Commit 72c9f129 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents 241c261f ded0d83d
......@@ -710,8 +710,8 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
return false;
}
if constexpr(!(is_NDHWGK_GKZYXC_NDHWGC<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWK_GKZYXC_GNDHWC<InLayout, WeiLayout, OutLayout>()))
if constexpr(!(is_NDHWGC_GKZYXC_NDHWGK<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWC_GKZYXC_GNDHWK<InLayout, WeiLayout, OutLayout>()))
{
return false;
}
......
......@@ -586,23 +586,23 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
}
if constexpr(NDimSpatial == 1)
{
if constexpr(!is_GNWK_GKXC_GNWC<InLayout, WeiLayout, OutLayout>())
if constexpr(!is_GNWC_GKXC_GNWK<InLayout, WeiLayout, OutLayout>())
{
return false;
}
}
else if constexpr(NDimSpatial == 2)
{
if constexpr(!(is_NHWGK_GKYXC_NHWGC<InLayout, WeiLayout, OutLayout>() ||
is_GNHWK_GKYXC_GNHWC<InLayout, WeiLayout, OutLayout>()))
if constexpr(!(is_NHWGC_GKYXC_NHWGK<InLayout, WeiLayout, OutLayout>() ||
is_GNHWC_GKYXC_GNHWK<InLayout, WeiLayout, OutLayout>()))
{
return false;
}
}
else if constexpr(NDimSpatial == 3)
{
if constexpr(!(is_NDHWGK_GKZYXC_NDHWGC<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWK_GKZYXC_GNDHWC<InLayout, WeiLayout, OutLayout>()))
if constexpr(!(is_NDHWGC_GKZYXC_NDHWGK<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWC_GKZYXC_GNDHWK<InLayout, WeiLayout, OutLayout>()))
{
return false;
}
......
......@@ -102,10 +102,9 @@ __global__ void
// offset base pointer for each work-group
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.y);
const index_t n_idx = __builtin_amdgcn_readfirstlane(blockIdx.z);
const long_index_t e_batch_offset =
const long_index_t e_group_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetEPtrOffset(g_idx));
const auto& ds_batch_offset = compute_ptr_offset_of_groups.GetDsPtrOffset(g_idx);
const auto& ds_group_offset = compute_ptr_offset_of_groups.GetDsPtrOffset(g_idx);
const long_index_t e_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetEPtrOffset(n_idx));
......@@ -118,14 +117,14 @@ __global__ void
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_group_offset[i]; });
if constexpr(isMultiA || isMultiB)
{
AsPointer p_as_grid_grp;
BsPointer p_bs_grid_grp;
const auto& as_batch_offset = compute_ptr_offset_of_groups.GetAsPtrOffset(g_idx);
const auto& as_group_offset = compute_ptr_offset_of_groups.GetAsPtrOffset(g_idx);
// compute_ptr_offset_of_n_ not need BatchStrideB so
// in case of MultiA is false but isMultiB is true
......@@ -136,27 +135,27 @@ __global__ void
static constexpr index_t NumATensor = AGridDesc_AK0_M_AK1::Size();
static_for<0, NumATensor, 1>{}([&](auto i) {
p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i] + as_n_offset[i];
p_as_grid_grp(i) = p_as_grid[i] + as_group_offset[i] + as_n_offset[i];
});
}
else
{
const long_index_t a_n_offset = compute_ptr_offset_of_n.GetAPtrOffset(n_idx);
static_for<0, 1, 1>{}(
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i] + a_n_offset; });
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_group_offset[i] + a_n_offset; });
}
const auto& bs_batch_offset = compute_ptr_offset_of_groups.GetBsPtrOffset(g_idx);
const auto& bs_group_offset = compute_ptr_offset_of_groups.GetBsPtrOffset(g_idx);
static constexpr index_t NumBTensor = BGridDesc_BK0_N_BK1::Size();
static_for<0, NumBTensor, 1>{}(
[&](auto i) { p_bs_grid_grp(i) = p_bs_grid[i] + bs_batch_offset[i]; });
[&](auto i) { p_bs_grid_grp(i) = p_bs_grid[i] + bs_group_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid_grp,
p_bs_grid_grp,
p_ds_grid_grp,
p_e_grid + e_batch_offset + e_n_offset,
p_e_grid + e_group_offset + e_n_offset,
p_shared,
a_element_op,
b_element_op,
......@@ -169,19 +168,19 @@ __global__ void
}
else
{
const long_index_t a_batch_offset =
const long_index_t a_group_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
const long_index_t b_group_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetBPtrOffset(g_idx));
const long_index_t a_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetAPtrOffset(n_idx));
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid + a_batch_offset + a_n_offset,
p_bs_grid + b_batch_offset,
p_as_grid + a_group_offset + a_n_offset,
p_bs_grid + b_group_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset + e_n_offset,
p_e_grid + e_group_offset + e_n_offset,
p_shared,
a_element_op,
b_element_op,
......@@ -283,7 +282,8 @@ template <index_t NDimSpatial,
// in tuple for MultiAB), unpack if tuple was
// passed
typename BComputeDataType = AComputeDataType,
LoopScheduler LoopSched = make_default_loop_scheduler()>
LoopScheduler LoopSched = make_default_loop_scheduler(),
index_t NumGroupsToMerge = 1>
struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
: public DeviceGroupedConvFwdMultipleABD<NDimSpatial,
ALayout,
......@@ -302,6 +302,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
using DeviceOp = DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle;
static_assert(NumGroupsToMerge >= 1);
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
......@@ -318,7 +320,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
ConvForwardSpecialization,
true /*SplitN*/,
ADataType,
EDataType>;
EDataType,
NumGroupsToMerge>;
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
......@@ -517,7 +520,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
static_for<0, NumATensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_groups_ for multiple AB
compute_ptr_offset_of_groups_.BatchStrideA_(i) = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_groups_.BatchStrideA_(i) =
a_g_n_c_wis_strides[0] * NumGroupsToMerge;
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
......@@ -545,7 +549,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_groups_ for multiple AB
compute_ptr_offset_of_groups_.BatchStrideB_(i) = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_groups_.BatchStrideB_(i) =
b_g_k_c_xs_strides[0] * NumGroupsToMerge;
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmBDataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
......@@ -565,8 +570,10 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
}
else
{
compute_ptr_offset_of_groups_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_groups_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_groups_.BatchStrideA_ =
a_g_n_c_wis_strides[0] * NumGroupsToMerge;
compute_ptr_offset_of_groups_.BatchStrideB_ =
b_g_k_c_xs_strides[0] * NumGroupsToMerge;
compute_ptr_offset_of_n_.BatchStrideA_ = a_g_n_c_wis_strides[1] * conv_N_per_block_;
// p_as and p_bs are pointers
......@@ -583,7 +590,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_groups_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
compute_ptr_offset_of_groups_.BatchStrideDs_(i) =
ds_g_n_k_wos_strides[i][0] * NumGroupsToMerge;
compute_ptr_offset_of_n_.BatchStrideDs_(i) =
ds_g_n_k_wos_strides[i][1] * conv_N_per_block_;
......@@ -602,7 +610,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
ds_grid_desc_m_n_(i) =
DeviceOp::MakeEGridDescriptor_M_N<DLayout>(conv_to_gemm_transformer_d);
});
compute_ptr_offset_of_groups_.BatchStrideE_ = e_g_n_k_wos_strides[0];
compute_ptr_offset_of_groups_.BatchStrideE_ = e_g_n_k_wos_strides[0] * NumGroupsToMerge;
compute_ptr_offset_of_n_.BatchStrideE_ = e_g_n_k_wos_strides[1] * conv_N_per_block_;
// populate desc for Ds/E
......@@ -726,7 +734,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg.a_g_n_c_wis_lengths_[I1] / arg.conv_N_per_block_;
const index_t gdx = arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const index_t gdy = arg.num_group_;
const index_t gdy = arg.num_group_ / NumGroupsToMerge;
const index_t gdz = num_workgroups_per_Conv_N;
const auto K =
......@@ -850,6 +858,10 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
namespace ctc = tensor_layout::convolution;
const index_t G = arg.b_g_k_c_xs_lengths_[I0];
const index_t K = arg.b_g_k_c_xs_lengths_[I1];
const index_t C = arg.b_g_k_c_xs_lengths_[I2];
// check device
if(get_device_name() == "gfx908")
{
......@@ -898,6 +910,42 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
}
}
}
else if constexpr(ConvForwardSpecialization == ConvolutionForwardSpecialization::Filter3x3)
{
if(C != 1)
{
return false;
}
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t filter_spatial_dim = arg.b_g_k_c_xs_lengths_[i + I3];
if(filter_spatial_dim != I3)
{
return false;
}
}
if constexpr(!is_NSpatialGC_GKSpatial_NSpatialGK<ALayout, BLayout, ELayout>())
{
return false;
}
}
if constexpr(NumGroupsToMerge > 1)
{
if(!(C == 1))
{
return false;
}
if(G % NumGroupsToMerge != 0)
{
return false;
}
if constexpr(!is_NSpatialGC_GKSpatial_NSpatialGK<ALayout, BLayout, ELayout>())
{
return false;
}
}
// check vector access of A
// FIXME: layout
......@@ -907,13 +955,18 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v<ALayout, ctc::NWGC> || is_same_v<ALayout, ctc::NHWGC> ||
is_same_v<ALayout, ctc::NDHWGC>)
{
const index_t C = arg.a_g_n_c_wis_lengths_[2];
// Check access per C
if(!(ABlockTransferSrcVectorDim == 2 && C % ABlockTransferSrcScalarPerVector == 0))
{
// If not possible, check access per G
if(!(ABlockTransferSrcVectorDim == 1 && C == 1 &&
is_NSpatialGC_GKSpatial_NSpatialGK<ALayout, BLayout, ELayout>() &&
G % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
}
else
{
return false;
......@@ -928,8 +981,6 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v<BLayout, ctc::KZYXGC>)
{
const index_t C = arg.b_g_k_c_xs_lengths_[2];
if(!(BBlockTransferSrcVectorDim == 2 && C % BBlockTransferSrcScalarPerVector == 0))
{
return false;
......@@ -953,8 +1004,6 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v<DLayout, ctc::NWGK> || is_same_v<DLayout, ctc::NHWGK> ||
is_same_v<DLayout, ctc::NDHWGK> || is_same_v<DLayout, ctc::G_K>)
{
const index_t K = arg.ds_g_n_k_wos_lengths_[i][2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
valid = false;
......@@ -999,8 +1048,6 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v<ELayout, ctc::NWGK> || is_same_v<ELayout, ctc::NHWGK> ||
is_same_v<ELayout, ctc::NDHWGK>)
{
const index_t K = arg.e_g_n_k_wos_lengths_[2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
......@@ -1298,7 +1345,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<< BBlockTransferSrcScalarPerVector << ", "
<< CDEBlockTransferScalarPerVector_NPerBlock << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< CShuffleNXdlPerWavePerShuffle << ", "
<< NumGroupsToMerge
<< ">";
// clang-format on
......
......@@ -713,7 +713,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle_Large_Tensor
return false;
}
}
if constexpr(!is_NSpatialGK_GKSpatial_NSpatialGC<ALayout, BLayout, ELayout>())
if constexpr(!is_NSpatialGC_GKSpatial_NSpatialGK<ALayout, BLayout, ELayout>())
{
return false;
}
......
......@@ -12,7 +12,7 @@ namespace device {
// 1d
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NWGK_GKXC_NWGC()
constexpr bool is_NWGC_GKXC_NWGK()
{
return is_same_v<InLayout, tensor_layout::convolution::NWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKXC> &&
......@@ -20,7 +20,7 @@ constexpr bool is_NWGK_GKXC_NWGC()
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_GNWK_GKXC_GNWC()
constexpr bool is_GNWC_GKXC_GNWK()
{
return is_same_v<InLayout, tensor_layout::convolution::GNWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKXC> &&
......@@ -28,7 +28,7 @@ constexpr bool is_GNWK_GKXC_GNWC()
}
// 2d
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NHWGK_GKYXC_NHWGC()
constexpr bool is_NHWGC_GKYXC_NHWGK()
{
return is_same_v<InLayout, tensor_layout::convolution::NHWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKYXC> &&
......@@ -36,15 +36,23 @@ constexpr bool is_NHWGK_GKYXC_NHWGC()
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_GNHWK_GKYXC_GNHWC()
constexpr bool is_GNHWC_GKYXC_GNHWK()
{
return is_same_v<InLayout, tensor_layout::convolution::GNHWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::GNHWK>;
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NGCHW_GKYXC_NGKHW()
{
return is_same_v<InLayout, tensor_layout::convolution::NGCHW> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NGKHW>;
}
// 3d
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NDHWGK_GKZYXC_NDHWGC()
constexpr bool is_NDHWGC_GKZYXC_NDHWGK()
{
return is_same_v<InLayout, tensor_layout::convolution::NDHWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
......@@ -52,7 +60,7 @@ constexpr bool is_NDHWGK_GKZYXC_NDHWGC()
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_GNDHWK_GKZYXC_GNDHWC()
constexpr bool is_GNDHWC_GKZYXC_GNDHWK()
{
return is_same_v<InLayout, tensor_layout::convolution::GNDHWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
......@@ -60,19 +68,27 @@ constexpr bool is_GNDHWK_GKZYXC_GNDHWC()
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NSpatialGK_GKSpatial_NSpatialGC()
constexpr bool is_NGCDHW_GKZYXC_NGKDHW()
{
return is_same_v<InLayout, tensor_layout::convolution::NGCDHW> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NGKDHW>;
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_NSpatialGC_GKSpatial_NSpatialGK()
{
return is_NWGK_GKXC_NWGC<InLayout, WeiLayout, OutLayout>() ||
is_NHWGK_GKYXC_NHWGC<InLayout, WeiLayout, OutLayout>() ||
is_NDHWGK_GKZYXC_NDHWGC<InLayout, WeiLayout, OutLayout>();
return is_NWGC_GKXC_NWGK<InLayout, WeiLayout, OutLayout>() ||
is_NHWGC_GKYXC_NHWGK<InLayout, WeiLayout, OutLayout>() ||
is_NDHWGC_GKZYXC_NDHWGK<InLayout, WeiLayout, OutLayout>();
}
template <typename InLayout, typename WeiLayout, typename OutLayout>
constexpr bool is_GNSpatialK_GKSpatial_GNSpatialC()
constexpr bool is_GNSpatialC_GKSpatial_GNSpatialK()
{
return is_GNWK_GKXC_GNWC<InLayout, WeiLayout, OutLayout>() ||
is_GNHWK_GKYXC_GNHWC<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWK_GKZYXC_GNDHWC<InLayout, WeiLayout, OutLayout>();
return is_GNWC_GKXC_GNWK<InLayout, WeiLayout, OutLayout>() ||
is_GNHWC_GKYXC_GNHWK<InLayout, WeiLayout, OutLayout>() ||
is_GNDHWC_GKZYXC_GNDHWK<InLayout, WeiLayout, OutLayout>();
}
template <index_t NumATensor = 1, index_t NumBTensor = 1, index_t NumDTensor = 0, typename = void>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -19,7 +19,7 @@ namespace device {
template <index_t Rank, int NumReduceDim>
std::pair<long_index_t, long_index_t> get_2d_lengths(const std::vector<index_t>& inLengths)
{
static_assert(Rank <= 6, "bigger Rank size not supported!");
static_assert(Rank <= 12, "bigger Rank size not supported!");
long_index_t invariant_total_length = 1;
long_index_t reduce_total_length = 1;
......@@ -38,7 +38,7 @@ std::pair<long_index_t, long_index_t> get_2d_lengths(const std::vector<index_t>&
template <index_t Rank, int NumReduceDim>
std::pair<long_index_t, long_index_t> get_2d_lengths(const std::array<index_t, Rank>& inLengths)
{
static_assert(Rank <= 6, "bigger Rank size not supported!");
static_assert(Rank <= 12, "bigger Rank size not supported!");
long_index_t invariant_total_length = 1;
long_index_t reduce_total_length = 1;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -51,7 +51,7 @@ struct DeviceReduceMultiBlock : public DeviceReduce<InDataType,
PropagateNan,
OutputIndex>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(Rank <= 12, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -47,7 +47,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InDataType,
OutputIndex>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(Rank <= 12, "Bigger Rank size is not supported!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
......
......@@ -45,7 +45,7 @@ struct DeviceReduceThreadWiseMultiD : public DeviceReduceMultiD<InDataType,
OutElementwiseOperation>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(Rank <= 12, "Bigger Rank size is not supported!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -115,6 +115,23 @@ struct NDHWGC : public BaseTensorLayout
static constexpr const char* name = "NDHWGC";
};
// input tensor
// packed NGCW/NGCHW/NGCDHW
struct NGCW : public BaseTensorLayout
{
static constexpr const char* name = "NGCW";
};
struct NGCHW : public BaseTensorLayout
{
static constexpr const char* name = "NGCHW";
};
struct NGCDHW : public BaseTensorLayout
{
static constexpr const char* name = "NGCDHW";
};
// input tensor
// strided layout
struct G_NW_C : public BaseTensorLayout
......@@ -325,6 +342,21 @@ struct NDHWGK : public BaseTensorLayout
static constexpr const char* name = "NDHWGK";
};
struct NGKW : public BaseTensorLayout
{
static constexpr const char* name = "NGKW";
};
struct NGKHW : public BaseTensorLayout
{
static constexpr const char* name = "NGKHW";
};
struct NGKDHW : public BaseTensorLayout
{
static constexpr const char* name = "NGKDHW";
};
// output tensor
// strided layout
struct G_NW_K : public BaseTensorLayout
......
......@@ -3,7 +3,6 @@
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
......@@ -107,6 +106,9 @@ struct TrinaryWithUnaryCombinedOp
UnaryOp2 unary_op2_{};
};
using ScaleScalePass = UnaryCombinedOp<Scale, Scale, PassThrough>;
using ScaleScaleRelu = UnaryCombinedOp<Scale, Scale, Relu>;
} // namespace element_wise
} // namespace tensor_operation
} // namespace ck
......@@ -41,6 +41,55 @@ __global__ void
elementwise_op);
}
template <typename GridwiseElementwiseFunctor,
typename InAGridDescTuple,
typename InBGridDescTuple,
typename OutAGridDescTuple,
typename OutBGridDescTuple,
typename InDataTypePointerTuple,
typename OutDataTypePointerTuple,
typename Block2TileMapA,
typename Block2TileMapB,
typename ElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_elementwise_dual(const InBGridDescTuple in_grid_desc_tuple_a,
const InBGridDescTuple in_grid_desc_tuple_b,
const OutAGridDescTuple out_grid_desc_tuple_a,
const OutBGridDescTuple out_grid_desc_tuple_b,
const InDataTypePointerTuple p_in_global_tuple_a,
const InDataTypePointerTuple p_in_global_tuple_b,
const OutDataTypePointerTuple p_out_global_tuple_a,
const OutDataTypePointerTuple p_out_global_tuple_b,
const Block2TileMapA block_2_tile_map_a,
const Block2TileMapB block_2_tile_map_b,
const ElementwiseOperation elementwise_op,
const index_t a_grid_size)
{
if(get_block_1d_id() < a_grid_size)
{
GridwiseElementwiseFunctor::Run(in_grid_desc_tuple_a,
out_grid_desc_tuple_a,
p_in_global_tuple_a,
p_out_global_tuple_a,
block_2_tile_map_a,
elementwise_op,
get_block_1d_id());
}
else
{
GridwiseElementwiseFunctor::Run(in_grid_desc_tuple_b,
out_grid_desc_tuple_b,
p_in_global_tuple_b,
p_out_global_tuple_b,
block_2_tile_map_b,
elementwise_op,
get_block_1d_id() - a_grid_size);
}
}
template <typename GridwiseElementwiseFunctor,
typename InGridDescTuple,
typename OutGridDescTuple,
......@@ -133,7 +182,8 @@ struct GridwiseElementwise
const InDataTypePointerTuple& p_in_global_tuple,
const OutDataTypePointerTuple& p_out_global_tuple,
const Block2TileMap& block_2_tile_map,
const ElementwiseOperation& elementwise_op)
const ElementwiseOperation& elementwise_op,
const index_t block_id = get_block_1d_id())
{
constexpr auto src_datas = generate_tuple(
......@@ -169,7 +219,7 @@ struct GridwiseElementwise
Number<NumOutput>{});
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
block_2_tile_map.CalculateBottomIndex(make_multi_index(block_id));
const index_t m0_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * M0PerBlock);
......
......@@ -417,6 +417,13 @@ struct GridwiseGemm_xdl_cshuffle_v3
}
}();
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
#if 0
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
......@@ -454,6 +461,7 @@ struct GridwiseGemm_xdl_cshuffle_v3
// not pad M or N
return c_grid_desc_mraw_nraw;
}
#endif
}
struct Problem
......@@ -953,7 +961,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
!(is_same<tensor_layout::gemm::RowMajor, ALayout>::value))
{
if(!(karg.M % MPerBlock == 0))
{
......@@ -970,7 +979,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
(is_same<tensor_layout::gemm::RowMajor, BLayout>::value))
{
if(!(karg.N % NPerBlock == 0))
{
......@@ -1105,7 +1115,9 @@ struct GridwiseGemm_xdl_cshuffle_v3
}
if constexpr(!(is_same<remove_cvref_t<CDataType>, half_t>::value ||
is_same<remove_cvref_t<CDataType>, float>::value))
is_same<remove_cvref_t<CDataType>, float>::value ||
is_same<remove_cvref_t<CDataType>, bhalf_t>::value ||
is_same<remove_cvref_t<CDataType>, int32_t>::value))
{
if(!karg.IsReduceAdd())
{
......
......@@ -36,10 +36,9 @@ __global__ void
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3(typename GridwiseGemm::Argument karg)
kernel_gemm_xdl_cshuffle_v3_multi_d(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
......@@ -56,7 +55,7 @@ __global__ void
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
template <typename GridwiseGemm,
......@@ -69,10 +68,9 @@ __global__ void
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_2lds(typename GridwiseGemm::Argument karg)
kernel_gemm_xdl_cshuffle_v3_multi_d_2lds(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -93,7 +91,7 @@ __global__ void
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
template <typename ALayout,
......@@ -454,6 +452,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
}
}();
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
#if 0
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
......@@ -491,6 +496,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
// not pad M or N
return c_grid_desc_mraw_nraw;
}
#endif
}
__host__ __device__ static auto MakeDsGridDescriptor_M_N(
......@@ -1016,7 +1022,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
!(is_same<tensor_layout::gemm::RowMajor, ALayout>::value))
{
if(!(karg.M % MPerBlock == 0))
{
......@@ -1033,7 +1040,8 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding) &&
(is_same<tensor_layout::gemm::RowMajor, BLayout>::value))
{
if(!(karg.N % NPerBlock == 0))
{
......
......@@ -562,6 +562,34 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
dst_wave_addr_offset);
}
template <typename T, index_t N>
__device__ void amd_global_atomic_add_impl(const typename vector_type<T, N>::type src_thread_data,
T* addr)
{
static_assert((is_same<T, bhalf_t>::value && (N == 2 || N == 4 || N == 8)) ||
(is_same<T, half_t>::value && (N == 2 || N == 4 || N == 8)),
"wrong! not implemented");
if constexpr(is_same<T, half_t>::value)
{
vector_type<half_t, N> tmp{src_thread_data};
static_for<0, N / 2, 1>{}([&](auto i) {
__builtin_amdgcn_global_atomic_fadd_v2f16(bit_cast<half2_t*>(addr) + i,
tmp.template AsType<half2_t>()[i]);
});
}
#if defined(__gfx942__)
else if constexpr(is_same<T, bhalf_t>::value)
{
vector_type<bhalf_t, N> tmp{src_thread_data};
static_for<0, N / 2, 1>{}([&](auto i) {
__builtin_amdgcn_global_atomic_fadd_v2bf16(bit_cast<bhalf2_t*>(addr) + i,
tmp.template AsType<bhalf2_t>()[i]);
});
}
#endif
}
template <typename T, index_t N>
__device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::type src_thread_data,
int32x4_t dst_wave_buffer_resource,
......@@ -907,6 +935,16 @@ amd_buffer_atomic_add(const typename vector_type_maker<T, N>::type::type src_thr
using scalar_t = typename scalar_type<vector_t>::type;
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
if constexpr(is_same<T, bhalf_t>::value)
{
if(dst_thread_element_valid)
{
amd_global_atomic_add_impl<scalar_t, vector_size>(
src_thread_data, p_dst_wave + dst_thread_element_offset);
}
}
else
{
#if CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x80000000;
......@@ -919,6 +957,7 @@ amd_buffer_atomic_add(const typename vector_type_maker<T, N>::type::type src_thr
src_thread_data, dst_wave_buffer_resource, dst_thread_addr_offset, 0);
}
#endif
}
}
// buffer_atomic_max requires:
......
......@@ -358,13 +358,15 @@ struct DynamicBuffer
bool constexpr use_amd_buffer_addressing =
is_same_v<remove_cvref_t<scalar_t>, int32_t> ||
is_same_v<remove_cvref_t<scalar_t>, float> ||
(is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0);
(is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0) ||
(is_same_v<remove_cvref_t<scalar_t>, bhalf_t> && scalar_per_x_vector % 2 == 0);
#elif CK_USE_AMD_BUFFER_ATOMIC_ADD_INTEGER && (!CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT)
bool constexpr use_amd_buffer_addressing = is_same_v<remove_cvref_t<scalar_t>, int32_t>;
#elif(!CK_USE_AMD_BUFFER_ATOMIC_ADD_INTEGER) && CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT
bool constexpr use_amd_buffer_addressing =
is_same_v<remove_cvref_t<scalar_t>, float> ||
(is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0);
(is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0) ||
(is_same_v<remove_cvref_t<scalar_t>, bhalf_t> && scalar_per_x_vector % 2 == 0);
#else
bool constexpr use_amd_buffer_addressing = false;
#endif
......
......@@ -1341,7 +1341,7 @@ struct modulo : public base_transform<1, 1>
};
// 2D XOR, NOTE: "xor" is a keyword
template <typename LowLengths, typename RightShift>
template <typename LowLengths>
struct xor_t : public base_transform<2, 2>
{
static constexpr auto type_enum = coord_transform_enum::xor_t;
......@@ -1352,15 +1352,10 @@ struct xor_t : public base_transform<2, 2>
using UpLengths = LowLengths;
UpLengths up_lengths_;
RightShift right_shift_;
CK_TILE_HOST_DEVICE constexpr xor_t() : up_lengths_{}, right_shift_{} {}
CK_TILE_HOST_DEVICE constexpr xor_t() : up_lengths_{} {}
CK_TILE_HOST_DEVICE constexpr xor_t(const LowLengths& low_lengths,
const RightShift& right_shift)
: up_lengths_{low_lengths}, right_shift_{right_shift}
{
}
CK_TILE_HOST_DEVICE constexpr xor_t(const LowLengths& low_lengths) : up_lengths_{low_lengths} {}
CK_TILE_HOST_DEVICE static constexpr auto get_type_enum()
{
......@@ -1378,13 +1373,8 @@ struct xor_t : public base_transform<2, 2>
idx_low(number<0>{}) = idx_up[number<0>{}];
const auto idx_low_1_tmp =
(idx_up[number<1>{}] - idx_up[number<0>{}] * right_shift_) % up_lengths_[number<1>{}];
const auto idx_low_1 =
(idx_low_1_tmp >= 0) ? idx_low_1_tmp : up_lengths_[number<1>{}] + idx_low_1_tmp;
idx_low(number<1>{}) = idx_low_1;
idx_low(number<1>{}) =
idx_up[number<1>{}] ^ (idx_up[number<0>{}] % up_lengths_[number<1>{}]);
}
template <typename LowIdxDiff, typename UpIdxDiff, typename LowIdx, typename UpIdx>
......@@ -1419,8 +1409,7 @@ struct xor_t : public base_transform<2, 2>
CK_TILE_HOST_DEVICE static constexpr bool is_known_at_compile_time()
{
return ck_tile::is_known_at_compile_time<UpLengths>::value &&
ck_tile::is_known_at_compile_time<RightShift>::value;
return ck_tile::is_known_at_compile_time<UpLengths>::value;
}
// MUST be static function
......@@ -1432,14 +1421,6 @@ struct xor_t : public base_transform<2, 2>
array<index_t, 2> up_vector_lengths = low_vector_lengths;
array<index_t, 2> up_vector_strides = low_vector_strides;
if constexpr(ck_tile::is_known_at_compile_time<RightShift>::value)
{
if(low_vector_lengths[1] != -1)
{
up_vector_lengths(1) = gcd(low_vector_lengths[1], abs(right_shift_));
}
}
return make_tuple(up_vector_lengths, up_vector_strides);
}
......@@ -1452,10 +1433,6 @@ struct xor_t : public base_transform<2, 2>
print(up_lengths_);
printf(", ");
//
printf("right_shift_: ");
print(right_shift_);
printf("}");
}
};
......@@ -1655,11 +1632,10 @@ CK_TILE_HOST_DEVICE constexpr auto make_modulo_transform(const Modulus& modulus,
return modulo<Modulus, UpLength>{modulus, up_length};
}
template <typename LowLengths, typename RightShift>
CK_TILE_HOST_DEVICE constexpr auto make_xor_transform(const LowLengths& low_lengths,
const RightShift& right_shift)
template <typename LowLengths>
CK_TILE_HOST_DEVICE constexpr auto make_xor_transform(const LowLengths& low_lengths)
{
return xor_t<LowLengths, RightShift>{low_lengths, right_shift};
return xor_t<LowLengths>{low_lengths};
}
template <typename LowLength, typename OffsetLength>
......
......@@ -46,6 +46,7 @@
#define CK_TILE_FLOAT_TO_BFLOAT16_STANDARD 0
#define CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE_WITH_NAN 1
#define CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE 2
#define CK_TILE_FLOAT_TO_BFLOAT16_STANDARD_ASM 3
#ifndef CK_TILE_FLOAT_TO_BFLOAT16_DEFAULT
#define CK_TILE_FLOAT_TO_BFLOAT16_DEFAULT CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE
......@@ -156,6 +157,14 @@
#endif
#endif
#ifndef CK_TILE_WORKAROUND_ROCM_6_2_SCRATCH_MEMORY_ISSUE
#if HIP_VERSION_MAJOR == 6 && HIP_VERSION_MINOR == 2 && HIP_VERSION_PATCH >= 41133
#define CK_TILE_WORKAROUND_ROCM_6_2_SCRATCH_MEMORY_ISSUE 1
#else
#define CK_TILE_WORKAROUND_ROCM_6_2_SCRATCH_MEMORY_ISSUE 0
#endif
#endif
#ifndef CK_TILE_DEBUG_LOG
#define CK_TILE_DEBUG_LOG 0
#endif
......
......@@ -17,6 +17,7 @@ enum class bf16_rounding_mode
standard = 0, // rtn
truncate_with_nan,
truncate,
standard_asm,
};
template <bf16_rounding_mode rounding =
......@@ -148,6 +149,37 @@ constexpr uint16_t float_to_bf16_rtn_raw(float f)
return uint16_t(u.int32 >> 16);
}
CK_TILE_HOST
constexpr uint16_t float_to_bf16_rtn_asm(float f) { return float_to_bf16_rtn_raw(f); }
CK_TILE_DEVICE
uint16_t float_to_bf16_rtn_asm(float f)
{
union
{
float fp32;
uint32_t int32;
} u = {f};
static constexpr uint32_t FP32_NAN = 0x7fff0000;
static constexpr uint32_t ROUND_BIAS_FOR_BF16 = 0x7fff;
using uint32x2_t = uint32_t __attribute__((ext_vector_type(2)));
uint32x2_t check_nan;
uint32_t tmp;
asm volatile("\n \
v_cmp_u_f32 %0, %2, %2 \n \
v_bfe_u32 %1, %2, 16, 1 \n \
v_add3_u32 %1, %2, %1, %3 \n \
v_cndmask_b32 %2, %1, %4, %0 \n \
v_lshrrev_b32 %2, 16, %2 \n \
"
: "=s"(check_nan), "+v"(tmp), "+v"(u.fp32)
: "v"(ROUND_BIAS_FOR_BF16), "v"(FP32_NAN));
return uint16_t(u.int32);
}
// Truncate instead of rounding, preserving SNaN
CK_TILE_HOST_DEVICE
constexpr uint16_t float_to_bf16_truc_nan_raw(float f)
......@@ -177,6 +209,8 @@ CK_TILE_HOST_DEVICE constexpr uint16_t float_to_bf16_raw(float f, constant<round
{
if constexpr(rounding == bf16_rounding_mode::standard)
return float_to_bf16_rtn_raw(f);
else if constexpr(rounding == bf16_rounding_mode::standard_asm)
return float_to_bf16_rtn_asm(f);
else if constexpr(rounding == bf16_rounding_mode::truncate_with_nan)
return float_to_bf16_truc_nan_raw(f);
else
......
......@@ -536,13 +536,20 @@ float log(float x) { return __logf(x); };
CK_TILE_HOST
float log(float x) { return std::logf(x); };
CK_TILE_DEVICE uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
CK_TILE_DEVICE uint16_t sad_u16(uint16_t x, uint16_t y, uint16_t acc)
{
// TODO: this is hacky, we use u16
return __builtin_amdgcn_sad_u16(x, y, acc);
}
CK_TILE_HOST uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
CK_TILE_DEVICE uint32_t sad_u32(uint32_t x, uint32_t y, uint32_t acc)
{
/// TODO: replace inline asm when intrinsic is available
uint32_t res;
asm volatile("v_sad_u32 %0, %1, %2, %3" : "=v"(res) : "v"(x), "v"(y), "v"(acc));
return res;
}
CK_TILE_HOST uint32_t sad_u32(uint32_t x, uint32_t y, uint32_t acc)
{
return (x > y ? (x - y) : (y - x)) + acc;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment