Commit 705d5a08 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents d4ad52d6 8f84a012
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
// ##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| Order| | |
// ##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 8, 8, 8, 4, 2, 1, 8, 1, S<1, 8>, S<1, 1>, S<1, 1, 4, 2>, S<4, 1, 2, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 1, 2>, S<1, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<1, 1, 4, 2>, S<16, 1, 2, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 2, 2>, S<16, 1, 2, 2>, S<1, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<1, 1, 4, 2>, S<16, 1, 2, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 2, 2>, S<4, 1, 8, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<8, 1>, S<1, 1, 2, 2>, S<16, 1, 4, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 2, 1>, S<0, 3, 1, 2>, S<1, 1, 2, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 8, 2, 4, 8, 1, S<2, 8>, S<4, 1>, S<2, 1, 4, 2>, S<4, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 2, 2>, S<2, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 8, 1, 1, S<1, 1>, S<8, 8>, S<1, 1, 2, 2>, S<16, 1, 4, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 2, 1>, S<0, 3, 1, 2>, S<1, 1, 2, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 1>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 16, 2, 4, 8, 1, S<2, 8>, S<8, 1>, S<2, 1, 4, 2>, S<8, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 16, 2, 1, 8, 8, S<4, 8>, S<4, 1>, S<4, 1, 4, 2>, S<4, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 8, 2, 1, 8, 8, S<8, 8>, S<4, 1>, S<1, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 2, 4, 8, 8, S<2, 8>, S<16, 1>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 2, 2>, S<4, 1, 64, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
// ##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| Order| | |
// ##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 8, 8, 8, 4, 2, 1, 8, 1, S<1, 8>, S<1, 1>, S<4, 1, 1, 2>, S<1, 1, 8, 1>, S<1, 2, 0 ,3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<1, 1, 4, 2>, S<4, 1, 2, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<4, 1, 1, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<16, 1, 2, 2>, S<1, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 2, 1>, S<0, 3, 1, 2>, S<1, 1, 2, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<4, 1, 1, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 8, 2>, S<4, 1, 8, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<8, 1>, S<2, 1, 1, 2>, S<8, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<2, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 8, 2, 4, 8, 1, S<2, 8>, S<4, 1>, S<4, 1, 2, 2>, S<2, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<4, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 8, 1, 1, S<1, 1>, S<8, 8>, S<2, 1, 1, 2>, S<8, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<2, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 1>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 16, 2, 4, 8, 1, S<2, 8>, S<8, 1>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<8, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 16, 2, 1, 8, 8, S<4, 8>, S<4, 1>, S<4, 1, 4, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<8, 1, 16, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 8, 2, 1, 8, 8, S<8, 8>, S<4, 1>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<1, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 2, 4, 8, 8, S<2, 8>, S<16, 1>, S<4, 1, 2, 2>, S<4, 1, 64, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl_dpp8.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
// ##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| Order| | |
// ##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 8, 8, 8, 4, 2, 1, 8, 1, S<1, 8>, S<1, 1>, S<4, 1, 1, 2>, S<1, 1, 8, 1>, S<1, 2, 0 ,3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 1, 2>, S<1, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<4, 1, 1, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<16, 1, 2, 2>, S<1, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<4, 1>, S<4, 1, 1, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 8, 2>, S<4, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 1, 8, 1, S<1, 8>, S<8, 1>, S<2, 1, 1, 2>, S<8, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<2, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 8, 2, 4, 8, 1, S<2, 8>, S<4, 1>, S<4, 1, 2, 2>, S<2, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 2, 2>, S<2, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 8, 64, 16, 2, 8, 1, 1, S<1, 1>, S<8, 8>, S<2, 1, 1, 2>, S<8, 1, 8, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<2, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 4, 2>, S<4, 1, 16, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 1>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 16, 2, 4, 8, 1, S<2, 8>, S<8, 1>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 16, 2, 1, 8, 8, S<4, 8>, S<4, 1>, S<4, 1, 4, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 2, 2>, S<4, 1, 32, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 8, 2, 1, 8, 8, S<8, 8>, S<4, 1>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>,
DeviceGemmDlDpp8< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 2, 4, 8, 8, S<2, 8>, S<16, 1>, S<4, 1, 2, 2>, S<4, 1, 64, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 2, 2>, S<4, 1, 64, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_km_kn_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 4, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 4, 32, 8, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 4, 4, 32, 8, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 4, 4, 32, 8, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 4, 4, 32, 8, 2, 4, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 4, 4, 32, 8, 1, 4, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 4, 4, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_km_nk_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 8, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 4, 8, 32, 8, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 4, 8, 32, 8, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 4, 8, 32, 8, 1, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 4, 8, 32, 8, 2, 4, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 4, 8, 32, 8, 1, 4, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 4, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 4, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 4, 32, 8, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 8, 4, 32, 8, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 8, 4, 32, 8, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 8, 4, 32, 8, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 8, 4, 32, 8, 1, 4, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dpp.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
// clang-format off
using device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MDpp| NDpp| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | | Dpp| Dpp| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 8, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 64, 8, 8, 32, 8, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 64, 64, 8, 8, 32, 8, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 32, 32, 8, 8, 32, 8, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 64, 8, 8, 32, 8, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 32, 32, 32, 8, 8, 32, 8, 1, 4, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>,
DeviceGemmDpp< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 32, 16, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 5, 1>
>;
// clang-format on
void add_device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -4,5 +4,9 @@ add_instance_library(device_gemm_bilinear_instance ...@@ -4,5 +4,9 @@ add_instance_library(device_gemm_bilinear_instance
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp
device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instance.cpp
device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instance.cpp
device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instance.cpp
device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instance.cpp
) )
endif() endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = std::int8_t;
using I32 = std::int32_t;
using I8_Tuple = ck::Tuple<std::int8_t>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = std::int8_t;
using I32 = std::int32_t;
using I8_Tuple = ck::Tuple<std::int8_t>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Col, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = std::int8_t;
using I32 = std::int32_t;
using I8_Tuple = ck::Tuple<std::int8_t>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e[m, n] = bilinear(a[m, k] * b[k, n], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Row, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>
// clang-format on
>;
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = std::int8_t;
using I32 = std::int32_t;
using I8_Tuple = ck::Tuple<std::int8_t>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e[m, n] = bilinear(a[m, k] * b[n, k], d[m, n])
using device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances = std::tuple<
// clang-format off
// no padding
// N % 16 == 0 && K % 16 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmDefault, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 16 == 0 && K % 16 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 4, 16, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 8>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 4, 16, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 4>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 4, 16, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 2, S<1, 32, 1, 2>, 16>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 4, 16, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 8 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 8>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
// M/N/K padding
// N % 8 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 4, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 8>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 4, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 4>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 4, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 2, S<1, 32, 1, 2>, 4>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 4, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 2>, 4>,
// M/N/K padding
// N % 1 == 0 && K % 8 == 0
//################################| A| B| Ds| E| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 256, 128, 128, 8, 8, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 8>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 128, 64, 64, 8, 8, 16, 16, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 4>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 64, 32, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 2, S<1, 32, 1, 2>, 1>,
DeviceGemmMultipleD_Wmma_CShuffle< Row, Col, Row_Tuple, Row, I8, I8, I8_Tuple, I8, I32, I32, PassThrough, PassThrough, Bilinear, GemmMNKPadding, 32, 16, 16, 8, 8, 16, 16, 1, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 1>
// clang-format on
>;
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_multiply_add_instance
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F16, F16_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using F32_Tuple = ck::Tuple<F32, F32>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row, Row>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
using device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances =
std::tuple<
// clang-format off
// M/N/K padding
// N % 8 == 0 && K % 1 == 0
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 4, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 64>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F8, F32, F32, F32_Tuple, F16, PassThrough, PassThrough, MultiplyAdd, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 2, 1, 32>, 1>
// clang-format on
>;
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
F16,
F8,
F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -30,6 +30,16 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough; ...@@ -30,6 +30,16 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; // static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding; static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_generic_instances = std::tuple<
// clang-format off
//#########################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Type|
//#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| |
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmMNPadding, 128, 32, 64, 4, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 1, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, true, 1, 1, S<1, 16, 1, 8>, 2, F16>
// clang-format on
>;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances = std::tuple< using device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances = std::tuple<
// clang-format off // clang-format off
...@@ -61,6 +71,8 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances( ...@@ -61,6 +71,8 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances(
DeviceGemmSplitK<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemmSplitK<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances) instances)
{ {
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_generic_instances{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances{}); device_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_instances{});
} }
......
...@@ -27,7 +27,17 @@ using S = ck::Sequence<Is...>; ...@@ -27,7 +27,17 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_generic_instances = std::tuple<
// clang-format off
//#########################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Type|
//#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| |
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 1, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 2, F16>
// clang-format on
>;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances = std::tuple< using device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances = std::tuple<
...@@ -36,19 +46,19 @@ using device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances = std::tuple< ...@@ -36,19 +46,19 @@ using device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances = std::tuple<
//#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Type| //#########################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Type|
//#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| | //#########################| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| |
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 32, 1, 4>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 8>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16>, DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16>,
DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16> DeviceGemmXdlSplitKCShuffle< F16, F8, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, MNKPadding, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, true, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 3, 8, 8, true, 1, 1, S<1, 16, 1, 4>, 8, F16>
// clang-format on // clang-format on
>; >;
...@@ -57,6 +67,8 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances( ...@@ -57,6 +67,8 @@ void add_device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances(
DeviceGemmSplitK<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemmSplitK<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances) instances)
{ {
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_generic_instances{});
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances{}); device_gemm_xdl_splitk_f16_f8_f16_mk_nk_mn_instances{});
} }
......
add_instance_library(device_grouped_conv2d_fwd_instance add_instance_library(device_grouped_conv2d_fwd_instance
#xdl
# GNHWC, GKYXC, GNHWK # GNHWC, GKYXC, GNHWK
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
...@@ -8,6 +9,13 @@ add_instance_library(device_grouped_conv2d_fwd_instance ...@@ -8,6 +9,13 @@ add_instance_library(device_grouped_conv2d_fwd_instance
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
#dl #dl
# GNHWC, GKYXC, GNHWK
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
# WMMA
device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instance.cpp
# NHWGC, GKYXC, NHWGK
device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
) )
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment