::index_t batch_stride_dbias,
ck_tile::index_t split_stride_dq_acc,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
Kargs kargs{{q_ptr,
......@@ -317,7 +335,7 @@ struct FmhaBwdDQDKDVKernel
lse_ptr,
do_ptr,
d_ptr,
dq_ptr,
dq_acc_ptr,
dk_ptr,
dv_ptr,
seqlen_q,
......@@ -327,13 +345,12 @@ struct FmhaBwdDQDKDVKernel
num_head_q,
nhead_ratio_qk,
scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale * ck_tile::log2e_v<>),
#endif
stride_q,
stride_k,
stride_v,
stride_do,
stride_dq_acc,
stride_dk,
stride_dv,
nhead_stride_q,
......@@ -341,15 +358,20 @@ struct FmhaBwdDQDKDVKernel
nhead_stride_v,
nhead_stride_do,
nhead_stride_lsed,
batch_stride_lsed}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for dbias
{}, // placeholder for mask
{}, // placeholder for dropout
nhead_stride_dq_acc,
nhead_stride_dk,
nhead_stride_dv}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for dbias
{}, // placeholder for mask
{}, // placeholder for dropout
{}, // placeholder for deterministic
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_do,
batch_stride_lsed,
batch_stride_dq_acc,
batch_stride_dk,
batch_stride_dv};
......@@ -384,11 +406,18 @@ struct FmhaBwdDQDKDVKernel
if constexpr(kHasDropout)
{
kargs.init_dropout(p_drop, drop_seed_offset, scale);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.batch_stride_randval = batch_stride_randval;
kargs.is_store_randval = s_randval;
if constexpr(kIsStoreRandval)
{
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.batch_stride_randval = batch_stride_randval;
}
}
if constexpr(kIsDeterministic)
{
kargs.split_stride_dq_acc = split_stride_dq_acc;
}
return kargs;
......@@ -404,10 +433,10 @@ struct FmhaBwdDQDKDVKernel
const void* do_ptr,
const void* d_ptr,
void* rand_val_ptr,
void* dq_ptr,
void* dk_ptr,
void* dv_ptr,
void* dbias_ptr,
void* dq_acc_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
......@@ -422,6 +451,7 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_do,
ck_tile::index_t stride_dq_acc,
ck_tile::index_t stride_dk,
ck_tile::index_t stride_dv,
ck_tile::index_t stride_dbias,
......@@ -432,13 +462,15 @@ struct FmhaBwdDQDKDVKernel
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_do,
ck_tile::index_t nhead_stride_lsed,
ck_tile::index_t nhead_stride_dq_acc,
ck_tile::index_t nhead_stride_dk,
ck_tile::index_t nhead_stride_dv,
ck_tile::index_t nhead_stride_dbias,
ck_tile::index_t batch_stride_lsed,
ck_tile::index_t split_stride_dq_acc,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
Kargs kargs{{q_ptr,
......@@ -447,7 +479,7 @@ struct FmhaBwdDQDKDVKernel
lse_ptr,
do_ptr,
d_ptr,
dq_ptr,
dq_acc_ptr,
dk_ptr,
dv_ptr,
-1, // seqlen will be updated by another pointer
......@@ -457,13 +489,12 @@ struct FmhaBwdDQDKDVKernel
num_head_q,
nhead_ratio_qk,
scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale * ck_tile::log2e_v<>),
#endif
stride_q,
stride_k,
stride_v,
stride_do,
stride_dq_acc,
stride_dk,
stride_dv,
nhead_stride_q,
......@@ -471,11 +502,14 @@ struct FmhaBwdDQDKDVKernel
nhead_stride_v,
nhead_stride_do,
nhead_stride_lsed,
batch_stride_lsed}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for dbias
{}, // placeholder for mask
{}, // placeholder for dropout
nhead_stride_dq_acc,
nhead_stride_dk,
nhead_stride_dv}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for dbias
{}, // placeholder for mask
{}, // placeholder for dropout
{}, // placeholder for deterministic
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr),
reinterpret_cast<const int32_t*>(seqlen_k_ptr)};
......@@ -506,10 +540,16 @@ struct FmhaBwdDQDKDVKernel
if constexpr(kHasDropout)
{
kargs.init_dropout(p_drop, drop_seed_offset, scale);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.is_store_randval = s_randval;
if constexpr(kIsStoreRandval)
{
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
}
}
if constexpr(kIsDeterministic)
{
kargs.split_stride_dq_acc = split_stride_dq_acc;
}
return kargs;
......@@ -518,7 +558,17 @@ struct FmhaBwdDQDKDVKernel
CK_TILE_HOST static constexpr auto
GridSize(ck_tile::index_t batch_size_, ck_tile::index_t nhead_, ck_tile::index_t seqlen_k_)
{
return TilePartitioner::GridSize(batch_size_, nhead_, seqlen_k_);
return dim3(
ck_tile::integer_divide_ceil(seqlen_k_, FmhaPipeline::kN0), nhead_, batch_size_);
}
CK_TILE_DEVICE static constexpr auto GetTileIndex()
{
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_block, i_nhead, i_batch);
}
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(kBlockSize); }
......@@ -536,7 +586,7 @@ struct FmhaBwdDQDKDVKernel
__shared__ char smem_ptr[GetSmemSize()];
// divide problem
const auto [i_tile_n, i_nhead, i_batch] = TilePartitioner{}(kargs.seqlen_k);
const auto [i_tile_n, i_nhead, i_batch] = GetTileIndex();
const index_t i_n0 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN0);
......@@ -547,6 +597,7 @@ struct FmhaBwdDQDKDVKernel
long_index_t batch_offset_randval = 0;
long_index_t batch_offset_do = 0;
long_index_t batch_offset_lsed = 0;
long_index_t batch_offset_dq_acc = 0;
long_index_t batch_offset_dk = 0;
long_index_t batch_offset_dv = 0;
long_index_t batch_offset_dbias = 0;
......@@ -557,13 +608,14 @@ struct FmhaBwdDQDKDVKernel
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
const long_index_t key_start = kargs.seqstart_k_ptr[i_batch];
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
batch_offset_v = key_start * kargs.stride_v;
batch_offset_do = query_start * kargs.stride_do;
batch_offset_lsed = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lsed;
batch_offset_dk = key_start * kargs.stride_dk;
batch_offset_dv = key_start * kargs.stride_dv;
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
batch_offset_v = key_start * kargs.stride_v;
batch_offset_do = query_start * kargs.stride_do;
batch_offset_lsed = query_start;
batch_offset_dq_acc = query_start * kargs.stride_dq_acc;
batch_offset_dk = key_start * kargs.stride_dk;
batch_offset_dv = key_start * kargs.stride_dv;
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
batch_offset_bias = query_start * kargs.stride_bias;
......@@ -576,7 +628,7 @@ struct FmhaBwdDQDKDVKernel
{
batch_offset_dbias = key_start;
}
if constexpr(kHasDropout)
if constexpr(kIsStoreRandval)
{
batch_offset_randval = query_start * kargs.stride_randval;
}
......@@ -603,13 +655,14 @@ struct FmhaBwdDQDKDVKernel
}
else
{
batch_offset_q = static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
batch_offset_k = static_cast<long_index_t>(i_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_batch) * kargs.batch_stride_v;
batch_offset_do = static_cast<long_index_t>(i_batch) * kargs.batch_stride_do;
batch_offset_lsed = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lsed;
batch_offset_dk = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dk;
batch_offset_dv = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dv;
batch_offset_q = static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
batch_offset_k = static_cast<long_index_t>(i_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_batch) * kargs.batch_stride_v;
batch_offset_do = static_cast<long_index_t>(i_batch) * kargs.batch_stride_do;
batch_offset_lsed = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lsed;
batch_offset_dq_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dq_acc;
batch_offset_dk = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dk;
batch_offset_dv = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dv;
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
batch_offset_bias = static_cast<long_index_t>(i_batch) * kargs.batch_stride_bias;
......@@ -618,7 +671,7 @@ struct FmhaBwdDQDKDVKernel
{
batch_offset_dbias = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dbias;
}
if constexpr(kHasDropout)
if constexpr(kIsStoreRandval)
{
batch_offset_randval =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_randval;
......@@ -646,14 +699,11 @@ struct FmhaBwdDQDKDVKernel
const OGradDataType* do_ptr = reinterpret_cast<const OGradDataType*>(kargs.do_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_do +
batch_offset_do;
QGradDataType* dq_ptr = reinterpret_cast<QGradDataType*>(kargs.dq_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_q +
batch_offset_q;
KGradDataType* dk_ptr = reinterpret_cast<KGradDataType*>(kargs.dk_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_k +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_dk +
batch_offset_dk;
VGradDataType* dv_ptr = reinterpret_cast<VGradDataType*>(kargs.dv_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_v +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_dv +
batch_offset_dv;
// Q/K/V/LSE/D/dO/dQ/dK/dV DRAM and DRAM window
......@@ -663,45 +713,10 @@ struct FmhaBwdDQDKDVKernel
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQ>{},
number<1>{});
const auto q_dram = [&]() {
if constexpr(FmhaPipeline::kQLoadOnce)
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
else
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
}();
const auto qt_dram_naive =
transform_tensor_view(q_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_q),
make_pass_through_transform(kargs.seqlen_q)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
const auto qt_dram = [&]() {
if constexpr(FmhaPipeline::kQTLoadOnce)
{
return pad_tensor_view(
qt_dram_naive,
make_tuple(number<FmhaPipeline::kQKHeaddim>{}, number<FmhaPipeline::kM0>{}),
sequence<kPadHeadDimQ, kPadSeqLenQ>{});
}
else
{
return pad_tensor_view(
qt_dram_naive,
make_tuple(number<FmhaPipeline::kQKHeaddim>{}, number<FmhaPipeline::kK3>{}),
sequence<kPadHeadDimQ, kPadSeqLenQ>{});
}
}();
const auto q_dram = pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
k_ptr,
......@@ -709,45 +724,10 @@ struct FmhaBwdDQDKDVKernel
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
const auto k_dram = [&]() {
if constexpr(FmhaPipeline::kKLoadOnce)
{
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}
else
{
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}
}();
const auto kt_dram_naive =
transform_tensor_view(k_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_q),
make_pass_through_transform(kargs.seqlen_k)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
const auto kt_dram = [&]() {
if constexpr(FmhaPipeline::kKTLoadOnce)
{
return pad_tensor_view(
kt_dram_naive,
make_tuple(number<FmhaPipeline::kQKHeaddim>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimQ, kPadSeqLenK>{});
}
else
{
return pad_tensor_view(
kt_dram_naive,
make_tuple(number<FmhaPipeline::kQKHeaddim>{}, number<FmhaPipeline::kK4>{}),
sequence<kPadHeadDimQ, kPadSeqLenK>{});
}
}();
const auto k_dram = pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
const auto v_dram = [&]() {
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
......@@ -756,20 +736,10 @@ struct FmhaBwdDQDKDVKernel
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
if constexpr(FmhaPipeline::kVLoadOnce)
{
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kVHeaddim>{}),
sequence<kPadSeqLenK, kPadHeadDimV>{});
}
else
{
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK2>{}),
sequence<kPadSeqLenK, kPadHeadDimV>{});
}
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kVHeaddim>{}),
sequence<kPadSeqLenK, kPadHeadDimV>{});
}();
const auto lse_dram = [&]() {
......@@ -792,145 +762,89 @@ struct FmhaBwdDQDKDVKernel
make_tuple(kargs.stride_do, 1),
number<FmhaPipeline::kAlignmentOGrad>{},
number<1>{});
const auto do_dram = [&]() {
if constexpr(FmhaPipeline::kOGradLoadOnce)
{
return pad_tensor_view(
do_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kVHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
}
else
{
return pad_tensor_view(
do_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK2>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
}
}();
const auto dot_dram_naive =
transform_tensor_view(do_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_q)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
const auto dot_dram = [&]() {
if constexpr(FmhaPipeline::kOGradTLoadOnce)
{
return pad_tensor_view(
dot_dram_naive,
make_tuple(number<FmhaPipeline::kVHeaddim>{}, number<FmhaPipeline::kM0>{}),
sequence<kPadHeadDimV, kPadSeqLenQ>{});
}
else
{
return pad_tensor_view(
dot_dram_naive,
make_tuple(number<FmhaPipeline::kVHeaddim>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenQ>{});
}
}();
auto dq_dram = [&]() {
const auto dq_dram_naive = make_naive_tensor_view<address_space_enum::global,
memory_operation_enum::atomic_add>(
dq_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQGrad>{},
number<1>{});
return pad_tensor_view(
dq_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
const auto do_dram = pad_tensor_view(
do_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kVHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
auto q_dram_window = make_tile_window(
q_dram,
[&]() {
if constexpr(FmhaPipeline::kQLoadOnce)
return make_tuple(number<FmhaPipeline::kM0>{},
number<FmhaPipeline::kQKHeaddim>{});
else
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{});
}(),
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
{0, 0});
auto qt_dram_window =
make_tile_window(qt_dram,
[&]() {
if constexpr(FmhaPipeline::kQTLoadOnce)
return make_tuple(number<FmhaPipeline::kQKHeaddim>{},
number<FmhaPipeline::kM0>{});
else
return make_tuple(number<FmhaPipeline::kQKHeaddim>{},
number<FmhaPipeline::kK3>{});
}(),
{0, 0});
auto k_dram_window = make_tile_window(
k_dram,
[&]() {
if constexpr(FmhaPipeline::kKLoadOnce)
return make_tuple(number<FmhaPipeline::kN0>{},
number<FmhaPipeline::kQKHeaddim>{});
else
return make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{});
}(),
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kQKHeaddim>{}),
{i_n0, 0});
auto kt_dram_window =
make_tile_window(kt_dram,
[&]() {
if constexpr(FmhaPipeline::kKTLoadOnce)
return make_tuple(number<FmhaPipeline::kQKHeaddim>{},
number<FmhaPipeline::kN0>{});
else
return make_tuple(number<FmhaPipeline::kQKHeaddim>{},
number<FmhaPipeline::kK4>{});
}(),
{0, i_n0});
auto v_dram_window = make_tile_window(
v_dram,
[&]() {
if constexpr(FmhaPipeline::kVLoadOnce)
return make_tuple(number<FmhaPipeline::kN0>{},
number<FmhaPipeline::kVHeaddim>{});
else
return make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK2>{});
}(),
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kVHeaddim>{}),
{i_n0, 0});
auto do_dram_window = make_tile_window(
do_dram,
[&]() {
if constexpr(FmhaPipeline::kOGradLoadOnce)
return make_tuple(number<FmhaPipeline::kM0>{},
number<FmhaPipeline::kVHeaddim>{});
else
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK2>{});
}(),
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kVHeaddim>{}),
{0, 0});
auto dot_dram_window =
make_tile_window(dot_dram,
[&]() {
if constexpr(FmhaPipeline::kOGradTLoadOnce)
return make_tuple(number<FmhaPipeline::kVHeaddim>{},
number<FmhaPipeline::kM0>{});
else
return make_tuple(number<FmhaPipeline::kVHeaddim>{},
number<FmhaPipeline::kK1>{});
}(),
{0, 0});
auto dq_dram_window = make_tile_window(
dq_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
{0, 0});
auto dq_dram_window = [&, i_tile_n_ = i_tile_n, i_nhead_ = i_nhead]() {
if constexpr(kIsDeterministic)
{
AccDataType* dq_acc_ptr =
reinterpret_cast<AccDataType*>(kargs.dq_acc_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_dq_acc +
static_cast<long_index_t>(i_tile_n_) * kargs.split_stride_dq_acc +
batch_offset_dq_acc;
auto dq_acc_dram = [&]() {
const auto dq_acc_dram_naive =
make_naive_tensor_view<address_space_enum::global>(
dq_acc_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_dq_acc, 1),
number<FmhaPipeline::kAlignmentQGrad>{},
number<1>{});
return pad_tensor_view(
dq_acc_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
dq_acc_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
{0, 0});
}
else
{
AccDataType* dq_acc_ptr =
reinterpret_cast<AccDataType*>(kargs.dq_acc_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_dq_acc +
batch_offset_dq_acc;
auto dq_acc_dram = [&]() {
const auto dq_acc_dram_naive =
make_naive_tensor_view<address_space_enum::global,
memory_operation_enum::atomic_add>(
dq_acc_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_dq_acc, 1),
number<FmhaPipeline::kAlignmentQGrad>{},
number<1>{});
return pad_tensor_view(
dq_acc_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
dq_acc_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kQKHeaddim>{}),
{0, 0});
}
}();
auto lse_dram_window =
make_tile_window(lse_dram, make_tuple(number<FmhaPipeline::kM0>{}), {0});
......@@ -1008,9 +922,7 @@ struct FmhaBwdDQDKDVKernel
// TODO: how to use s_read?
AccDataType slope = *(reinterpret_cast<const AccDataType*>(kargs.alibi_slope_ptr) +
i_batch_ * kargs.alibi_slope_stride + i_nhead_);
#if CK_TILE_FMHA_FWD_FAST_EXP2
slope *= ck_tile::log2e_v<>;
#endif
if constexpr(kHasMask)
{
return make_alibi_from_lr_mask<AccDataType, false>(slope,
......@@ -1033,35 +945,34 @@ struct FmhaBwdDQDKDVKernel
}();
// dropout
float rp_undrop = 1;
float scale_rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
uint64_t drop_seed = 0;
uint64_t drop_offset = 0;
bool is_store_randval = false;
float rp_undrop = 1;
float scale_rp_undrop = 1;
if constexpr(kHasDropout)
{
rp_undrop = kargs.rp_undrop;
scale_rp_undrop = kargs.scale_rp_undrop;
p_undrop_in_uint8_t = kargs.p_undrop_in_uint8_t;
drop_seed = kargs.drop_seed;
drop_offset = kargs.drop_offset;
is_store_randval = kargs.is_store_randval;
rp_undrop = kargs.rp_undrop;
scale_rp_undrop = kargs.scale_rp_undrop;
}
BlockDropout dropout(i_batch,
i_nhead,
kargs.num_head_q,
drop_seed,
drop_offset,
rp_undrop,
p_undrop_in_uint8_t,
is_store_randval);
auto dropout = [&, i_nhead_ = i_nhead, i_batch_ = i_batch]() {
if constexpr(kHasDropout)
{
return FmhaDropout{i_batch_,
i_nhead_,
kargs.num_head_q,
kargs.drop_seed,
kargs.drop_offset,
kargs.rp_undrop,
kargs.p_undrop_in_uint8_t};
}
else
{
return FmhaDropout{};
};
}();
auto randval_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto randval_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(kHasDropout)
if constexpr(kIsStoreRandval)
{
RandValOutputDataType* rand_val_ptr =
reinterpret_cast<RandValOutputDataType*>(kargs.rand_val_ptr) +
......@@ -1103,14 +1014,11 @@ struct FmhaBwdDQDKDVKernel
}();
auto [dk_acc_tile, dv_acc_tile] = FmhaPipeline{}(q_dram_window,
qt_dram_window,
k_dram_window,
kt_dram_window,
v_dram_window,
bias_dram_window,
randval_dram_window,
do_dram_window,
dot_dram_window,
lse_dram_window,
d_dram_window,
dq_dram_window,
......@@ -1118,9 +1026,7 @@ struct FmhaBwdDQDKDVKernel
mask,
position_encoding,
kargs.raw_scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
kargs.scale,
#endif
rp_undrop,
scale_rp_undrop,
smem_ptr,
......@@ -1169,10 +1075,9 @@ struct FmhaBwdDQDKDVKernel
}
};
template <typename TilePartitioner_, typename FmhaBwdOGradDotO_>
template <typename FmhaBwdOGradDotO_>
struct FmhaBwdOGradDotOKernel
{
using TilePartitioner = ck_tile::remove_cvref_t<TilePartitioner_>;
using FmhaBwdOGradDotO = ck_tile::remove_cvref_t<FmhaBwdOGradDotO_>;
static constexpr ck_tile::index_t kBlockSize = FmhaBwdOGradDotO::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaBwdOGradDotO::kBlockPerCu;
......@@ -1234,13 +1139,13 @@ struct FmhaBwdOGradDotOKernel
ck_tile::index_t nhead_stride_do;
ck_tile::index_t nhead_stride_o;
ck_tile::index_t nhead_stride_d;
ck_tile::index_t batch_stride_d;
};
struct FmhaBwdOGradDotOBatchModeKargs : FmhaBwdOGradDotOCommonKargs
{
ck_tile::index_t batch_stride_do;
ck_tile::index_t batch_stride_o;
ck_tile::index_t batch_stride_d;
};
struct FmhaBwdOGradDotOGroupModeKargs : FmhaBwdOGradDotOCommonKargs
......@@ -1278,10 +1183,10 @@ struct FmhaBwdOGradDotOKernel
stride_o,
nhead_stride_do,
nhead_stride_o,
nhead_stride_d,
batch_stride_d},
nhead_stride_d},
batch_stride_do,
batch_stride_o};
batch_stride_o,
batch_stride_d};
return kargs;
}
......@@ -1298,8 +1203,7 @@ struct FmhaBwdOGradDotOKernel
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_do,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t nhead_stride_d,
ck_tile::index_t batch_stride_d)
ck_tile::index_t nhead_stride_d)
{
Kargs kargs{{o_ptr,
do_ptr,
......@@ -1311,8 +1215,7 @@ struct FmhaBwdOGradDotOKernel
stride_o,
nhead_stride_do,
nhead_stride_o,
nhead_stride_d,
batch_stride_d},
nhead_stride_d},
reinterpret_cast<const int32_t*>(seqstart_q_ptr)};
return kargs;
......@@ -1321,7 +1224,16 @@ struct FmhaBwdOGradDotOKernel
CK_TILE_HOST static constexpr auto
GridSize(ck_tile::index_t batch_size_, ck_tile::index_t nhead_, ck_tile::index_t seqlen_q_)
{
return TilePartitioner::GridSize(batch_size_, nhead_, seqlen_q_);
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, kM0), nhead_, batch_size_);
}
CK_TILE_DEVICE static constexpr auto GetTileIndex()
{
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_block, i_nhead, i_batch);
}
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(kBlockSize); }
......@@ -1331,7 +1243,7 @@ struct FmhaBwdOGradDotOKernel
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// divide problem
const auto [i_tile_m, i_nhead, i_batch] = TilePartitioner{}(kargs.seqlen_q);
const auto [i_tile_m, i_nhead, i_batch] = GetTileIndex();
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * kM0);
......@@ -1346,7 +1258,7 @@ struct FmhaBwdOGradDotOKernel
batch_offset_o = query_start * kargs.stride_o;
batch_offset_do = query_start * kargs.stride_do;
batch_offset_d = static_cast<long_index_t>(i_batch) * kargs.batch_stride_d;
batch_offset_d = query_start;
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
......@@ -1418,4 +1330,315 @@ struct FmhaBwdOGradDotOKernel
}
};
template <typename FmhaBwdConvertQGrad_>
struct FmhaBwdConvertQGradKernel
{
using FmhaBwdConvertQGrad = ck_tile::remove_cvref_t<FmhaBwdConvertQGrad_>;
static constexpr ck_tile::index_t kBlockSize = FmhaBwdConvertQGrad::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaBwdConvertQGrad::kBlockPerCu;
static constexpr ck_tile::index_t kM0 = FmhaBwdConvertQGrad::kM0;
static constexpr ck_tile::index_t kN0 = FmhaBwdConvertQGrad::kN0;
static constexpr ck_tile::index_t kQKHeaddim = FmhaBwdConvertQGrad::kQKHeaddim;
using AccDataType = ck_tile::remove_cvref_t<typename FmhaBwdConvertQGrad::AccDataType>;
using QGradDataType = ck_tile::remove_cvref_t<typename FmhaBwdConvertQGrad::QGradDataType>;
static constexpr bool kIsGroupMode = FmhaBwdConvertQGrad::kIsGroupMode;
static constexpr bool kPadSeqLenQ = FmhaBwdConvertQGrad::kPadSeqLenQ;
static constexpr bool kPadHeadDimQ = FmhaBwdConvertQGrad::kPadHeadDimQ;
static constexpr bool kIsDeterministic = FmhaBwdConvertQGrad::kIsDeterministic;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
// clang-format on
CK_TILE_HOST static std::string GetName()
{
// sync with generate.py
// clang-format off
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadHeadDimQ) n += "d";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_bwd_convert_dq_d") + _TS_(kQKHeaddim) + "_" + _SS_(t2s<QGradDataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + (kIsDeterministic ? "_deterministic" : "") + "_" +
("o" + _TS_(kBlockPerCu)) + (pn.empty() ? "" : "_" + pn);
#undef _SS_
#undef _TS_
// clang-format on
}
// to avoid duplicated base class prblem, introduce an template arg
template <ck_tile::index_t I>
struct FmhaBwdConvertQGradEmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct FmhaBwdConvertQGradCommonKargs
{
const void* dq_acc_ptr;
void* dq_ptr;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
ck_tile::index_t hdim_q;
ck_tile::index_t stride_dq;
ck_tile::index_t stride_dq_acc;
ck_tile::index_t nhead_stride_dq;
ck_tile::index_t nhead_stride_dq_acc;
};
struct FmhaBwdConvertQGradDeterministicKargs
{
ck_tile::index_t split_stride_dq_acc = 0;
};
struct FmhaBwdConvertQGradBatchModeKargs
: FmhaBwdConvertQGradCommonKargs,
std::conditional_t<kIsDeterministic,
FmhaBwdConvertQGradDeterministicKargs,
FmhaBwdConvertQGradEmptyKargs<0>>
{
ck_tile::index_t batch_stride_dq;
ck_tile::index_t batch_stride_dq_acc;
};
struct FmhaBwdConvertQGradGroupModeKargs
: FmhaBwdConvertQGradCommonKargs,
std::conditional_t<kIsDeterministic,
FmhaBwdConvertQGradDeterministicKargs,
FmhaBwdConvertQGradEmptyKargs<0>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
};
using Kargs = std::conditional_t<kIsGroupMode,
FmhaBwdConvertQGradGroupModeKargs,
FmhaBwdConvertQGradBatchModeKargs>;
template <bool Cond = !kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* dq_acc_ptr,
void* dq_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t stride_dq,
ck_tile::index_t stride_dq_acc,
ck_tile::index_t nhead_stride_dq,
ck_tile::index_t nhead_stride_dq_acc,
ck_tile::index_t batch_stride_dq,
ck_tile::index_t batch_stride_dq_acc,
ck_tile::index_t split_stride_dq_acc)
{
Kargs kargs{{dq_acc_ptr,
dq_ptr,
seqlen_q,
seqlen_k,
hdim_q,
stride_dq,
stride_dq_acc,
nhead_stride_dq,
nhead_stride_dq_acc},
{},
batch_stride_dq,
batch_stride_dq_acc};
if constexpr(kIsDeterministic)
{
kargs.split_stride_dq_acc = split_stride_dq_acc;
}
return kargs;
}
template <bool Cond = kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* dq_acc_ptr,
void* dq_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t stride_dq,
ck_tile::index_t stride_dq_acc,
ck_tile::index_t nhead_stride_dq,
ck_tile::index_t nhead_stride_dq_acc,
ck_tile::index_t split_stride_dq_acc)
{
Kargs kargs{{dq_acc_ptr,
dq_ptr,
-1, // seqlen will be updated by another pointer
-1, //
hdim_q,
stride_dq,
stride_dq_acc,
nhead_stride_dq,
nhead_stride_dq_acc},
{},
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr)};
if constexpr(kIsDeterministic)
{
kargs.split_stride_dq_acc = split_stride_dq_acc;
}
return kargs;
}
CK_TILE_HOST static constexpr auto
GridSize(ck_tile::index_t batch_size_, ck_tile::index_t nhead_, ck_tile::index_t seqlen_q_)
{
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, kM0), nhead_, batch_size_);
}
CK_TILE_DEVICE static constexpr auto GetTileIndex()
{
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_block, i_nhead, i_batch);
}
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize() { return 0; }
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// divide problem
const auto [i_tile_m, i_nhead, i_batch] = GetTileIndex();
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * kM0);
long_index_t batch_offset_dq = 0;
long_index_t batch_offset_dq_acc = 0;
if constexpr(kIsGroupMode)
{
// get starting offset for each batch
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
batch_offset_dq = query_start * kargs.stride_dq;
batch_offset_dq_acc = query_start * kargs.stride_dq_acc;
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
kargs.seqlen_q = adjusted_seqstart_q_ptr[1] - adjusted_seqstart_q_ptr[0];
if constexpr(kIsDeterministic)
{
const auto adjusted_seqstart_k_ptr = kargs.seqstart_k_ptr + i_batch;
kargs.seqlen_k = adjusted_seqstart_k_ptr[1] - adjusted_seqstart_k_ptr[0];
}
// # of required blocks is different in each groups, terminate unnecessary blocks
// earlier
if(kargs.seqlen_q <= i_m0)
{
return;
}
}
else
{
batch_offset_dq = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dq;
batch_offset_dq_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_dq_acc;
}
// for simplicity, batch stride we just modify the pointer
QGradDataType* dq_ptr = reinterpret_cast<QGradDataType*>(kargs.dq_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_dq +
batch_offset_dq;
// dQAcc/dQ DRAM and DRAM window
const auto dq_acc_dram = [&, i_nhead_ = i_nhead]() {
if constexpr(kIsDeterministic)
{
const AccDataType* dq_acc_ptr =
reinterpret_cast<const AccDataType*>(kargs.dq_acc_ptr) +
static_cast<long_index_t>(i_nhead_) * (kargs.nhead_stride_dq_acc) +
batch_offset_dq_acc;
const index_t nsplits = ck_tile::integer_divide_ceil(kargs.seqlen_k, kN0);
auto dq_acc_dram_naive = make_naive_tensor_view<address_space_enum::global>(
dq_acc_ptr,
make_tuple(nsplits, kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.split_stride_dq_acc, kargs.stride_dq_acc, 1),
number<FmhaBwdConvertQGrad::kAlignmentQGradAcc>{},
number<1>{});
return pad_tensor_view(dq_acc_dram_naive,
make_tuple(number<1>{}, number<kM0>{}, number<kQKHeaddim>{}),
sequence<false, kPadSeqLenQ, kPadHeadDimQ>{});
}
else
{
const AccDataType* dq_acc_ptr =
reinterpret_cast<const AccDataType*>(kargs.dq_acc_ptr) +
static_cast<long_index_t>(i_nhead_) * (kargs.nhead_stride_dq_acc) +
batch_offset_dq_acc;
auto dq_acc_dram_naive = make_naive_tensor_view<address_space_enum::global>(
dq_acc_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_dq_acc, 1),
number<FmhaBwdConvertQGrad::kAlignmentQGradAcc>{},
number<1>{});
return pad_tensor_view(dq_acc_dram_naive,
make_tuple(number<kM0>{}, number<kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
}();
auto dq_dram = [&]() {
auto dq_dram_naive = make_naive_tensor_view<address_space_enum::global>(
dq_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_dq, 1),
number<FmhaBwdConvertQGrad::kAlignmentQGrad>{},
number<1>{});
return pad_tensor_view(dq_dram_naive,
make_tuple(number<kM0>{}, number<kQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
auto dq_acc_dram_window = [&]() {
if constexpr(kIsDeterministic)
{
return make_tile_window(
dq_acc_dram,
make_tuple(number<1>{}, number<kM0>{}, number<kQKHeaddim>{}),
{0, i_m0, 0});
}
else
{
return make_tile_window(
dq_acc_dram, make_tuple(number<kM0>{}, number<kQKHeaddim>{}), {i_m0, 0});
}
}();
auto dq_dram_window =
make_tile_window(dq_dram, make_tuple(number<kM0>{}, number<kQKHeaddim>{}), {i_m0, 0});
if constexpr(kIsDeterministic)
{
const index_t nsplits = ck_tile::integer_divide_ceil(kargs.seqlen_k, kN0);
FmhaBwdConvertQGrad{}(dq_acc_dram_window, dq_dram_window, nsplits);
}
else
{
FmhaBwdConvertQGrad{}(dq_acc_dram_window, dq_dram_window);
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename BlockFmhaShape_>
struct FmhaBwdTilePartitioner
{
using BlockFmhaShape = ck_tile::remove_cvref_t<BlockFmhaShape_>;
static constexpr ck_tile::index_t kN0 = BlockFmhaShape::kN0;
CK_TILE_HOST static constexpr auto
GridSize(ck_tile::index_t batch_size_, ck_tile::index_t nhead_, ck_tile::index_t seqlen_k_)
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_k_, kN0), nhead_, batch_size_);
}
CK_TILE_DEVICE auto operator()(ck_tile::index_t /*seqlen_k*/)
{
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_block, i_nhead, i_batch);
}
};
template <ck_tile::index_t kBlockSize>
struct FmhaBwdOGradDotOTilePartitioner
{
CK_TILE_HOST static constexpr auto
GridSize(ck_tile::index_t batch_size_, ck_tile::index_t nhead_, ck_tile::index_t seqlen_q_)
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, kBlockSize), nhead_, batch_size_);
}
CK_TILE_DEVICE auto operator()(ck_tile::index_t /*seqlen_q*/)
{
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_block, i_nhead, i_batch);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
template <typename TilePartitioner_, typename FmhaPipeline_>
struct FmhaFwdAppendKVKernel
{
using TilePartitioner = ck_tile::remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = ck_tile::remove_cvref_t<FmhaPipeline_>;
static constexpr ck_tile::index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
static constexpr ck_tile::index_t kBlockPerCuInput = FmhaPipeline::Problem::kBlockPerCu;
using QDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::QDataType>;
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using VLayout = ck_tile::remove_cvref_t<typename FmhaPipeline::VLayout>;
static constexpr bool kApplyRoPE = FmhaPipeline::RotaryEnum != RotaryEmbeddingEnum::NONE;
static constexpr bool kIsPagedKV = FmhaPipeline::kIsPagedKV;
static constexpr bool kPadSeqLenQ = FmhaPipeline::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = FmhaPipeline::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
// clang-format on
__host__ static std::string GetName()
{
// sync with generate.py
// clang-format off
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadSeqLenK) n += "sk";
if (kPadHeadDimQ) n += "d";
if (kPadHeadDimV) n += "dv";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_appendkv_d") + _TS_(FmhaPipeline::kK0) + "_" + _SS_(t2s<QDataType>::name) + "_"
"b" + _TS_(FmhaPipeline::kM0) + "x" + _TS_(FmhaPipeline::kN0) + "x" + _TS_(FmhaPipeline::kK0) + "x" +
_TS_(FmhaPipeline::kN1) + "_" + (kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn)
+ (!kApplyRoPE ? _SS_("") : (_SS_("_") + RotaryEmbeddingEnumToStr<FmhaPipeline::RotaryEnum>::name))
+ (kIsPagedKV ? "_pagedkv" : "" );
#undef _SS_
#undef _TS_
// clang-format on
}
template <ck_tile::index_t I> // to avoid duplicated base class prblem, introduce an template
// arg
struct EmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct BasicKargs
{
void* q_ptr;
void* k_ptr;
const void* knew_ptr;
void* v_ptr;
const void* vnew_ptr;
const int32_t* seqlen_k_ptr;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
ck_tile::index_t seqlen_knew;
ck_tile::index_t hdim_q;
ck_tile::index_t hdim_v;
ck_tile::index_t num_head_q;
// for MQA/GQA, nhead could be different. This parameter is nhead_q / nhead_k
// if this param is larger than 1, indicate MQA/GQA case
ck_tile::index_t nhead_ratio_qk;
ck_tile::index_t stride_q;
ck_tile::index_t stride_k;
ck_tile::index_t stride_knew;
ck_tile::index_t stride_v;
ck_tile::index_t stride_vnew;
ck_tile::index_t nhead_stride_q;
ck_tile::index_t nhead_stride_k;
ck_tile::index_t nhead_stride_knew;
ck_tile::index_t nhead_stride_v;
ck_tile::index_t nhead_stride_vnew;
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_knew;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_vnew;
};
struct RoPEKargs
{
const void* rotary_cos_ptr;
const void* rotary_sin_ptr;
ck_tile::index_t rotary_dim;
bool has_mask;
};
struct PageBlockTableKargs
{
const int32_t* block_table_ptr;
ck_tile::index_t batch_stride_block_table;
ck_tile::index_t page_block_size;
};
struct CacheBatchIdxKargs
{
const int32_t* cache_batch_idx;
};
struct Kargs : BasicKargs,
std::conditional_t<kApplyRoPE, RoPEKargs, EmptyKargs<0>>,
std::conditional_t<kIsPagedKV, PageBlockTableKargs, CacheBatchIdxKargs>
{
};
__host__ static constexpr Kargs MakeKargs(void* q_ptr,
void* k_ptr,
const void* knew_ptr,
void* v_ptr,
const void* vnew_ptr,
ck_tile::index_t seqlen_q,
const void* seqlen_k_ptr,
ck_tile::index_t seqlen_knew,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
const void* rotary_cos_ptr,
const void* rotary_sin_ptr,
ck_tile::index_t rotary_dim,
bool has_mask,
const void* block_table_ptr,
ck_tile::index_t batch_stride_block_table,
ck_tile::index_t page_block_size,
const void* cache_batch_idx,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_knew,
ck_tile::index_t stride_v,
ck_tile::index_t stride_vnew,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_knew,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_vnew,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_knew,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_vnew)
{
Kargs kargs{
{q_ptr,
k_ptr,
knew_ptr,
v_ptr,
vnew_ptr,
reinterpret_cast<const int32_t*>(seqlen_k_ptr),
seqlen_q,
-1, // seqlen_k will be updated by content of seqlen_k_ptr
seqlen_knew,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
stride_q,
stride_k,
stride_knew,
stride_v,
stride_vnew,
nhead_stride_q,
nhead_stride_k,
nhead_stride_knew,
nhead_stride_v,
nhead_stride_vnew,
batch_stride_q,
batch_stride_k,
batch_stride_knew,
batch_stride_v,
batch_stride_vnew}, // args for common karg
{}, // placeholder for rope
{} // placeholder for paged-block table or cache_batch_idx
};
if constexpr(kApplyRoPE)
{
kargs.rotary_cos_ptr = rotary_cos_ptr;
kargs.rotary_sin_ptr = rotary_sin_ptr;
kargs.rotary_dim = rotary_dim;
kargs.has_mask = has_mask;
}
if constexpr(kIsPagedKV)
{
kargs.block_table_ptr = reinterpret_cast<const int32_t*>(block_table_ptr);
kargs.batch_stride_block_table = batch_stride_block_table;
kargs.page_block_size = page_block_size;
}
else
{
kargs.cache_batch_idx = reinterpret_cast<const int32_t*>(cache_batch_idx);
}
return kargs;
}
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_knew)
{
return TilePartitioner::GridSize(batch_size, nhead, seqlen_q, seqlen_knew);
}
__host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// divide problem
const auto [i_tile, i_nhead, i_batch] = TilePartitioner{}();
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile * FmhaPipeline::kM0);
const index_t i_n0 = __builtin_amdgcn_readfirstlane(i_tile * FmhaPipeline::kN0);
const index_t i_cache_batch = [&, i_batch_ = i_batch] {
if constexpr(kIsPagedKV)
{
return i_batch_;
}
else
{
return (kargs.cache_batch_idx != nullptr ? kargs.cache_batch_idx[i_batch_]
: i_batch_);
}
}();
const long_index_t batch_offset_q =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
const long_index_t batch_offset_k =
static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_k;
const long_index_t batch_offset_knew =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_knew;
const long_index_t batch_offset_v =
static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_v;
const long_index_t batch_offset_vnew =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_vnew;
kargs.seqlen_k = kargs.seqlen_k_ptr[i_batch];
// for simplicity, batch stride we just modify the pointer
QDataType* q_ptr = reinterpret_cast<QDataType*>(kargs.q_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_q +
batch_offset_q;
KDataType* k_ptr =
reinterpret_cast<KDataType*>(kargs.k_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_k +
batch_offset_k;
const KDataType* knew_ptr =
reinterpret_cast<const KDataType*>(kargs.knew_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_knew +
batch_offset_knew;
VDataType* v_ptr =
reinterpret_cast<VDataType*>(kargs.v_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_v +
batch_offset_v;
const VDataType* vnew_ptr =
reinterpret_cast<const VDataType*>(kargs.vnew_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_vnew +
batch_offset_vnew;
// Q/K/V DRAM and DRAM window
const auto q_dram = [&]() {
const auto q_dram_naive = make_naive_tensor_view<address_space_enum::global>(
q_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQ>{},
number<1>{});
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
const auto make_k_dram = [&](KDataType* data, index_t height) {
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(height, kargs.hdim_q),
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
};
const auto k_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_k_dram(nullptr, kargs.page_block_size);
}
else
{
return make_k_dram(k_ptr, kargs.seqlen_k + kargs.seqlen_knew);
}
}();
const auto knew_dram = [&]() {
const auto knew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
knew_ptr,
make_tuple(kargs.seqlen_knew, kargs.hdim_q),
make_tuple(kargs.stride_knew, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
knew_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
const auto make_v_dram = [&](VDataType* data, index_t length) {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(length, kargs.hdim_v),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto v_dram_transposed =
transform_tensor_view(v_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(length)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(kargs.hdim_v, length),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
};
const auto v_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_v_dram(nullptr, kargs.page_block_size);
}
else
{
return make_v_dram(v_ptr, kargs.seqlen_k + kargs.seqlen_knew);
}
}();
const auto vnew_dram = [&]() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto vnew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
vnew_ptr,
make_tuple(kargs.seqlen_knew, kargs.hdim_v),
make_tuple(kargs.stride_vnew, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto vnew_dram_transposed = transform_tensor_view(
vnew_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_knew)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
vnew_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto vnew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
vnew_ptr,
make_tuple(kargs.hdim_v, kargs.seqlen_knew),
make_tuple(kargs.stride_vnew, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
vnew_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
}();
constexpr auto q_rotary_cos_sin_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0 / 2>{});
const auto q_rotary_cos_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_cos_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const QDataType*>(kargs.rotary_cos_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_q, kargs.rotary_dim / 2),
make_tuple(kargs.has_mask * (kargs.rotary_dim / 2), 1),
number<8>{},
number<1>{});
const auto rotary_cos_dram = [&]() {
return pad_tensor_view(rotary_cos_dram_native,
q_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_cos_dram, q_rotary_cos_sin_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(q_rotary_cos_sin_dram_window_lengths);
}
}();
const auto q_rotary_sin_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_sin_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const QDataType*>(kargs.rotary_sin_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_q, kargs.rotary_dim / 2),
make_tuple(kargs.has_mask * (kargs.rotary_dim / 2), 1),
number<8>{},
number<1>{});
const auto rotary_sin_dram = [&]() {
return pad_tensor_view(rotary_sin_dram_native,
q_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_sin_dram, q_rotary_cos_sin_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(q_rotary_cos_sin_dram_window_lengths);
}
}();
constexpr auto knew_rotary_cos_sin_dram_window_lengths =
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0 / 2>{});
const auto knew_rotary_cos_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_cos_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const KDataType*>(kargs.rotary_cos_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_knew, kargs.rotary_dim / 2),
make_tuple(kargs.rotary_dim / 2, 1),
number<8>{},
number<1>{});
const auto rotary_cos_dram = [&]() {
return pad_tensor_view(rotary_cos_dram_native,
knew_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_cos_dram, knew_rotary_cos_sin_dram_window_lengths, {i_n0, 0});
}
else
{
return make_null_tile_window(knew_rotary_cos_sin_dram_window_lengths);
}
}();
const auto knew_rotary_sin_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_sin_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const KDataType*>(kargs.rotary_sin_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_knew, kargs.rotary_dim / 2),
make_tuple(kargs.rotary_dim / 2, 1),
number<8>{},
number<1>{});
const auto rotary_sin_dram = [&]() {
return pad_tensor_view(rotary_sin_dram_native,
knew_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_sin_dram, knew_rotary_cos_sin_dram_window_lengths, {i_n0, 0});
}
else
{
return make_null_tile_window(knew_rotary_cos_sin_dram_window_lengths);
}
}();
auto k_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k + kargs.seqlen_knew, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_k;
return make_page_block_navigator<KDataType, 0>(
kargs.k_ptr,
kargs.batch_stride_k,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
k_dram,
make_k_dram(nullptr,
(kargs.seqlen_k + kargs.seqlen_knew) -
(num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(k_dram);
}
}();
auto v_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k + kargs.seqlen_knew, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_v;
return make_page_block_navigator<VDataType, 1>(
kargs.v_ptr,
kargs.batch_stride_v,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
v_dram,
make_v_dram(nullptr,
(kargs.seqlen_k + kargs.seqlen_knew) -
(num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(v_dram);
}
}();
auto q_dram_window =
make_tile_window(q_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
{i_m0, 0});
const bool skip_append_kv = kargs.seqlen_knew <= i_n0;
// window origin = (0, 0) if no work to do for current block
auto [i_page_block_k, k_dram_window] = k_page_block_navigator.make_tile_window(
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
{!skip_append_kv * (kargs.seqlen_k + i_n0), 0});
auto knew_dram_window =
make_tile_window(knew_dram,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
{i_n0, 0});
// window origin = (0, 0) if no work to do for current block
auto [i_page_block_v, v_dram_window] = v_page_block_navigator.make_tile_window(
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
{0, !skip_append_kv * (kargs.seqlen_k + i_n0)});
auto vnew_dram_window =
make_tile_window(vnew_dram,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
{0, i_n0});
if constexpr(kApplyRoPE)
{
FmhaPipeline{}(q_dram_window,
k_dram_window,
i_page_block_k,
k_page_block_navigator,
knew_dram_window,
v_dram_window,
i_page_block_v,
v_page_block_navigator,
vnew_dram_window,
q_rotary_cos_dram_window,
q_rotary_sin_dram_window,
knew_rotary_cos_dram_window,
knew_rotary_sin_dram_window,
kargs.rotary_dim,
kargs.seqlen_q <= i_m0,
skip_append_kv);
}
else
{
FmhaPipeline{}(q_dram_window,
k_dram_window,
i_page_block_k,
k_page_block_navigator,
knew_dram_window,
v_dram_window,
i_page_block_v,
v_page_block_navigator,
vnew_dram_window,
q_rotary_cos_dram_window,
q_rotary_sin_dram_window,
knew_rotary_cos_dram_window,
knew_rotary_sin_dram_window,
0, // rotary_dim not used
kargs.seqlen_q <= i_m0,
skip_append_kv);
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <index_t kM0_, index_t kN0_, index_t kK0_, index_t kN1_>
struct FmhaFwdAppendKVTilePartitioner
{
static constexpr ck_tile::index_t kM0 = kM0_;
static constexpr ck_tile::index_t kN0 = kN0_;
static constexpr ck_tile::index_t kK0 = kK0_;
static constexpr ck_tile::index_t kN1 = kN1_;
static_assert(kK0 == kN1);
CK_TILE_HOST static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_knew)
{
// TODO: this may need tuning
return dim3(std::max(ck_tile::integer_divide_ceil(seqlen_q, kM0),
ck_tile::integer_divide_ceil(seqlen_knew, kN0)),
nhead,
batch_size);
}
CK_TILE_DEVICE auto operator()()
{
const index_t i_tile = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_tile, i_nhead, i_batch);
}
};
} // namespace ck_tile
......@@ -86,7 +86,7 @@ struct FmhaFwdKernel
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kHasDropout ? "_dropout" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
......@@ -387,7 +387,6 @@ struct FmhaFwdKernel
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
......@@ -448,7 +447,6 @@ struct FmhaFwdKernel
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
......@@ -524,7 +522,7 @@ struct FmhaFwdKernel
}
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
batch_offset_lse = query_start;
}
if constexpr(kHasDropout)
{
......
......@@ -55,7 +55,7 @@ struct FmhaFwdSplitKVCombineKernel
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) +
_SS_(FmhaPipeline::name) +
(pn.empty() ? "" : "_" + pn) +
(kStoreLSE ? "_lse" : "" ) +
(kStoreLSE ? "_lse" : "" ) +
(kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
......@@ -91,7 +91,6 @@ struct FmhaFwdSplitKVCombineKernel
ck_tile::index_t nhead_stride_o_acc;
ck_tile::index_t nhead_stride_o;
ck_tile::index_t batch_stride_lse_acc;
ck_tile::index_t batch_stride_o_acc;
ck_tile::index_t split_stride_lse_acc;
......@@ -116,6 +115,7 @@ struct FmhaFwdSplitKVCombineKernel
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<1>>
{
ck_tile::index_t batch_stride_o;
ck_tile::index_t batch_stride_lse_acc;
};
struct GroupModeKargs
......@@ -166,13 +166,13 @@ struct FmhaFwdSplitKVCombineKernel
nhead_stride_lse_acc,
nhead_stride_o_acc,
nhead_stride_o,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
batch_stride_o};
batch_stride_o,
batch_stride_lse_acc};
if constexpr(kStoreLSE)
{
......@@ -206,9 +206,7 @@ struct FmhaFwdSplitKVCombineKernel
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc)
{
......@@ -225,7 +223,6 @@ struct FmhaFwdSplitKVCombineKernel
nhead_stride_lse_acc,
nhead_stride_o_acc,
nhead_stride_o,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
......@@ -237,7 +234,6 @@ struct FmhaFwdSplitKVCombineKernel
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
......@@ -274,24 +270,25 @@ struct FmhaFwdSplitKVCombineKernel
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
const long_index_t batch_offset_lse_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse_acc;
const long_index_t batch_offset_o_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_o_acc;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
long_index_t batch_offset_lse_acc = 0;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kIsGroupMode)
{
// get starting offset for each batch
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
batch_offset_o = query_start * kargs.row_stride_o;
batch_offset_o = query_start * kargs.row_stride_o;
batch_offset_lse_acc = query_start;
if constexpr(kStoreLSE)
{
batch_offset_lse = query_start;
}
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
......@@ -306,7 +303,13 @@ struct FmhaFwdSplitKVCombineKernel
}
else
{
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
batch_offset_lse_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse_acc;
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
}
// for simplicity, batch stride we just modify the pointer
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment