Commit 705d5a08 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents d4ad52d6 8f84a012
...@@ -37,7 +37,8 @@ __global__ void ...@@ -37,7 +37,8 @@ __global__ void
index_t StrideC, index_t StrideC,
typename GridwiseGemm::Block2CTileMap block_mapping) typename GridwiseGemm::Block2CTileMap block_mapping)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte(); constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size]; __shared__ uint8_t p_shared[shared_size];
......
...@@ -194,7 +194,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -194,7 +194,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
StrideC{StrideC_}, StrideC{StrideC_},
MPadded{CalculateMPadded(M_)}, MPadded{CalculateMPadded(M_)},
NPadded{CalculateNPadded(N_)}, NPadded{CalculateNPadded(N_)},
K0{CalculateK0(K)} K0{CalculateK0(K_)}
{ {
} }
...@@ -383,7 +383,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -383,7 +383,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
__host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K) __host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{ {
const index_t num_loop = K / (K0PerBlock * K1); const index_t num_loop = math::integer_divide_ceil(K, K0PerBlock * K1);
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop); return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
} }
...@@ -840,7 +840,25 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext ...@@ -840,7 +840,25 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
} }
}(); }();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding) if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto K0Pad = math::integer_divide_ceil(K0, K0PerBlock) * K0PerBlock;
const auto KPad = K0Pad * K1Value;
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(K0Pad, K1Value)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{ {
return transform_tensor_descriptor( return transform_tensor_descriptor(
a_grid_desc_m_k, a_grid_desc_m_k,
...@@ -874,7 +892,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext ...@@ -874,7 +892,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
} }
}(); }();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding) if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto K0Pad = math::integer_divide_ceil(K0, K0PerBlock) * K0PerBlock;
const auto KPad = K0Pad * K1Value;
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(K0Pad, K1Value)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{ {
return transform_tensor_descriptor( return transform_tensor_descriptor(
b_grid_desc_k_n, b_grid_desc_k_n,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename InputGridDesc,
typename InputDataType,
typename OutputGridDesc,
typename OutputDataType,
index_t BlockSize,
index_t MPerBlock,
index_t KPerBlock,
typename ThreadClusterLengths,
index_t ScalarPerVector,
typename Block2ETileMap>
struct GridwiseImageToColumn
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__device__ static void Run(const InputGridDesc& in_grid_desc,
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc& out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const Block2ETileMap& block_2_tile_map)
{
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t k_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * KPerBlock);
// Global Memory
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global, in_grid_desc.GetElementSpaceSize());
auto out_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global, out_grid_desc.GetElementSpaceSize());
auto copy_global_to_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
Tuple<InputDataType>,
Tuple<OutputDataType>,
decltype(tie(in_grid_desc)),
decltype(tie(out_grid_desc)),
tensor_operation::element_wise::PassThrough,
Sequence<static_cast<index_t>(InMemoryDataOperationEnum::Set)>,
Sequence<MPerBlock, KPerBlock>,
ThreadClusterLengths,
Sequence<0, 1>,
Sequence<0, 1>,
I1,
ScalarPerVector,
Sequence<true>,
Sequence<true>>{
in_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
out_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
tensor_operation::element_wise::PassThrough{}};
copy_global_to_global.Run(
tie(in_grid_desc), tie(in_global_buf), tie(out_grid_desc), tie(out_global_buf));
}
__host__ static constexpr bool CheckValidity(const InputGridDesc& in_grid_desc,
const OutputGridDesc& out_grid_desc)
{
if(in_grid_desc.GetLength(I0) % MPerBlock != 0 ||
in_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
if(out_grid_desc.GetLength(I0) % MPerBlock != 0 ||
out_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
return true;
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_gemm_dpp.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/inner_product_dpp8.hpp"
#include "ck/utility/math.hpp"
namespace ck {
/**
* Threadwise contraction using dot instructions with DPP8 modifier.
*
* Assumptions:
* 1. `AThreadDesc_TK0_TM0_TM1_TK1`, `BThreadDesc_TK0_TN0_TN1_TK1`, `CThreadDesc_TM0_TM1_TN0_TN1`
* are known at compile-time;
* 2. `AOriginIdx`, `BOriginIdx`, `COriginIdx` are known at compile-time;
* 3. `TM0` is equal to 1 and `TN0` is equal to 1;
* 4. When `ShareA` is set (unset, respectively), `TM1` (`TN1`, respectively) is divisible by
* the size of the lane group (`dpp8::lane_group_size`).
*/
template <typename FloatA,
typename FloatB,
typename FloatC,
typename AThreadDesc_TK0_TM0_TM1_TK1,
typename BThreadDesc_TK0_TN0_TN1_TK1,
typename CThreadDesc_TM0_TM1_TN0_TN1,
typename TKLengths,
typename TMLengths,
typename TNLengths,
bool ShareA,
typename enable_if<AThreadDesc_TK0_TM0_TM1_TK1::IsKnownAtCompileTime() &&
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
CThreadDesc_TM0_TM1_TN0_TN1::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseContractionDlDpp8_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t TK0 = TKLengths{}[I0];
static constexpr index_t TK1 = TKLengths{}[I1];
static constexpr index_t TM0 = TMLengths{}[I0];
static constexpr index_t TM1 = TMLengths{}[I1];
static constexpr index_t TN0 = TNLengths{}[I0];
static constexpr index_t TN1 = TNLengths{}[I1];
static_assert(TM0 == 1 && TN0 == 1);
static_assert((ShareA && TM1 % dpp8::lane_group_size == 0) ||
(!ShareA && TN1 % dpp8::lane_group_size == 0));
static constexpr index_t shared_elems_per_lane =
ShareA ? TM1 / dpp8::lane_group_size : TN1 / dpp8::lane_group_size;
__device__ constexpr ThreadwiseContractionDlDpp8_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1()
{
static_assert(AThreadDesc_TK0_TM0_TM1_TK1::IsKnownAtCompileTime() &&
BThreadDesc_TK0_TN0_TN1_TK1::IsKnownAtCompileTime() &&
CThreadDesc_TM0_TM1_TN0_TN1::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(TKLengths::Size() == 2 && TMLengths::Size() == 2 && TNLengths::Size() == 2,
"wrong!");
}
template <typename ABuffer,
typename AOriginIdx,
typename BBuffer,
typename BOriginIdx,
typename CBuffer,
typename COriginIdx>
__device__ static void Run(const ABuffer& a_buf,
AOriginIdx,
const BBuffer& b_buf,
BOriginIdx,
CBuffer& c_buf,
COriginIdx)
{
static_assert(is_known_at_compile_time<remove_cvref_t<AOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<BOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<COriginIdx>>::value,
"wrong! AOriginIdx, BOriginIdx, COringinIdx should be known at compile-time");
static_assert(
is_same<remove_cvref_t<typename ABuffer::type>, remove_cvref_t<FloatA>>::value &&
is_same<remove_cvref_t<typename BBuffer::type>, remove_cvref_t<FloatB>>::value &&
is_same<remove_cvref_t<typename CBuffer::type>, remove_cvref_t<FloatC>>::value &&
"wrong! inconsistent type");
constexpr auto a_origin_idx = to_multi_index(AOriginIdx{});
constexpr auto b_origin_idx = to_multi_index(BOriginIdx{});
constexpr auto c_origin_idx = to_multi_index(COriginIdx{});
static_for<0, TK0, 1>{}([&](auto tk0) {
static_for<0, TM1, 1>{}([&](auto tm1) {
static_for<0, TN1, 1>{}([&](auto tn1) {
vector_type<FloatA, TK1> a_vec;
vector_type<FloatB, TK1> b_vec;
static_for<0, TK1, 1>{}([&](auto tk1) {
constexpr index_t local_tm1 = ShareA ? tm1 % shared_elems_per_lane : tm1;
constexpr index_t a_offset = AThreadDesc_TK0_TM0_TM1_TK1{}.CalculateOffset(
a_origin_idx + make_multi_index(tk0, 0, local_tm1, tk1));
constexpr index_t local_tn1 = ShareA ? tn1 : tn1 % shared_elems_per_lane;
constexpr index_t b_offset = BThreadDesc_TK0_TN0_TN1_TK1{}.CalculateOffset(
b_origin_idx + make_multi_index(tk0, 0, local_tn1, tk1));
a_vec.template AsType<FloatA>()(tk1) = a_buf[Number<a_offset>{}];
b_vec.template AsType<FloatB>()(tk1) = b_buf[Number<b_offset>{}];
});
using a_vector_t = typename vector_type<FloatA, TK1>::type;
using b_vector_t = typename vector_type<FloatB, TK1>::type;
constexpr index_t c_offset = CThreadDesc_TM0_TM1_TN0_TN1{}.CalculateOffset(
c_origin_idx + make_multi_index(0, tm1, 0, tn1));
constexpr int src_lane =
ShareA ? (tm1 / shared_elems_per_lane) % dpp8::lane_group_size
: (tn1 / shared_elems_per_lane) % dpp8::lane_group_size;
dpp8::inner_product_dpp<a_vector_t, b_vector_t, FloatC, src_lane, ShareA>(
a_vec.template AsType<a_vector_t>()[I0],
b_vec.template AsType<b_vector_t>()[I0],
c_buf(Number<c_offset>{}));
});
});
});
}
};
} // namespace ck
...@@ -104,13 +104,13 @@ struct ThreadwiseTensorSliceTransfer_v6r1 ...@@ -104,13 +104,13 @@ struct ThreadwiseTensorSliceTransfer_v6r1
// apply pointwise operation // apply pointwise operation
static_for<0, ScalarPerVector, 1>{}([&](auto i) { static_for<0, ScalarPerVector, 1>{}([&](auto i) {
SrcData v; DstData v;
// apply element-wise operation // apply element-wise operation
element_op_(v, src_vector_container.template AsType<SrcData>()[i]); element_op_(v, src_vector_container.template AsType<SrcData>()[i]);
// apply type convert // apply type convert
dst_vector_container.template AsType<DstData>()(i) = type_convert<DstData>(v); dst_vector_container.template AsType<DstData>()(i) = v;
}); });
const bool is_dst_valid = const bool is_dst_valid =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_gemm_dpp.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/math.hpp"
namespace ck {
enum struct DppInstr
{
dpp8_f16_16x16x2 = 0,
dpp8_f16_8x32x2,
dpp8_f16_32x8x2
};
/**
* Structure representing DPP GEMM executed by a single wavefront.
*
* Each structure instantiation must contain the following fields:
* - wave_size - number of threads that execute a single DPP GEMM operation, usually equal to the
* number of threads in a wavefront;
* - lanegroup_size - number of threads (lanes) that share data using DPP instruction modifier,
* it's 8 in case of DPP8;
* - m_per_wave - size along M dimension of matrix C that is processed in a single DPP GEMM
* operation;
* - n_per_wave - size along N dimension of matrix C that is processed in a single DPP GEMM
* operation;
* - m_per_lanegroup - size along M dimension that is processed by a single lanegroup;
* - n_per_lanegroup - size along N dimension that is processed by a single lanegroup;
* - m_per_thread - size along M dimension of the tile calculated by a single thread;
* - n_per_thread - size along N dimension of the tile calculated by a single thread;
* - k_per_dpp - size along K dimension that is reduced in a single DPP GEMM operation;
* - share_a - indicates whether we share matrix A or matrix B between lanes using DPP modifiers.
*
* Not all the combinarions are supported now, for current restrictions see the static asserts
* in the DppSelector's contructor.
*/
template <DppInstr instr>
struct dpp_type;
template <>
struct dpp_type<DppInstr::dpp8_f16_32x8x2>
{
static constexpr index_t wave_size = 32;
static constexpr index_t lanegroup_size = 8;
static constexpr index_t m_per_wave = 32;
static constexpr index_t n_per_wave = 8;
static constexpr index_t m_per_lanegroup = 8;
static constexpr index_t n_per_lanegroup = 8;
static constexpr index_t m_per_thread = 8;
static constexpr index_t n_per_thread = 1;
static constexpr index_t k_per_dpp = 2;
static constexpr bool share_a = true;
using BaseType = half_t;
template <index_t MPerDpp, index_t NPerDpp, class ADataType, class BDataType, class CDataType>
__device__ void run(const ADataType& a, const BDataType& b, CDataType& reg_c) const
{
dpp8::DppLanegroupGemm<m_per_thread,
n_per_thread,
k_per_dpp,
BaseType,
ADataType,
BDataType,
CDataType,
share_a>{}
.Run(a, b, reg_c);
}
};
template <>
struct dpp_type<DppInstr::dpp8_f16_8x32x2>
{
static constexpr index_t wave_size = 32;
static constexpr index_t lanegroup_size = 8;
static constexpr index_t m_per_wave = 8;
static constexpr index_t n_per_wave = 32;
static constexpr index_t m_per_lanegroup = 8;
static constexpr index_t n_per_lanegroup = 8;
static constexpr index_t m_per_thread = 8;
static constexpr index_t n_per_thread = 1;
static constexpr index_t k_per_dpp = 2;
static constexpr bool share_a = true;
using BaseType = half_t;
template <index_t MPerDpp, index_t NPerDpp, class ADataType, class BDataType, class CDataType>
__device__ void run(const ADataType& a, const BDataType& b, CDataType& reg_c) const
{
dpp8::DppLanegroupGemm<m_per_thread,
n_per_thread,
k_per_dpp,
BaseType,
ADataType,
BDataType,
CDataType,
share_a>{}
.Run(a, b, reg_c);
}
};
template <>
struct dpp_type<DppInstr::dpp8_f16_16x16x2>
{
static constexpr index_t wave_size = 32;
static constexpr index_t lanegroup_size = 8;
static constexpr index_t m_per_wave = 16;
static constexpr index_t n_per_wave = 16;
static constexpr index_t m_per_lanegroup = 8;
static constexpr index_t n_per_lanegroup = 8;
static constexpr index_t m_per_thread = 8;
static constexpr index_t n_per_thread = 1;
static constexpr index_t k_per_dpp = 2;
static constexpr bool share_a = true;
using BaseType = half_t;
template <index_t MPerDpp, index_t NPerDpp, class ADataType, class BDataType, class CDataType>
__device__ void run(const ADataType& a, const BDataType& b, CDataType& reg_c) const
{
dpp8::DppLanegroupGemm<m_per_thread,
n_per_thread,
k_per_dpp,
BaseType,
ADataType,
BDataType,
CDataType,
share_a>{}
.Run(a, b, reg_c);
}
};
template <typename BaseType, index_t MPerDpp, index_t NPerDpp>
struct DppSelector
{
template <typename BaseType_, index_t MPerDpp_, index_t NPerDpp_>
static constexpr auto GetDpp();
template <>
static constexpr auto GetDpp<half_t, 8, 32>()
{
return DppInstr::dpp8_f16_8x32x2;
}
template <>
static constexpr auto GetDpp<half_t, 16, 16>()
{
return DppInstr::dpp8_f16_16x16x2;
}
template <>
static constexpr auto GetDpp<half_t, 32, 8>()
{
return DppInstr::dpp8_f16_32x8x2;
}
static constexpr auto selected_dpp = dpp_type<GetDpp<BaseType, MPerDpp, NPerDpp>()>{};
__host__ __device__ constexpr DppSelector()
{
static_assert(selected_dpp.m_per_wave % selected_dpp.m_per_lanegroup == 0);
static_assert(selected_dpp.n_per_wave % selected_dpp.n_per_lanegroup == 0);
static_assert(selected_dpp.k_per_dpp % 2 == 0);
static_assert(selected_dpp.wave_size % selected_dpp.lanegroup_size == 0);
constexpr index_t num_dpp_per_wave = selected_dpp.wave_size / selected_dpp.lanegroup_size;
constexpr index_t num_wave_c_elems = selected_dpp.m_per_wave * selected_dpp.n_per_wave;
constexpr index_t num_dpp_c_elems =
selected_dpp.m_per_lanegroup * selected_dpp.n_per_lanegroup;
static_assert(num_wave_c_elems % num_dpp_c_elems == 0);
static_assert(num_dpp_per_wave == num_wave_c_elems / num_dpp_c_elems);
if constexpr(selected_dpp.share_a)
{
static_assert(selected_dpp.m_per_lanegroup == selected_dpp.m_per_thread);
static_assert(selected_dpp.n_per_lanegroup % selected_dpp.n_per_thread == 0);
static_assert(selected_dpp.n_per_lanegroup / selected_dpp.n_per_thread ==
selected_dpp.lanegroup_size);
}
else
{
static_assert(selected_dpp.m_per_lanegroup % selected_dpp.n_per_thread == 0);
static_assert(selected_dpp.m_per_lanegroup / selected_dpp.n_per_thread ==
selected_dpp.lanegroup_size);
static_assert(selected_dpp.n_per_lanegroup == selected_dpp.n_per_thread);
}
// Below checks come from the restrictions of the current implementation, could be removed
// in the future when the implementation is more generalized.
static_assert(selected_dpp.share_a);
static_assert(selected_dpp.n_per_thread == 1);
static_assert(selected_dpp.m_per_thread == selected_dpp.lanegroup_size);
static_assert(selected_dpp.m_per_lanegroup == selected_dpp.m_per_thread);
static_assert(selected_dpp.n_per_lanegroup ==
selected_dpp.n_per_thread * selected_dpp.lanegroup_size);
}
static constexpr index_t GetK1PerDpp() { return selected_dpp.k_per_dpp; }
};
template <typename BaseType, index_t MPerDpp, index_t NPerDpp, index_t KPack>
struct DppGemm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
using CIndex = MultiIndex<2>;
using CIndex4D = MultiIndex<4>;
__host__ __device__ constexpr DppGemm()
{
static_assert(MPerDpp == 8 || MPerDpp == 16 || MPerDpp == 32,
"MPerDpp must be either 8, 16 or 32.");
static_assert(NPerDpp == 8 || NPerDpp == 16 || NPerDpp == 32,
"NPerDpp must be either 8, 16 or 32.");
static_assert(KPack % dpp_instr.k_per_dpp == 0, "KPack must be divisible by k_per_dpp.");
}
__device__ static constexpr index_t GetRegSizePerDpp()
{
return MPerDpp * NPerDpp / dpp_instr.wave_size;
}
template <class ADataType, class BDataType, class CDataType>
__device__ void
Run(const ADataType& p_a_wave, const BDataType& p_b_wave, CDataType& p_c_thread) const
{
static_assert(is_same<BaseType, double>::value || is_same<BaseType, float>::value ||
is_same<BaseType, half_t>::value || is_same<BaseType, bhalf_t>::value ||
is_same<BaseType, int8_t>::value || is_same<BaseType, f8_t>::value,
"base BaseType must be double, float, half, bfloat16, and int8_t!");
static_for<0, KPack / dpp_instr.k_per_dpp, 1>{}([&](auto k) {
dpp_instr.template run<MPerDpp, NPerDpp>(p_a_wave[k], p_b_wave[k], p_c_thread);
});
}
__device__ static auto GetLaneIdInWave()
{
return get_thread_local_1d_id() % dpp_instr.wave_size;
}
__device__ static auto GetWaveId() { return get_thread_local_1d_id() / dpp_instr.wave_size; }
__device__ static auto GetLaneIdInLaneGroup()
{
return get_thread_local_1d_id() % dpp_instr.lanegroup_size;
}
__device__ static auto GetLaneGroupIdInWave()
{
return GetLaneIdInWave() / dpp_instr.lanegroup_size;
}
__device__ static auto GetDppOpIdx()
{
const auto lanegroupId = GetLaneGroupIdInWave();
constexpr auto lanegroup_idx_1d_to_dpp_idx_2d_adaptor = make_single_stage_tensor_adaptor(
make_tuple(
make_merge_transform(make_tuple(dpp_instr.m_per_wave / dpp_instr.m_per_lanegroup,
dpp_instr.n_per_wave / dpp_instr.n_per_lanegroup))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
const auto dpp_idx = lanegroup_idx_1d_to_dpp_idx_2d_adaptor.CalculateBottomIndex(
make_multi_index(lanegroupId));
const auto m_dpp_idx = dpp_idx[I0];
const auto n_dpp_idx = dpp_idx[I1];
return make_tuple(m_dpp_idx, n_dpp_idx);
}
__host__ __device__ static auto CalculateAThreadOriginDataIndex_K_M()
{
const auto laneId = get_thread_local_1d_id();
const auto wave_row = laneId / dpp_instr.n_per_wave;
auto m_idx = dpp_instr.m_per_thread * wave_row + GetLaneIdInLaneGroup();
return make_tuple(0, m_idx % dpp_instr.m_per_wave);
}
__host__ __device__ static auto CalculateBThreadOriginDataIndex_K_N()
{
const auto laneId = get_thread_local_1d_id();
return make_tuple(0, laneId % dpp_instr.n_per_wave);
}
__device__ static CIndex GetBeginOfThreadBlk()
{
const auto dpp_op_idx = GetDppOpIdx();
const auto m_dpp_op_idx = dpp_op_idx[I0];
const auto n_dpp_op_idx = dpp_op_idx[I1];
index_t n_offset = n_dpp_op_idx * dpp_instr.n_per_lanegroup + GetLaneIdInLaneGroup();
index_t m_offset = m_dpp_op_idx * dpp_instr.m_per_lanegroup;
return CIndex{m_offset, n_offset};
}
static constexpr auto dpp = DppSelector<BaseType, MPerDpp, NPerDpp>{};
static constexpr auto dpp_instr = dpp.selected_dpp;
static constexpr auto K0PerDpp = 1;
static constexpr auto K1PerDpp = dpp.GetK1PerDpp();
__host__ __device__ static constexpr auto GetCMNThreadBlkLengths()
{
return make_tuple(Number<dpp_instr.m_per_thread>{}, Number<dpp_instr.n_per_thread>{});
}
};
} // namespace ck
...@@ -164,6 +164,7 @@ template < ...@@ -164,6 +164,7 @@ template <
index_t BK1, index_t BK1,
index_t GemmMPerBlock, index_t GemmMPerBlock,
index_t GemmNPerBlock, index_t GemmNPerBlock,
index_t GemmKPerBlock,
bool DoPadGemmM, bool DoPadGemmM,
bool DoPadGemmN> bool DoPadGemmN>
struct TransformConvBwdDataToGemm_v1 struct TransformConvBwdDataToGemm_v1
...@@ -308,9 +309,6 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -308,9 +309,6 @@ struct TransformConvBwdDataToGemm_v1
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde); const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde); const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
const index_t AK0 =
math::integer_divide_ceil(ZDotSlice * YDotSlice * XDotSlice * K, AK1);
if constexpr(NDimSpatial == 2) if constexpr(NDimSpatial == 2)
{ {
// A: output tensor // A: output tensor
...@@ -367,9 +365,11 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -367,9 +365,11 @@ struct TransformConvBwdDataToGemm_v1
const auto out_gemmk_gemmm_padded_grid_desc = const auto out_gemmk_gemmm_padded_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor( ck::tensor_operation::device::PadTensorDescriptor(
out_gemmk_gemmmraw_grid_desc, out_gemmk_gemmmraw_grid_desc,
make_tuple(AK1, GemmMPerBlock), make_tuple(GemmKPerBlock, GemmMPerBlock),
Sequence<true, DoPadGemmM>{}); Sequence<true, DoPadGemmM>{});
const index_t AK0 = out_gemmk_gemmm_padded_grid_desc.GetLength(I0) / AK1;
const auto out_gemmak0_gemmm_gemmak1_grid_desc = transform_tensor_descriptor( const auto out_gemmak0_gemmm_gemmak1_grid_desc = transform_tensor_descriptor(
out_gemmk_gemmm_padded_grid_desc, out_gemmk_gemmm_padded_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)), make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
...@@ -460,9 +460,11 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -460,9 +460,11 @@ struct TransformConvBwdDataToGemm_v1
const auto out_gemmk_gemmm_padded_grid_desc = const auto out_gemmk_gemmm_padded_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor( ck::tensor_operation::device::PadTensorDescriptor(
out_gemmk_gemmmraw_grid_desc, out_gemmk_gemmmraw_grid_desc,
make_tuple(AK1, GemmMPerBlock), make_tuple(GemmKPerBlock, GemmMPerBlock),
Sequence<true, DoPadGemmM>{}); Sequence<true, DoPadGemmM>{});
const index_t AK0 = out_gemmk_gemmm_padded_grid_desc.GetLength(I0) / AK1;
const auto out_gemmak0_gemmm_gemmak1_grid_desc = transform_tensor_descriptor( const auto out_gemmak0_gemmm_gemmak1_grid_desc = transform_tensor_descriptor(
out_gemmk_gemmm_padded_grid_desc, out_gemmk_gemmm_padded_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)), make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
...@@ -568,9 +570,6 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -568,9 +570,6 @@ struct TransformConvBwdDataToGemm_v1
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde); const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde); const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
const index_t BK0 =
math::integer_divide_ceil(ZDotSlice * YDotSlice * XDotSlice * K, BK1);
// B weight tensor // B weight tensor
if constexpr(NDimSpatial == 2) if constexpr(NDimSpatial == 2)
{ {
...@@ -617,9 +616,11 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -617,9 +616,11 @@ struct TransformConvBwdDataToGemm_v1
const auto wei_gemmk_gemmn_padded_grid_desc = const auto wei_gemmk_gemmn_padded_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor( ck::tensor_operation::device::PadTensorDescriptor(
wei_gemmk_gemmnraw_grid_desc, wei_gemmk_gemmnraw_grid_desc,
make_tuple(BK1, GemmNPerBlock), make_tuple(GemmKPerBlock, GemmNPerBlock),
Sequence<true, DoPadGemmN>{}); Sequence<true, DoPadGemmN>{});
const index_t BK0 = wei_gemmk_gemmn_padded_grid_desc.GetLength(I0) / BK1;
const auto wei_gemmbk0_gemmn_gemmbk1_grid_desc = transform_tensor_descriptor( const auto wei_gemmbk0_gemmn_gemmbk1_grid_desc = transform_tensor_descriptor(
wei_gemmk_gemmn_padded_grid_desc, wei_gemmk_gemmn_padded_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)), make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
...@@ -690,17 +691,19 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -690,17 +691,19 @@ struct TransformConvBwdDataToGemm_v1
make_tuple(Sequence<1, 2, 3, 0>{}, Sequence<4>{}), make_tuple(Sequence<1, 2, 3, 0>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto wei_gemmk_gemm_padded_grid_desc = const auto wei_gemmk_gemmn_padded_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor( ck::tensor_operation::device::PadTensorDescriptor(
wei_gemmk_gemmnraw_grid_desc, wei_gemmk_gemmnraw_grid_desc,
make_tuple(BK1, GemmNPerBlock), make_tuple(GemmKPerBlock, GemmNPerBlock),
Sequence<true, DoPadGemmN>{}); Sequence<true, DoPadGemmN>{});
const index_t BK0 = wei_gemmk_gemmn_padded_grid_desc.GetLength(I0) / BK1;
const auto wei_gemmbk0_gemm_gemmbk1_grid_desc = transform_tensor_descriptor( const auto wei_gemmbk0_gemm_gemmbk1_grid_desc = transform_tensor_descriptor(
wei_gemmk_gemm_padded_grid_desc, wei_gemmk_gemmn_padded_grid_desc,
make_tuple( make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_unmerge_transform(make_tuple(BK0, BK1)), make_pass_through_transform(
make_pass_through_transform(wei_gemmk_gemm_padded_grid_desc.GetLength(I1))), wei_gemmk_gemmn_padded_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{})); make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
......
...@@ -5,17 +5,63 @@ ...@@ -5,17 +5,63 @@
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/utility/math.hpp" #include "ck/utility/math.hpp"
#include "ck/utility/amd_gemm_dpp.hpp" #include "ck/utility/inner_product_dpp8.hpp"
namespace ck { namespace ck {
namespace dpp8 { namespace dpp8 {
/// Number of lanes that can share data using DPP8 modifiers. template <class ABDataType>
constexpr index_t lane_group_size = 8; struct dpp_datatypes;
__device__ index_t get_lane_group_local_idx() { return threadIdx.x / lane_group_size; } template <>
__device__ index_t get_thread_idx_in_lane_group() { return threadIdx.x % lane_group_size; } struct dpp_datatypes<half_t>
{
// Dot product of `half2_t` and `half2_t` to get `float`. Reducing 2 elements from K in a
// single instruction.
using a_dtype = half_t;
using b_dtype = half_t;
using c_dtype = float;
static constexpr index_t k_per_instr = 2;
};
template <index_t MPerThread,
index_t NPerThread,
index_t KPerThread,
class BaseInputType,
class AVecDataType,
class BVecDataType,
class CVecDataType,
bool ShareA>
struct DppLanegroupGemm
{
using datatypes_conf = dpp_datatypes<BaseInputType>;
using ADataType = typename datatypes_conf::a_dtype;
using BDataType = typename datatypes_conf::b_dtype;
using CDataType = typename datatypes_conf::c_dtype;
__device__ void Run(const AVecDataType& a_vec, const BVecDataType& b_vec, CVecDataType& c_vec)
{
constexpr index_t num_c_elems_per_thread = ShareA ? MPerThread : NPerThread;
const vector_type<ADataType, KPerThread> a_vector{a_vec};
const vector_type<BDataType, KPerThread> b_vector{b_vec};
static_for<0, num_c_elems_per_thread, 1>{}([&](auto c_idx) {
float c = c_vec.template AsType<CDataType>()(c_idx);
// Next `c_idx` implies that we need to pull data from the next lane.
constexpr index_t source_lane = c_idx;
static_for<0, KPerThread / datatypes_conf::k_per_instr, 1>{}([&](auto k_chunk) {
const auto a_k_vec = a_vector.template AsType<AVecDataType>()[k_chunk];
const auto b_k_vec = b_vector.template AsType<BVecDataType>()[k_chunk];
ck::dpp8::
inner_product_dpp<AVecDataType, BVecDataType, CDataType, source_lane, ShareA>(
a_k_vec, b_k_vec, c);
});
c_vec.template AsType<CDataType>()(c_idx) = c;
});
}
};
} // namespace dpp8 } // namespace dpp8
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "amd_gemm_dpp.hpp" #include "amd_gemm_dpp.hpp"
#include "data_type.hpp" #include "data_type.hpp"
#include "type_convert.hpp" #include "type_convert.hpp"
...@@ -10,6 +11,9 @@ namespace ck { ...@@ -10,6 +11,9 @@ namespace ck {
namespace dpp8 { namespace dpp8 {
/// Number of lanes that can share data using DPP8 modifiers.
constexpr index_t lane_group_size = 8;
template <int SrcLaneIdx> template <int SrcLaneIdx>
__device__ void inline_v_dot2c_dpp8_instr(const half2_t& a, const half2_t& b, float& c); __device__ void inline_v_dot2c_dpp8_instr(const half2_t& a, const half2_t& b, float& c);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
enum struct LoopScheduler
{
Default,
Interwave,
};
constexpr LoopScheduler make_default_loop_scheduler()
{
#if CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING
return LoopScheduler::Interwave;
#else
return LoopScheduler::Default;
#endif // if CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING
}
} // namespace ck
...@@ -116,7 +116,15 @@ struct Max ...@@ -116,7 +116,15 @@ struct Max
template <typename T> template <typename T>
__host__ __device__ static constexpr T GetIdentityValue() __host__ __device__ static constexpr T GetIdentityValue()
{ {
return NumericLimits<T>::Lowest(); if constexpr(is_same_v<T, bhalf_t>)
{
float val = NumericLimits<float>::Lowest();
return type_convert<bhalf_t>(val);
}
else
{
return NumericLimits<T>::Lowest();
}
}; };
__host__ __device__ static constexpr bool __host__ __device__ static constexpr bool
...@@ -138,6 +146,15 @@ struct Max ...@@ -138,6 +146,15 @@ struct Max
a = b; a = b;
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ < b_)
a = b;
}
template <typename T> template <typename T>
__host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const __host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const
{ {
...@@ -152,6 +169,18 @@ struct Max ...@@ -152,6 +169,18 @@ struct Max
changed = true; changed = true;
} }
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b, bool& changed) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ < b_)
{
a = b;
changed = true;
}
}
}; };
struct Min struct Min
...@@ -159,6 +188,15 @@ struct Min ...@@ -159,6 +188,15 @@ struct Min
template <typename T> template <typename T>
__host__ __device__ static constexpr T GetIdentityValue() __host__ __device__ static constexpr T GetIdentityValue()
{ {
if constexpr(is_same_v<T, bhalf_t>)
{
float val = NumericLimits<float>::Max();
return type_convert<bhalf_t>(val);
}
else
{
return NumericLimits<T>::Max();
}
return NumericLimits<T>::Max(); return NumericLimits<T>::Max();
}; };
...@@ -181,6 +219,15 @@ struct Min ...@@ -181,6 +219,15 @@ struct Min
a = b; a = b;
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ > b_)
a = b;
}
template <typename T> template <typename T>
__host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const __host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const
{ {
...@@ -195,6 +242,18 @@ struct Min ...@@ -195,6 +242,18 @@ struct Min
changed = true; changed = true;
} }
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b, bool& changed) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ > b_)
{
a = b;
changed = true;
}
}
}; };
struct AMax struct AMax
......
...@@ -92,11 +92,11 @@ struct ReferenceGemm : public device::BaseOperator ...@@ -92,11 +92,11 @@ struct ReferenceGemm : public device::BaseOperator
ck::type_convert<AccDataType>(v_a) * ck::type_convert<AccDataType>(v_b); ck::type_convert<AccDataType>(v_a) * ck::type_convert<AccDataType>(v_b);
} }
AccDataType v_c; CDataType v_c;
arg.c_element_op_(v_c, v_acc); arg.c_element_op_(v_c, v_acc);
arg.c_m_n_(m, n) = ck::type_convert<CDataType>(v_c); arg.c_m_n_(m, n) = v_c;
}; };
make_ParallelTensorFunctor( make_ParallelTensorFunctor(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <type_traits>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
/**
* \brief Reference implementation for image to column.
*
* Tensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam InputLayout Input Layout.
* \tparam InDataType Input Data Type.
* \tparam OutDataType Output Data Type.
*/
template <ck::index_t NDimSpatial,
typename InputLayout,
typename InDataType,
typename OutDataType,
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceImageToColumn : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
public:
Argument(const Tensor<InDataType>& input,
Tensor<OutDataType>& output,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
: input_{input},
output_{output},
conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
in_right_pads_{input_right_pads},
filter_spatial_lengths_{filter_spatial_lengths}
{
initOutputSpatialLengths();
}
const Tensor<InDataType>& input_;
Tensor<OutDataType>& output_;
std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_;
std::vector<index_t> in_left_pads_;
std::vector<index_t> in_right_pads_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> output_spatial_lengths_;
private:
void initOutputSpatialLengths()
{
constexpr auto input_offset_to_spatial = 3;
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const ck::index_t x_eff = (filter_spatial_lengths_[i] - 1) * conv_dilations_[i] + 1;
output_spatial_lengths_.push_back(
(input_.GetLengths()[i + input_offset_to_spatial] + in_left_pads_[i] +
in_right_pads_[i] - x_eff) /
conv_strides_[i] +
1);
}
}
};
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceImageToColumn::Argument;
float Run(const Argument& arg)
{
if(!(arg.input_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.output_.GetNumOfDimension() == 2))
{
throw std::runtime_error("wrong! inconsistent dimension");
}
const index_t N = arg.input_.GetLengths()[1];
const index_t C = arg.input_.GetLengths()[2];
if constexpr(NDimSpatial == 1)
{
const index_t Wo = arg.output_spatial_lengths_[0];
auto func = [&](auto n, auto wo) {
index_t row = n * Wo + wo;
index_t column = 0;
for(index_t x = 0; x < arg.filter_spatial_lengths_[0]; ++x)
{
auto wi = static_cast<ck::long_index_t>(wo * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(index_t c = 0; c < C; ++c)
{
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[3])
{
InDataType v_in = arg.input_(0, n, c, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
}
column++;
}
}
};
make_ParallelTensorFunctor(func, N, Wo)(std::thread::hardware_concurrency());
return 0;
}
else if constexpr(NDimSpatial == 2)
{
const index_t Ho = arg.output_spatial_lengths_[0];
const index_t Wo = arg.output_spatial_lengths_[1];
auto func = [&](auto n, auto ho, auto wo) {
index_t row = n * Ho * Wo + ho * Wo + wo;
index_t column = 0;
for(index_t y = 0; y < arg.filter_spatial_lengths_[0]; ++y)
{
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(index_t x = 0; x < arg.filter_spatial_lengths_[1]; ++x)
{
auto wi = static_cast<ck::long_index_t>(wo * arg.conv_strides_[1]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[1]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[1]);
for(index_t c = 0; c < C; ++c)
{
if(hi >= 0 &&
ck::type_convert<std::size_t>(hi) < arg.input_.GetLengths()[3] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[4])
{
InDataType v_in = arg.input_(0, n, c, hi, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
}
column++;
}
}
}
};
make_ParallelTensorFunctor(func, N, Ho, Wo)(std::thread::hardware_concurrency());
return 0;
}
else if constexpr(NDimSpatial == 3)
{
const index_t Do = arg.output_spatial_lengths_[0];
const index_t Ho = arg.output_spatial_lengths_[1];
const index_t Wo = arg.output_spatial_lengths_[2];
auto func = [&](auto n, auto d_o, auto ho, auto wo) {
index_t row = n * Do * Ho * Wo + d_o * Ho * Wo + ho * Wo + wo;
index_t column = 0;
for(index_t z = 0; z < arg.filter_spatial_lengths_[0]; ++z)
{
auto di = static_cast<ck::long_index_t>(d_o * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(z * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(index_t y = 0; y < arg.filter_spatial_lengths_[1]; ++y)
{
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[1]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[1]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[1]);
for(index_t x = 0; x < arg.filter_spatial_lengths_[2]; ++x)
{
auto wi =
static_cast<ck::long_index_t>(wo * arg.conv_strides_[2]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[2]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[2]);
for(index_t c = 0; c < C; ++c)
{
if(di >= 0 &&
ck::type_convert<std::size_t>(di) <
arg.input_.GetLengths()[3] &&
hi >= 0 &&
ck::type_convert<std::size_t>(hi) <
arg.input_.GetLengths()[4] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) <
arg.input_.GetLengths()[5])
{
InDataType v_in = arg.input_(0, n, c, di, hi, wi);
arg.output_(row, column) =
ck::type_convert<OutDataType>(v_in);
}
column++;
}
}
}
}
};
make_ParallelTensorFunctor(func, N, Do, Ho, Wo)(
std::thread::hardware_concurrency());
return 0;
}
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
using namespace tensor_layout::convolution;
if constexpr(!(std::is_same_v<InputLayout, GNWC> || std::is_same_v<InputLayout, GNHWC> ||
std::is_same_v<InputLayout, GNDHWC>))
{
return false;
}
if constexpr(!(NDimSpatial >= 1 && NDimSpatial <= 3))
{
return false;
}
return true;
}
bool IsSupportedArgument(const Argument& arg)
{
const ck::index_t G = arg.input_.GetLengths()[0];
const ck::index_t N = arg.input_.GetLengths()[1];
const ck::index_t C = arg.input_.GetLengths()[2];
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
arg.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const index_t CZYX =
C * ck::accumulate_n<index_t>(
arg.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
if(!(arg.output_.GetLengths()[0] == static_cast<std::size_t>(NDoHoWo) &&
arg.output_.GetLengths()[1] == static_cast<std::size_t>(CZYX)))
{
return false;
}
if(G != 1)
{
return false;
}
return true;
}
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const Tensor<InDataType>& input,
Tensor<OutDataType>& output,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
return Argument{input,
output,
filter_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceImageToColumn"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
...@@ -53,7 +53,16 @@ struct ReferenceMaxPoolBwd : public device::BaseOperator ...@@ -53,7 +53,16 @@ struct ReferenceMaxPoolBwd : public device::BaseOperator
{ {
int index = arg.indices_.mData[i]; int index = arg.indices_.mData[i];
if(index >= 0 && index < din_length) if(index >= 0 && index < din_length)
buf[index] += ck::type_convert<ConputeDataType>(arg.dout_.mData[i]); {
if constexpr(is_same_v<ConputeDataType, bhalf_t>)
{
float buf_val = ck::type_convert<float>(buf[index]);
buf_val += ck::type_convert<float>(arg.dout_.mData[i]);
buf[index] = ck::type_convert<ConputeDataType>(buf_val);
}
else
buf[index] += ck::type_convert<ConputeDataType>(arg.dout_.mData[i]);
}
} }
for(int i = 0; i < din_length; ++i) for(int i = 0; i < din_length; ++i)
......
...@@ -256,10 +256,12 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -256,10 +256,12 @@ struct ReferencePoolingFwd : public device::BaseOperator
for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y) for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y)
{ {
ck::index_t hi = ho * arg.window_strides_[0] + y - arg.in_left_pads_[0]; ck::index_t hi = ho * arg.window_strides_[0] +
y * arg.window_dilations_[0] - arg.in_left_pads_[0];
for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x) for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x)
{ {
ck::index_t wi = wo * arg.window_strides_[1] + x - arg.in_left_pads_[1]; ck::index_t wi = wo * arg.window_strides_[1] +
x * arg.window_dilations_[1] - arg.in_left_pads_[1];
if(hi >= 0 && if(hi >= 0 &&
hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) && hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) &&
wi >= 0 && wi >= 0 &&
......
...@@ -31,6 +31,9 @@ using F64_Tuple = ck::Tuple<F64>; ...@@ -31,6 +31,9 @@ using F64_Tuple = ck::Tuple<F64>;
using F32_Tuple = ck::Tuple<F32>; using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>; using I32_Tuple = ck::Tuple<I32>;
using I32_F32_Tuple = ck::Tuple<I32, F32>; using I32_F32_Tuple = ck::Tuple<I32, F32>;
using I8_Tuple = ck::Tuple<I8>;
using F32_F32_Tuple = ck::Tuple<F32, F32>;
// GEMM layout // GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
...@@ -95,9 +98,11 @@ using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu; ...@@ -95,9 +98,11 @@ using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd; using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu; using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply; using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd; using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu; using Gelu = ck::tensor_operation::element_wise::Gelu;
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
using Add = ck::tensor_operation::element_wise::Add;
template <typename Activation> template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>; using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/device/device_avgpool_bwd.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
void add_device_avgpool_bwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F16, F16, NDHWC, NDHWC>>>&);
#endif
#ifdef CK_ENABLE_BF16
void add_device_avgpool_bwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, BF16, BF16, NDHWC, NDHWC>>>&);
#endif
#ifdef CK_ENABLE_FP32
void add_device_avgpool_bwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F32, F32, NDHWC, NDHWC>>>&);
#endif
template <typename DOutDataType, typename DInDataType, typename InLayout, typename OutLayout>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::
DeviceAvgPoolBwd<3, DOutDataType, DInDataType, InLayout, OutLayout>>
{
using DeviceOp = DeviceAvgPoolBwd<3, DOutDataType, DInDataType, InLayout, OutLayout>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<InLayout, NDHWC> && is_same_v<OutLayout, NDHWC>)
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<DOutDataType, F16> && is_same_v<DInDataType, F16>)
add_device_avgpool_bwd_ndhwc_f16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<DOutDataType, BF16> && is_same_v<DInDataType, BF16>)
add_device_avgpool_bwd_ndhwc_bf16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<DOutDataType, F32> && is_same_v<DInDataType, F32>)
add_device_avgpool_bwd_ndhwc_f32_instances(op_ptrs);
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -23,7 +23,7 @@ void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances( ...@@ -23,7 +23,7 @@ void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
void add_device_gemm_dl_dpp8_f16_f16_f16_km_kn_mn_instances( void add_device_gemm_dpp_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
...@@ -38,7 +38,7 @@ void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances( ...@@ -38,7 +38,7 @@ void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
void add_device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances( void add_device_gemm_dpp_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
...@@ -53,7 +53,7 @@ void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances( ...@@ -53,7 +53,7 @@ void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
void add_device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances( void add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
...@@ -68,7 +68,7 @@ void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances( ...@@ -68,7 +68,7 @@ void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
void add_device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances( void add_device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
...@@ -374,7 +374,7 @@ struct DeviceOperationInstanceFactory< ...@@ -374,7 +374,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instances(op_ptrs);
add_device_gemm_dl_dpp8_f16_f16_f16_mk_kn_mn_instances(op_ptrs); add_device_gemm_dpp_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
#endif #endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
} }
...@@ -385,7 +385,7 @@ struct DeviceOperationInstanceFactory< ...@@ -385,7 +385,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instances(op_ptrs);
add_device_gemm_dl_dpp8_f16_f16_f16_mk_nk_mn_instances(op_ptrs); add_device_gemm_dpp_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
#endif #endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
...@@ -397,7 +397,7 @@ struct DeviceOperationInstanceFactory< ...@@ -397,7 +397,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instances(op_ptrs);
add_device_gemm_dl_dpp8_f16_f16_f16_km_kn_mn_instances(op_ptrs); add_device_gemm_dpp_f16_f16_f16_km_kn_mn_instances(op_ptrs);
#endif #endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs);
} }
...@@ -408,7 +408,7 @@ struct DeviceOperationInstanceFactory< ...@@ -408,7 +408,7 @@ struct DeviceOperationInstanceFactory<
#ifdef DL_KERNELS #ifdef DL_KERNELS
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances(op_ptrs); add_device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instances(op_ptrs);
add_device_gemm_dl_dpp8_f16_f16_f16_km_nk_mn_instances(op_ptrs); add_device_gemm_dpp_f16_f16_f16_km_nk_mn_instances(op_ptrs);
#endif #endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs); add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs);
} }
......
...@@ -69,6 +69,58 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance ...@@ -69,6 +69,58 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance
PassThrough, PassThrough,
Bilinear>>>& instances); Bilinear>>>& instances);
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row_Tuple,
Row,
I8,
I8,
I8_Tuple,
I8,
PassThrough,
PassThrough,
Bilinear>>>& instances);
// GEMM + Bilinear // GEMM + Bilinear
template <typename ALayout, template <typename ALayout,
typename BLayout, typename BLayout,
...@@ -135,6 +187,30 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu ...@@ -135,6 +187,30 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
op_ptrs); op_ptrs);
} }
} }
else if constexpr(is_same_v<ADataType, std::int8_t> && is_same_v<BDataType, std::int8_t> &&
is_same_v<DDataType, std::int8_t> && is_same_v<EDataType, std::int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_nk_mn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_kn_mn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<DLayout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances(op_ptrs);
}
}
return op_ptrs; return op_ptrs;
} }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Row_Tuple,
Row,
F16,
F8,
F32_F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row_Row_Tuple,
Row,
F16,
F8,
F32_F32_Tuple,
F16,
PassThrough,
PassThrough,
MultiplyAdd>>>&);
// GEMM + Multiply + Add
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::MultiplyAdd>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::MultiplyAdd>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<D1DataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
}
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<D0DataType, float> && is_same_v<D1DataType, float> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_kn_mn_mn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<D0Layout, Row> && is_same_v<D1Layout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment