Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
6dfb4e78
Commit
6dfb4e78
authored
Jun 12, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
397a68f2
1ced00a5
Changes
268
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2557 additions
and
3140 deletions
+2557
-3140
include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
...nsor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
+22
-23
include/ck/tensor_operation/gpu/device/device_reduce.hpp
include/ck/tensor_operation/gpu/device/device_reduce.hpp
+6
-23
include/ck/tensor_operation/gpu/device/device_reduce_blockwise.hpp
...k/tensor_operation/gpu/device/device_reduce_blockwise.hpp
+0
-374
include/ck/tensor_operation/gpu/device/device_reduce_blockwise_second_call.hpp
...ration/gpu/device/device_reduce_blockwise_second_call.hpp
+0
-328
include/ck/tensor_operation/gpu/device/device_reduce_common.hpp
...e/ck/tensor_operation/gpu/device/device_reduce_common.hpp
+9
-9
include/ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp
.../tensor_operation/gpu/device/device_reduce_multiblock.hpp
+200
-113
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_partial_reduce.hpp
...on/gpu/device/device_reduce_multiblock_partial_reduce.hpp
+0
-440
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
.../tensor_operation/gpu/device/device_reduce_threadwise.hpp
+71
-74
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+127
-0
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
...k/tensor_operation/gpu/element/element_wise_operation.hpp
+28
-11
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+489
-0
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
...or_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
+0
-886
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
...r_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
+638
-0
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
.../gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
+0
-269
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
...r_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
+222
-169
include/ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
...ensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
+251
-0
include/ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
...sor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
+152
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
...de/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
+180
-201
include/ck/tensor_operation/gpu/grid/gridwise_gemm_reduce_xdl_cshuffle_v1.hpp
...eration/gpu/grid/gridwise_gemm_reduce_xdl_cshuffle_v1.hpp
+143
-174
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
...nsor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
+19
-46
No files found.
include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
View file @
6dfb4e78
...
...
@@ -17,7 +17,7 @@ template <typename InDataType,
typename
OutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
NeedIndices
,
bool
OuputIndex
,
ck
::
index_t
BlockSize
,
ck
::
index_t
ReduceMThreadClusterSize
,
ck
::
index_t
ReduceKThreadClusterSize
,
...
...
@@ -44,8 +44,6 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
static
constexpr
bool
BetaIsZero
=
true
;
static
constexpr
index_t
InSrcOutDstVectorDim
=
0
;
// for NHWC, the dim C is the vector Dim for both input and output in memory, which is
// not reduced.
...
...
@@ -206,28 +204,28 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
using
gridwise_reduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
AGridDesc_M_K
,
BGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
false
,
// propagate_nan
BetaIsZero
,
BlockSize
,
ReduceMThreadClusterSize
,
ReduceKThreadClusterSize
,
ReduceMThreadSliceSize
,
ReduceKThreadSliceSize
,
InSrcOutDstVectorDim
,
InSrcOutDstVectorSize
,
InSrcOutDstVectorSize
>
;
using
gridwise_reduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
AGridDesc_M_K
,
BGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
false
,
// propagate_nan
BlockSize
,
ReduceMThreadSliceSize
,
ReduceKThreadSliceSize
,
InSrcOutDstVectorDim
,
InSrcOutDstVectorSize
,
InSrcOutDstVectorSize
>
;
const
auto
kernel
=
kernel_reduce_threadwise
<
gridwise_reduce
,
NeedIndices
,
OuputIndex
,
false
,
// don't have index input
InDataType
,
OutDataType
,
AccDataType
,
...
...
@@ -252,6 +250,7 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
arg
.
acc_element_op_
,
float
(
1
),
arg
.
p_in_dev_
,
nullptr
,
float
(
0
),
arg
.
p_out_dev_
,
arg
.
p_out_indices_dev_
);
...
...
include/ck/tensor_operation/gpu/device/device_reduce.hpp
View file @
6dfb4e78
...
...
@@ -16,35 +16,18 @@ namespace device {
template
<
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
>
struct
DeviceReduce
:
public
BaseOperator
{
virtual
long_index_t
GetWorkspaceSizeInBytes
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
reduceDims
)
{
(
void
)
inLengths
;
(
void
)
reduceDims
;
return
(
0
);
};
virtual
bool
HasFurtherCall
()
{
return
(
false
);
};
virtual
std
::
vector
<
int
>
GetWorkspace2dLengths
(
const
BaseArgument
*
argPtr
)
{
(
void
)
argPtr
;
return
(
std
::
vector
<
int
>
{
0
,
0
});
};
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
MakeArgumentPointer
(
const
std
::
vector
<
in
dex_
t
>
inLengths
,
const
std
::
vector
<
in
dex_
t
>
inStrides
,
const
std
::
vector
<
in
dex_
t
>
outLengths
,
const
std
::
vector
<
in
dex_
t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
void
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
=
0
;
...
...
include/ck/tensor_operation/gpu/device/device_reduce_blockwise.hpp
deleted
100644 → 0
View file @
397a68f2
#ifndef DEVICE_REDUCE_BLOCKWISE_HPP
#define DEVICE_REDUCE_BLOCKWISE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
bool
PropagateNan
,
bool
NeedIndices
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceBlockWise
:
public
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
"Invalid thread cluster size assignments!"
);
static_assert
(((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
))
&&
(
MThreadSliceSize
%
OutDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
using
IndexDataType
=
int32_t
;
static
constexpr
bool
BetaIsZero
=
NeedIndices
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numSrcDim
=
Rank
;
static
constexpr
index_t
numDstDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static
constexpr
int
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
int
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
)
{
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numSrcDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
math
::
integer_least_multiple
(
reduceLength
,
K_BlockTileSize
)
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
)
{
const
auto
tupleDstLengths
=
make_tuple_from_array
(
outLengths
,
Number
<
numDstDim
>
{});
const
auto
tupleDstStrides
=
make_tuple_from_array
(
outStrides
,
Number
<
numDstDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numDstDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
invariantLength
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
inPad
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_indices_dev
,
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
workspace_dev
;
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
alpha_
=
type_convert
<
AccDataType
>
(
alpha
);
beta_
=
type_convert
<
AccDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
inLengths_
);
if
constexpr
(
NumInvariantDim
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths_
[
NumInvariantDim
-
1
];
reduce_lowest_length
=
inLengths_
[
Rank
-
1
];
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
}
std
::
vector
<
int
>
inLengths_
;
std
::
vector
<
int
>
inStrides_
;
std
::
vector
<
int
>
outLengths_
;
std
::
vector
<
int
>
outStrides_
;
AccDataType
alpha_
;
AccDataType
beta_
;
const
InDataType
*
in_dev_
;
OutDataType
*
out_dev_
;
IndexDataType
*
out_indices_dev_
;
InElementwiseOperation
in_elementwise_op_
;
AccElementwiseOperation
acc_elementwise_op_
;
int
invariant_lowest_length
;
int
reduce_lowest_length
;
size_t
invariant_total_length
;
size_t
reduce_total_length
;
size_t
gridSize
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
in_grid_desc_m_k
=
DeviceReduceBlockWise
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
);
const
auto
out_grid_desc_m
=
DeviceReduceBlockWise
::
MakeDst1dDescriptor
(
arg
.
outLengths_
,
arg
.
outStrides_
);
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
OutGridDesc_M
=
decltype
(
out_grid_desc_m
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_blockwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
BetaIsZero
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
float
avg_time
=
0
;
const
auto
kernel
=
kernel_reduce_blockwise
<
GridwiseReduce
,
NeedIndices
,
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
avg_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
in_grid_desc_m_k
,
out_grid_desc_m
,
arg
.
in_elementwise_op_
,
arg
.
acc_elementwise_op_
,
arg
.
alpha_
,
arg
.
in_dev_
,
arg
.
beta_
,
arg
.
out_dev_
,
nullptr
,
arg
.
out_indices_dev_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
InSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
(
false
);
}
else
{
if
(
pArg
->
inStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
(
false
);
if
(
pArg
->
invariant_lowest_length
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
}
else
{
if
(
pArg
->
inStrides_
[
Rank
-
1
]
!=
1
)
return
(
false
);
if
(
pArg
->
reduce_lowest_length
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
// To improve
if
(
pArg
->
invariant_lowest_length
%
OutDstVectorSize
!=
0
)
return
(
false
);
// cases with very small reduce_total_length should be handled by the ThreadWise method
if
(
pArg
->
reduce_total_length
/
KThreadSliceSize
<
2
)
return
(
false
);
return
(
true
);
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
OutDataType
*>
(
out_dev
),
static_cast
<
IndexDataType
*>
(
out_indices_dev
),
static_cast
<
AccDataType
*>
(
workspace_dev
),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceReduceBlockWise<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/device_reduce_blockwise_second_call.hpp
deleted
100644 → 0
View file @
397a68f2
#ifndef DEVICE_REDUCE_BLOCKWISE_SECOND_CALL_HPP
#define DEVICE_REDUCE_BLOCKWISE_SECOND_CALL_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
bool
PropagateNan
,
bool
NeedIndices
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceBlockWiseSecondCall
:
public
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
"Invalid thread cluster size assignments!"
);
static_assert
((
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
)
&&
(
MThreadSliceSize
%
OutDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
using
IndexDataType
=
int32_t
;
static
constexpr
bool
BetaIsZero
=
NeedIndices
;
static_assert
(
std
::
is_same
<
InDataType
,
AccDataType
>::
value
,
"InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numDstDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
int
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
int
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
)
{
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
2
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
2
>
{});
const
auto
in_grid_desc_m_k
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
math
::
integer_least_multiple
(
reduceLength
,
K_BlockTileSize
)
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
)
{
const
auto
tupleDstLengths
=
make_tuple_from_array
(
outLengths
,
Number
<
numDstDim
>
{});
const
auto
tupleDstStrides
=
make_tuple_from_array
(
outStrides
,
Number
<
numDstDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numDstDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
invariantLength
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
outPad
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
outPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_indices_dev
,
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
:
inLengths_
(
inLengths
),
inStrides_
(
inStrides
),
outLengths_
(
outLengths
),
outStrides_
(
outStrides
),
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
in_elementwise_op_
(
in_elementwise_op
),
acc_elementwise_op_
(
acc_elementwise_op
)
{
alpha_
=
type_convert
<
AccDataType
>
(
alpha
);
beta_
=
type_convert
<
AccDataType
>
(
beta
);
invariant_total_length
=
inLengths
[
0
];
reduce_total_length
=
inLengths
[
1
];
invariant_lowest_length
=
inLengths
[
0
];
reduce_lowest_length
=
inLengths
[
1
];
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
size_t
ws_buf2_bytes_offset
=
math
::
integer_least_multiple
(
invariant_total_length
*
reduce_total_length
*
sizeof
(
AccDataType
),
64
);
if
constexpr
(
NeedIndices
)
workspace_indices_dev_
=
reinterpret_cast
<
index_t
*>
(
reinterpret_cast
<
char
*>
(
workspace_dev
)
+
ws_buf2_bytes_offset
);
else
workspace_indices_dev_
=
nullptr
;
}
std
::
vector
<
int
>
inLengths_
;
std
::
vector
<
int
>
inStrides_
;
std
::
vector
<
int
>
outLengths_
;
std
::
vector
<
int
>
outStrides_
;
AccDataType
alpha_
;
AccDataType
beta_
;
const
InDataType
*
in_dev_
;
OutDataType
*
out_dev_
;
IndexDataType
*
out_indices_dev_
;
IndexDataType
*
workspace_indices_dev_
;
InElementwiseOperation
in_elementwise_op_
;
AccElementwiseOperation
acc_elementwise_op_
;
int
invariant_lowest_length
;
int
reduce_lowest_length
;
size_t
invariant_total_length
;
size_t
reduce_total_length
;
size_t
gridSize
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
in_grid_desc_m_k
=
DeviceReduceBlockWiseSecondCall
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
);
const
auto
out_grid_desc_m
=
DeviceReduceBlockWiseSecondCall
::
MakeDst1dDescriptor
(
arg
.
outLengths_
,
arg
.
outStrides_
);
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
OutGridDesc_M
=
decltype
(
out_grid_desc_m
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_blockwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
BetaIsZero
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
float
avg_time
=
0
;
const
auto
kernel
=
kernel_reduce_blockwise_second_call
<
GridwiseReduce
,
NeedIndices
,
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
avg_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
in_grid_desc_m_k
,
out_grid_desc_m
,
arg
.
in_elementwise_op_
,
arg
.
acc_elementwise_op_
,
arg
.
alpha_
,
arg
.
in_dev_
,
arg
.
beta_
,
arg
.
out_dev_
,
arg
.
workspace_indices_dev_
,
arg
.
out_indices_dev_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
InSrcVectorDim
==
0
)
return
(
false
);
if
(
pArg
->
reduce_lowest_length
%
InSrcVectorSize
!=
0
)
return
(
false
);
// To improve
if
(
pArg
->
invariant_lowest_length
%
OutDstVectorSize
!=
0
)
return
(
false
);
// cases with very small reduce_total_length should be handled by the ThreadWise method
if
(
pArg
->
reduce_total_length
/
KThreadSliceSize
<
2
)
return
(
false
);
return
(
true
);
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
override
{
(
void
)
reduceDims
;
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
outStrides
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
OutDataType
*>
(
out_dev
),
static_cast
<
IndexDataType
*>
(
out_indices_dev
),
static_cast
<
AccDataType
*>
(
workspace_dev
),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceReduceBlockWiseSecondCall<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/device_reduce_common.hpp
View file @
6dfb4e78
...
...
@@ -14,13 +14,13 @@ namespace device {
// here, inLengths[] is already shuffled so that lengths of invariant dims are included before those
// of reduce dims
template
<
int
Rank
,
int
NumReduceDim
>
std
::
pair
<
size_t
,
size
_t
>
get_2d_lengths
(
const
std
::
vector
<
int
>&
inLengths
)
template
<
in
dex_
t
Rank
,
int
NumReduceDim
>
std
::
pair
<
long_index_t
,
long_index
_t
>
get_2d_lengths
(
const
std
::
vector
<
in
dex_
t
>&
inLengths
)
{
static_assert
(
Rank
<=
6
,
"bigger Rank size not supported!"
);
size
_t
invariant_total_length
=
1
;
size
_t
reduce_total_length
=
1
;
long_index
_t
invariant_total_length
=
1
;
long_index
_t
reduce_total_length
=
1
;
constexpr
int
NumInvariantDim
=
Rank
-
NumReduceDim
;
...
...
@@ -35,13 +35,13 @@ std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths)
// helper functions using variadic template arguments
template
<
index_t
...
Ns
>
auto
make_tuple_from_array_and_index_seq
(
const
std
::
vector
<
int
>&
lengths
,
Sequence
<
Ns
...
>
)
auto
make_tuple_from_array_and_index_seq
(
const
std
::
vector
<
in
dex_
t
>&
lengths
,
Sequence
<
Ns
...
>
)
{
return
make_tuple
(
static_cast
<
index_t
>
(
lengths
[
Ns
])...);
};
template
<
index_t
arraySize
>
static
auto
make_tuple_from_array
(
const
std
::
vector
<
int
>&
lengths
,
Number
<
arraySize
>
)
auto
make_tuple_from_array
(
const
std
::
vector
<
in
dex_
t
>&
lengths
,
Number
<
arraySize
>
)
{
static_assert
(
arraySize
>=
1
&&
arraySize
<=
6
,
"The tensor should have 1 to 6 dimensions"
);
...
...
@@ -51,10 +51,10 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS
};
template
<
index_t
Rank
,
index_t
NumReduceDim
>
std
::
vector
<
int
>
shuffle_tensor_dimensions
(
const
std
::
vector
<
int
>&
origLengthsStrides
,
const
std
::
vector
<
int
>&
reduceDims
)
std
::
vector
<
in
dex_
t
>
shuffle_tensor_dimensions
(
const
std
::
vector
<
in
dex_
t
>&
origLengthsStrides
,
const
std
::
vector
<
int
>&
reduceDims
)
{
std
::
vector
<
int
>
newLengthsStrides
;
std
::
vector
<
in
dex_
t
>
newLengthsStrides
;
assert
(
Rank
==
origLengthsStrides
.
size
()
&&
NumReduceDim
==
reduceDims
.
size
());
...
...
include/ck/tensor_operation/gpu/device/device_reduce_multiblock
_atomic_add
.hpp
→
include/ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp
View file @
6dfb4e78
#ifndef DEVICE_REDUCE_MULTIBLOCK_
ATOMIC_ADD_
HPP
#define DEVICE_REDUCE_MULTIBLOCK_
ATOMIC_ADD_
HPP
#ifndef DEVICE_REDUCE_MULTIBLOCK_HPP
#define DEVICE_REDUCE_MULTIBLOCK_HPP
#include <iostream>
#include <sstream>
...
...
@@ -7,8 +7,9 @@
#include "device_base.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_multiblock
_atomic_add
.hpp"
#include "gridwise_2d_reduction_multiblock.hpp"
#include "gridwise_set_buffer_value.hpp"
#include "reduction_operator.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -22,8 +23,10 @@ template <typename InDataType,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
InMemoryDataOperationEnum
OutMemoryDataOperation
,
bool
PropagateNan
,
bool
NeedIndices
,
bool
OutputIndex
,
bool
HaveIndexInputIfOutputIndex
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
...
...
@@ -32,8 +35,7 @@ template <typename InDataType,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceMultiBlockAtomicAdd
:
public
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>
struct
DeviceReduceMultiBlock
:
public
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
...
...
@@ -46,26 +48,40 @@ struct DeviceReduceMultiBlockAtomicAdd
using
IndexDataType
=
int32_t
;
static
constexpr
bool
HaveIndexInput
=
OutputIndex
&&
HaveIndexInputIfOutputIndex
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numSrcDim
=
Rank
;
static
constexpr
index_t
numDstDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static
constexpr
bool
support_AtomicAdd
=
// So far, only AtomicAdd is considered, other Atomic Operation like AtomicMax can be added
// later
static
constexpr
bool
use_multiblock
=
(
OutMemoryDataOperation
==
InMemoryDataOperationEnum
::
AtomicAdd
);
static
constexpr
bool
out_type_compatible_with_atomic_op
=
std
::
is_same
<
OutDataType
,
float
>::
value
||
std
::
is_same
<
OutDataType
,
double
>::
value
;
static_assert
(
!
NeedIndices
&&
support_AtomicAdd
,
"MultiBlockAtomicAdd method can only be used with non-indiced operation and when "
"having float/double output type!"
);
static_assert
(
!
use_multiblock
||
(
use_multiblock
&&
out_type_compatible_with_atomic_op
),
"The OutDataType must support the atomic operation for using MultiBlock reduction"
);
static_assert
(
!
use_multiblock
||
(
use_multiblock
&&
!
OutputIndex
),
"MultiBlock reduction can only be used when outputing index is not required"
);
static_assert
(
ReduceOperation
::
IsCompatibleInMemoryDataOperation
(
OutMemoryDataOperation
),
"The reduction accumulation operation must be compatible with the OutMemoryDataOperation!"
);
static
constexpr
int
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
int
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
in
dex_
t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
in
dex_
t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
,
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
in
dex_
t
>&
inLengths
,
const
std
::
vector
<
in
dex_
t
>&
inStrides
,
int
blkGroupSize
,
int
k
BlockTileIteration
s
)
int
num
BlockTileIteration
)
{
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
...
...
@@ -109,7 +125,7 @@ struct DeviceReduceMultiBlockAtomicAdd
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
k
BlockTileIteration
s
;
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
num
BlockTileIteration
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
blkGroupSize
-
reduceLength
;
...
...
@@ -124,8 +140,8 @@ struct DeviceReduceMultiBlockAtomicAdd
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
)
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
in
dex_
t
>&
outLengths
,
const
std
::
vector
<
in
dex_
t
>&
outStrides
)
{
const
auto
tupleDstLengths
=
make_tuple_from_array
(
outLengths
,
Number
<
numDstDim
>
{});
const
auto
tupleDstStrides
=
make_tuple_from_array
(
outStrides
,
Number
<
numDstDim
>
{});
...
...
@@ -151,31 +167,56 @@ struct DeviceReduceMultiBlockAtomicAdd
return
(
out_grid_desc_m_padded
);
};
static
auto
MakeDst1dDescriptorForBufferSet
(
const
std
::
vector
<
index_t
>&
outLengths
,
const
std
::
vector
<
index_t
>&
outStrides
)
{
const
auto
tupleDstLengths
=
make_tuple_from_array
(
outLengths
,
Number
<
numDstDim
>
{});
const
auto
tupleDstStrides
=
make_tuple_from_array
(
outStrides
,
Number
<
numDstDim
>
{});
auto
outDesc
=
make_naive_tensor_descriptor
(
tupleDstLengths
,
tupleDstStrides
);
auto
out_grid_desc_m
=
transform_tensor_descriptor
(
outDesc
,
make_tuple
(
make_merge_transform
(
tupleDstLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numDstDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
length
=
out_grid_desc_m
.
GetLength
(
Number
<
0
>
{});
const
auto
pad
=
math
::
integer_least_multiple
(
length
,
BlockSize
)
-
length
;
auto
out_grid_desc_m_padded
=
transform_tensor_descriptor
(
out_grid_desc_m
,
make_tuple
(
make_right_pad_transform
(
length
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
(
out_grid_desc_m_padded
);
};
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
Argument
(
const
std
::
vector
<
in
dex_
t
>
inLengths
,
const
std
::
vector
<
in
dex_
t
>
inStrides
,
const
std
::
vector
<
in
dex_
t
>
outLengths
,
const
std
::
vector
<
in
dex_
t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
const
IndexDataType
*
in_index_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_indices_dev
,
AccDataType
*
workspace_dev
,
IndexDataType
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
in_index_dev_
{
in_index_dev
},
out_dev_
{
out_dev
},
out_index_dev_
{
out_index_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
out_indices_dev
;
(
void
)
workspace_dev
;
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
...
...
@@ -192,23 +233,34 @@ struct DeviceReduceMultiBlockAtomicAdd
reduce_lowest_length
=
inLengths_
[
Rank
-
1
];
int
iterations
=
1
;
while
(
true
)
if
constexpr
(
use_multiblock
)
{
int
testBlkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
// we want the blkGroupSize be not more than 128
if
(
testBlkGroupSize
<=
128
)
break
;
int
iterations
=
1
;
while
(
true
)
{
int
testBlkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
iterations
++
;
};
// we want the blkGroupSize be not more than 128
if
(
testBlkGroupSize
<=
128
)
break
;
blkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
)
;
iterations
++
;
}
;
kBlockTileIterations
=
iterations
;
blkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
numBlockTileIteration
=
iterations
;
}
else
{
blkGroupSize
=
1
;
numBlockTileIteration
=
(
reduce_total_length
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
};
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
*
blkGroupSize
;
...
...
@@ -217,27 +269,29 @@ struct DeviceReduceMultiBlockAtomicAdd
math
::
integer_least_multiple
(
invariant_total_length
,
BlockSize
)
/
BlockSize
;
}
std
::
vector
<
int
>
inLengths_
;
std
::
vector
<
int
>
inStrides_
;
std
::
vector
<
int
>
outLengths_
;
std
::
vector
<
int
>
outStrides_
;
std
::
vector
<
in
dex_
t
>
inLengths_
;
std
::
vector
<
in
dex_
t
>
inStrides_
;
std
::
vector
<
in
dex_
t
>
outLengths_
;
std
::
vector
<
in
dex_
t
>
outStrides_
;
AccDataType
alpha_
;
AccDataType
beta_
;
const
InDataType
*
in_dev_
;
const
IndexDataType
*
in_index_dev_
;
OutDataType
*
out_dev_
;
IndexDataType
*
out_index_dev_
;
InElementwiseOperation
in_elementwise_op_
;
AccElementwiseOperation
acc_elementwise_op_
;
int
invariant_lowest_length
;
int
reduce_lowest_length
;
size
_t
invariant_total_length
;
size
_t
reduce_total_length
;
in
dex_
t
invariant_lowest_length
;
in
dex_
t
reduce_lowest_length
;
long_index
_t
invariant_total_length
;
long_index
_t
reduce_total_length
;
in
dex_
t
blkGroupSize
;
in
dex_t
k
BlockTileIteration
s
;
int
blkGroupSize
;
in
t
num
BlockTileIteration
;
size_t
gridSize
;
size_t
gridSize_pre
;
...
...
@@ -247,52 +301,69 @@ struct DeviceReduceMultiBlockAtomicAdd
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
in_grid_desc_m_k
=
DeviceReduceMultiBlockAtomicAdd
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
,
arg
.
blkGroupSize
,
arg
.
kBlockTileIterations
);
const
auto
out_grid_desc_m
=
DeviceReduceMultiBlockAtomicAdd
::
MakeDst1dDescriptor
(
const
auto
in_grid_desc_m_k
=
DeviceReduceMultiBlock
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
,
arg
.
blkGroupSize
,
arg
.
numBlockTileIteration
);
const
auto
out_grid_desc_m
=
DeviceReduceMultiBlock
::
MakeDst1dDescriptor
(
arg
.
outLengths_
,
arg
.
outStrides_
);
const
auto
out_grid_desc_m_2
=
DeviceReduceMultiBlock
::
MakeDst1dDescriptorForBufferSet
(
arg
.
outLengths_
,
arg
.
outStrides_
);
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
OutGridDesc_M
=
decltype
(
out_grid_desc_m
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_multiblock_atomic_add
<
InDataType
,
OutDataType
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
float
avg_time
=
0
;
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
OutGridDesc_M
=
decltype
(
out_grid_desc_m
);
using
OutGridDesc_M_2
=
decltype
(
out_grid_desc_m_2
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_multiblock
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
OutMemoryDataOperation
,
PropagateNan
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
const
auto
kernel_main
=
kernel_reduce_multiblock
<
GridwiseReduce
,
OutputIndex
,
HaveIndexInput
,
InDataType
,
OutDataType
,
AccDataType
,
int32_t
,
InGridDesc_M_K
,
OutGridDesc_M
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
const
auto
kernel_pre
=
kernel_buffer_set_value
<
BlockSize
,
OutDataType
,
OutGridDesc_M
>
;
const
auto
kernel_main
=
kernel_reduce_multiblock_atocmi_add
<
GridwiseReduce
,
InDataType
,
OutDataType
,
AccDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_pre
,
dim3
(
arg
.
gridSize_pre
),
dim3
(
BlockSize
),
0
,
out_grid_desc_m
,
arg
.
out_dev_
,
static_cast
<
OutDataType
>
(
0.0
f
));
if
constexpr
(
use_multiblock
)
{
const
auto
identityVal
=
ck
::
reduce
::
GetIdentityValueueForInMemoryDataOperation
<
OutDataType
>
(
OutMemoryDataOperation
);
const
auto
kernel_pre
=
kernel_buffer_set_value
<
BlockSize
,
OutDataType
,
OutGridDesc_M_2
>
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_pre
,
dim3
(
arg
.
gridSize_pre
),
dim3
(
BlockSize
),
0
,
out_grid_desc_m_2
,
arg
.
out_dev_
,
identityVal
);
};
avg_time
+=
launch_and_time_kernel
(
stream_config
,
kernel_main
,
...
...
@@ -304,25 +375,34 @@ struct DeviceReduceMultiBlockAtomicAdd
arg
.
in_elementwise_op_
,
arg
.
acc_elementwise_op_
,
arg
.
blkGroupSize
,
arg
.
k
BlockTileIteration
s
,
arg
.
num
BlockTileIteration
,
arg
.
alpha_
,
arg
.
in_dev_
,
arg
.
out_dev_
);
arg
.
in_index_dev_
,
arg
.
beta_
,
arg
.
out_dev_
,
arg
.
out_index_dev_
);
return
avg_time
;
}
return
(
avg_time
)
;
}
;
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
}
;
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
use_multiblock
)
{
if
(
static_cast
<
float
>
(
pArg
->
beta_
)
!=
0.0
f
)
return
(
false
);
};
if
constexpr
(
InSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
...
...
@@ -347,36 +427,43 @@ struct DeviceReduceMultiBlockAtomicAdd
return
(
false
);
};
if
(
static_cast
<
float
>
(
pArg
->
beta_
)
!=
0.0
f
)
return
(
false
);
// To improve
if
(
pArg
->
invariant_lowest_length
%
OutDstVectorSize
!=
0
)
return
(
false
);
// cases with small reduce_total_length should be handled by the BlockWise method
if
(
pArg
->
reduce_total_length
<=
BlockSize
*
KThreadSliceSize
)
return
(
false
);
if
constexpr
(
use_multiblock
)
{
// blkGroupSize of 1 should be handled by Blockwise path using
// InMemoryDataOperationEnum::Set
if
(
pArg
->
blkGroupSize
==
1
)
return
(
false
);
// This is very strong restriction, but needed to avoid some failure
if
(
pArg
->
invariant_lowest_length
%
M_BlockTileSize
!=
0
)
return
(
false
);
// This is very strong restriction, but needed to avoid some failure
if
(
pArg
->
invariant_lowest_length
%
M_BlockTileSize
!=
0
)
return
(
false
);
}
else
{
// cases with very small reduce_total_length should be handled by ThreadWise kernel
if
(
pArg
->
reduce_total_length
/
KThreadSliceSize
<
2
)
return
(
false
);
};
return
(
true
);
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
MakeArgumentPointer
(
const
std
::
vector
<
in
dex_
t
>
inLengths
,
const
std
::
vector
<
in
dex_
t
>
inStrides
,
const
std
::
vector
<
in
dex_
t
>
outLengths
,
const
std
::
vector
<
in
dex_
t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
void
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
override
{
...
...
@@ -388,9 +475,9 @@ struct DeviceReduceMultiBlockAtomicAdd
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
const
IndexDataType
*>
(
in_index_dev
),
static_cast
<
OutDataType
*>
(
out_dev
),
static_cast
<
IndexDataType
*>
(
out_indices_dev
),
static_cast
<
AccDataType
*>
(
workspace_dev
),
static_cast
<
IndexDataType
*>
(
out_index_dev
),
in_elementwise_op
,
acc_elementwise_op
);
};
...
...
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_partial_reduce.hpp
deleted
100644 → 0
View file @
397a68f2
#ifndef DEVICE_REDUCE_MULTIBLOCK_PARTIAL_REDUCE_HPP
#define DEVICE_REDUCE_MULTIBLOCK_PARTIAL_REDUCE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_multiblock_partial_reduce.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
bool
PropagateNan
,
bool
NeedIndices
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceMultiBlockPartialReduce
:
public
DeviceReduce
<
InElementwiseOperation
,
AccElementwiseOperation
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
"Invalid thread cluster size assignments!"
);
static_assert
((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
OutDstVectorSize
==
1
,
"OutDstVectorSize must be 1 for MultiBlockPartialReduce!"
);
using
IndexDataType
=
int32_t
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
static
constexpr
index_t
numSrcDim
=
Rank
;
static
constexpr
index_t
numDstDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static
constexpr
int
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
int
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
int
MaxBlockGroupSize
=
256
;
long_index_t
GetWorkspaceSizeInBytes
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
reduceDims
)
override
{
size_t
invariant_total_length
;
size_t
reduce_total_length
;
auto
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
inLengths_
);
int
iterations
=
1
;
while
(
true
)
{
int
testBlkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
if
(
testBlkGroupSize
<=
MaxBlockGroupSize
)
break
;
iterations
++
;
};
int
blkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
long_index_t
workspace_size
=
invariant_total_length
*
blkGroupSize
;
long_index_t
wsSizeInBytes
=
!
NeedIndices
?
workspace_size
*
sizeof
(
AccDataType
)
:
workspace_size
*
(
sizeof
(
AccDataType
)
+
sizeof
(
int32_t
))
+
64
+
sizeof
(
int
);
return
(
wsSizeInBytes
);
};
bool
HasFurtherCall
()
override
{
return
(
true
);
};
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
,
int
blkGroupSize
,
int
kBlockTileIterations
)
{
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
const
auto
inDesc
=
make_naive_tensor_descriptor
(
tupleSrcLengths
,
tupleSrcStrides
);
const
auto
in_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
reduceAllDim
)
{
const
auto
one_dim_inDesc
=
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
tupleSrcLengths
)),
make_tuple
(
typename
arithmetic_sequence_gen
<
0
,
numSrcDim
,
1
>::
type
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
transform_tensor_descriptor
(
one_dim_inDesc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
1
,
one_dim_inDesc
.
GetLength
(
Number
<
0
>
{})))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
}
else
{
using
InvariantDims
=
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
const
auto
reduceDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
reduceDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}();
const
auto
invariantLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
0
>
{});
const
auto
reduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
int
reduceSizePerBlock
=
K_BlockTileSize
*
kBlockTileIterations
;
const
auto
inPad_M
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
const
auto
inPad_K
=
reduceSizePerBlock
*
blkGroupSize
-
reduceLength
;
auto
in_grid_desc_m_k_padded
=
transform_tensor_descriptor
(
in_grid_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
inPad_M
),
make_right_pad_transform
(
reduceLength
,
inPad_K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeWorkspace2dDescriptor
(
int
invariantLength
,
int
blkGroupSize
)
{
auto
ws_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
invariantLength
,
blkGroupSize
));
const
auto
wsPad
=
math
::
integer_least_multiple
(
invariantLength
,
M_BlockTileSize
)
-
invariantLength
;
auto
ws_desc_m_k_padded
=
transform_tensor_descriptor
(
ws_desc_m_k
,
make_tuple
(
make_right_pad_transform
(
invariantLength
,
wsPad
),
make_pass_through_transform
(
blkGroupSize
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
(
ws_desc_m_k_padded
);
};
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_indices_dev
,
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
workspace_dev_
{
workspace_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
alpha_
=
type_convert
<
AccDataType
>
(
alpha
);
beta_
=
type_convert
<
AccDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
NumReduceDim
>
(
inLengths_
);
if
constexpr
(
NumInvariantDim
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths_
[
NumInvariantDim
-
1
];
reduce_lowest_length
=
inLengths_
[
Rank
-
1
];
int
iterations
=
1
;
while
(
true
)
{
int
testBlkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
if
(
testBlkGroupSize
<=
MaxBlockGroupSize
)
break
;
iterations
++
;
};
blkGroupSize
=
(
reduce_total_length
+
(
K_BlockTileSize
*
iterations
)
-
1
)
/
(
K_BlockTileSize
*
iterations
);
kBlockTileIterations
=
iterations
;
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
*
blkGroupSize
;
size_t
ws_buf2_bytes_offset
=
math
::
integer_least_multiple
(
invariant_total_length
*
blkGroupSize
*
sizeof
(
AccDataType
),
64
);
if
constexpr
(
NeedIndices
)
workspace_indices_dev_
=
reinterpret_cast
<
int
*>
(
reinterpret_cast
<
char
*>
(
workspace_dev_
)
+
ws_buf2_bytes_offset
);
else
workspace_indices_dev_
=
nullptr
;
}
std
::
vector
<
int
>
inLengths_
;
std
::
vector
<
int
>
inStrides_
;
std
::
vector
<
int
>
outLengths_
;
std
::
vector
<
int
>
outStrides_
;
AccDataType
alpha_
;
AccDataType
beta_
;
const
InDataType
*
in_dev_
;
OutDataType
*
out_dev_
;
IndexDataType
*
out_indices_dev_
;
AccDataType
*
workspace_dev_
;
IndexDataType
*
workspace_indices_dev_
;
InElementwiseOperation
in_elementwise_op_
;
AccElementwiseOperation
acc_elementwise_op_
;
int
invariant_lowest_length
;
int
reduce_lowest_length
;
size_t
invariant_total_length
;
size_t
reduce_total_length
;
index_t
blkGroupSize
;
index_t
kBlockTileIterations
;
size_t
gridSize
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
in_grid_desc_m_k
=
DeviceReduceMultiBlockPartialReduce
::
MakeSrc2dDescriptor
(
arg
.
inLengths_
,
arg
.
inStrides_
,
arg
.
blkGroupSize
,
arg
.
kBlockTileIterations
);
const
auto
ws_desc_m_k
=
DeviceReduceMultiBlockPartialReduce
::
MakeWorkspace2dDescriptor
(
arg
.
invariant_total_length
,
arg
.
blkGroupSize
);
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
WorkspaceDesc_M_K
=
decltype
(
ws_desc_m_k
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_mk_multiblock_partial_reduce
<
InDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
WorkspaceDesc_M_K
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
float
avg_time
=
0
;
const
auto
kernel
=
kernel_partial_reduce_multiblock
<
GridwiseReduce
,
NeedIndices
,
InDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
WorkspaceDesc_M_K
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
avg_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize
),
dim3
(
BlockSize
),
0
,
in_grid_desc_m_k
,
ws_desc_m_k
,
arg
.
in_elementwise_op_
,
arg
.
acc_elementwise_op_
,
arg
.
blkGroupSize
,
arg
.
kBlockTileIterations
,
arg
.
in_dev_
,
arg
.
workspace_dev_
,
arg
.
workspace_indices_dev_
);
return
(
avg_time
);
};
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
OutDstVectorSize
!=
1
)
return
(
false
);
if
constexpr
(
InSrcVectorDim
==
0
)
{
if
constexpr
(
NumInvariantDim
==
0
)
{
return
(
false
);
}
else
{
if
(
pArg
->
inStrides_
[
NumInvariantDim
-
1
]
!=
1
)
return
(
false
);
if
(
pArg
->
invariant_lowest_length
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
}
else
{
if
(
pArg
->
inStrides_
[
Rank
-
1
]
!=
1
)
return
(
false
);
if
(
pArg
->
reduce_lowest_length
%
InSrcVectorSize
!=
0
)
return
(
false
);
};
// cases with small reduce_total_length should be handled by the BlockWise method
if
(
pArg
->
reduce_total_length
<=
BlockSize
*
KThreadSliceSize
)
return
(
false
);
return
(
true
);
};
std
::
vector
<
int
>
GetWorkspace2dLengths
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
(
std
::
vector
<
int
>
{
static_cast
<
int
>
(
pArg
->
invariant_total_length
),
pArg
->
blkGroupSize
});
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
OutDataType
*>
(
out_dev
),
static_cast
<
IndexDataType
*>
(
out_indices_dev
),
static_cast
<
AccDataType
*>
(
workspace_dev
),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceReduceMultiBlockPartialReduce<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
View file @
6dfb4e78
...
...
@@ -6,6 +6,7 @@
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_multiblock.hpp"
#include "gridwise_2d_reduction_threadwise.hpp"
namespace
ck
{
...
...
@@ -19,22 +20,19 @@ template <typename InDataType,
index_t
NumReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
Out
ElementwiseOperation
,
typename
Acc
ElementwiseOperation
,
bool
PropagateNan
,
bool
NeedIndices
,
bool
OutputIndex
,
bool
HaveIndexInputIfOutputIndex
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
DeviceReduceThreadWise
:
public
DeviceReduce
<
InElementwiseOperation
,
Out
ElementwiseOperation
>
struct
DeviceReduceThreadWise
:
public
DeviceReduce
<
InElementwiseOperation
,
Acc
ElementwiseOperation
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
((
BlockSize
==
MThreadClusterSize
)
&&
(
KThreadClusterSize
==
1
),
"Threadwise can only be called with KThreadClusterSize be 1 !"
);
static_assert
(((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
))
&&
...
...
@@ -43,7 +41,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
using
IndexDataType
=
int32_t
;
static
constexpr
bool
BetaIsZero
=
NeedIndices
;
static
constexpr
bool
HaveIndexInput
=
OutputIndex
&&
HaveIndexInputIfOutputIndex
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
...
...
@@ -51,11 +49,11 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
static
constexpr
index_t
numDstDim
=
(
NumInvariantDim
==
0
)
?
1
:
NumInvariantDim
;
static
constexpr
bool
reduceAllDim
=
(
NumInvariantDim
==
0
);
static
constexpr
int
M_BlockTileSize
=
MThreadCluster
Size
*
MThreadSliceSize
;
static
constexpr
int
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
in
dex_
t
M_BlockTileSize
=
Block
Size
*
MThreadSliceSize
;
static
constexpr
in
dex_
t
K_BlockTileSize
=
1
*
KThreadSliceSize
;
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
)
static
auto
MakeSrc2dDescriptor
(
const
std
::
vector
<
in
dex_
t
>&
inLengths
,
const
std
::
vector
<
in
dex_
t
>&
inStrides
)
{
const
auto
tupleSrcLengths
=
make_tuple_from_array
(
inLengths
,
Number
<
numSrcDim
>
{});
const
auto
tupleSrcStrides
=
make_tuple_from_array
(
inStrides
,
Number
<
numSrcDim
>
{});
...
...
@@ -114,8 +112,8 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
return
(
in_grid_desc_m_k_padded
);
};
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
)
static
auto
MakeDst1dDescriptor
(
const
std
::
vector
<
in
dex_
t
>&
outLengths
,
const
std
::
vector
<
in
dex_
t
>&
outStrides
)
{
const
auto
tupleDstLengths
=
make_tuple_from_array
(
outLengths
,
Number
<
numDstDim
>
{});
const
auto
tupleDstStrides
=
make_tuple_from_array
(
outStrides
,
Number
<
numDstDim
>
{});
...
...
@@ -143,30 +141,26 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
Argument
(
const
std
::
vector
<
in
dex_
t
>
inLengths
,
const
std
::
vector
<
in
dex_
t
>
inStrides
,
const
std
::
vector
<
in
dex_
t
>
outLengths
,
const
std
::
vector
<
in
dex_
t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
IndexDataType
*
out_indices_dev
,
AccDataType
*
workspace_dev
,
IndexDataType
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
Out
ElementwiseOperation
acc_elementwise_op
)
const
Acc
ElementwiseOperation
acc_elementwise_op
)
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_ind
ices
_dev_
{
out_ind
ices
_dev
},
out_ind
ex
_dev_
{
out_ind
ex
_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
workspace_dev
;
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
...
...
@@ -183,30 +177,33 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
reduce_lowest_length
=
inLengths_
[
Rank
-
1
];
numBlockTileIteration
=
(
reduce_total_length
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
}
std
::
vector
<
int
>
inLengths_
;
std
::
vector
<
int
>
inStrides_
;
std
::
vector
<
int
>
outLengths_
;
std
::
vector
<
int
>
outStrides_
;
std
::
vector
<
in
dex_
t
>
inLengths_
;
std
::
vector
<
in
dex_
t
>
inStrides_
;
std
::
vector
<
in
dex_
t
>
outLengths_
;
std
::
vector
<
in
dex_
t
>
outStrides_
;
AccDataType
alpha_
;
AccDataType
beta_
;
const
InDataType
*
in_dev_
;
OutDataType
*
out_dev_
;
IndexDataType
*
out_ind
ices
_dev_
;
IndexDataType
*
out_ind
ex
_dev_
;
InElementwiseOperation
in_elementwise_op_
;
Out
ElementwiseOperation
acc_elementwise_op_
;
Acc
ElementwiseOperation
acc_elementwise_op_
;
int
invariant_lowest_length
;
int
reduce_lowest_length
;
size
_t
invariant_total_length
;
size
_t
reduce_total_length
;
in
dex_
t
invariant_lowest_length
;
in
dex_
t
reduce_lowest_length
;
long_index
_t
invariant_total_length
;
long_index
_t
reduce_total_length
;
int
numBlockTileIteration
;
size_t
gridSize
;
};
...
...
@@ -221,30 +218,30 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
using
InGridDesc_M_K
=
decltype
(
in_grid_desc_m_k
);
using
OutGridDesc_M
=
decltype
(
out_grid_desc_m
);
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
OutElementwiseOperation
,
PropagateNan
,
BetaIsZero
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
float
avg_time
=
0
;
using
GridwiseReduce
=
GridwiseReduction_mk_to_m_threadwise
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InGridDesc_M_K
,
OutGridDesc_M
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
BlockSize
,
MThreadSliceSize
,
KThreadSliceSize
,
InSrcVectorDim
,
InSrcVectorSize
,
OutDstVectorSize
>
;
const
auto
kernel
=
kernel_reduce_threadwise
<
GridwiseReduce
,
NeedIndices
,
OutputIndex
,
HaveIndexInput
,
InDataType
,
OutDataType
,
AccDataType
,
...
...
@@ -252,7 +249,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
InGridDesc_M_K
,
OutGridDesc_M
,
InElementwiseOperation
,
Out
ElementwiseOperation
>
;
Acc
ElementwiseOperation
>
;
avg_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
...
...
@@ -265,9 +262,10 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
arg
.
acc_elementwise_op_
,
arg
.
alpha_
,
arg
.
in_dev_
,
nullptr
,
arg
.
beta_
,
arg
.
out_dev_
,
arg
.
out_ind
ices
_dev_
);
arg
.
out_ind
ex
_dev_
);
return
(
avg_time
);
};
...
...
@@ -276,7 +274,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
}
;
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
...
...
@@ -311,9 +309,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
if
(
pArg
->
invariant_lowest_length
%
OutDstVectorSize
!=
0
)
return
(
false
);
// TODO: remove this. Should return true, as long as this DeviceOP instance support this
// case for bigger reduce_total_length size, we are supposed to use BlockWise method for
// better performance
// cases with big reduce_total_length should be handled by Blockwise kernel
if
(
pArg
->
reduce_total_length
/
KThreadSliceSize
>=
32
)
return
(
false
);
...
...
@@ -321,20 +317,22 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
int
>
inLengths
,
const
std
::
vector
<
int
>
inStrides
,
const
std
::
vector
<
int
>
outLengths
,
const
std
::
vector
<
int
>
outStrides
,
MakeArgumentPointer
(
const
std
::
vector
<
in
dex_
t
>
inLengths
,
const
std
::
vector
<
in
dex_
t
>
inStrides
,
const
std
::
vector
<
in
dex_
t
>
outLengths
,
const
std
::
vector
<
in
dex_
t
>
outStrides
,
const
std
::
vector
<
int
>
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
const
void
*
in_index_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
void
*
out_index_dev
,
const
InElementwiseOperation
in_elementwise_op
,
const
Out
ElementwiseOperation
acc_elementwise_op
)
override
const
Acc
ElementwiseOperation
acc_elementwise_op
)
override
{
(
void
)
in_index_dev
;
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
...
...
@@ -344,8 +342,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
static_cast
<
OutDataType
*>
(
out_dev
),
static_cast
<
IndexDataType
*>
(
out_indices_dev
),
static_cast
<
AccDataType
*>
(
workspace_dev
),
static_cast
<
IndexDataType
*>
(
out_index_dev
),
in_elementwise_op
,
acc_elementwise_op
);
};
...
...
@@ -360,9 +357,9 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceReduc
c
eThreadWise<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
MThreadCluster
Size
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"DeviceReduceThreadWise<"
<<
BlockSize
<<
","
;
str
<<
"M_C"
<<
Block
Size
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
1
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
0 → 100644
View file @
6dfb4e78
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#pragma once
#include "data_type.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
binary_element_wise
{
template
<
typename
Y
,
typename
X1
,
typename
X2
>
struct
Add
;
template
<
>
struct
Add
<
double
,
double
,
double
>
{
__host__
__device__
constexpr
void
operator
()(
double
&
dst
,
const
double
&
src1
,
const
double
&
src2
)
const
{
dst
=
src1
+
src2
;
}
};
template
<
>
struct
Add
<
float
,
float
,
float
>
{
__host__
__device__
constexpr
void
operator
()(
float
&
dst
,
const
float
&
src1
,
const
float
&
src2
)
const
{
dst
=
src1
+
src2
;
}
};
template
<
>
struct
Add
<
half_t
,
half_t
,
half_t
>
{
__host__
__device__
constexpr
void
operator
()(
half_t
&
dst
,
const
half_t
&
src1
,
const
half_t
&
src2
)
const
{
dst
=
src1
+
src2
;
}
};
template
<
>
struct
Add
<
bhalf_t
,
bhalf_t
,
bhalf_t
>
{
__host__
__device__
constexpr
void
operator
()(
bhalf_t
&
dst
,
const
bhalf_t
&
src1
,
const
bhalf_t
&
src2
)
const
{
const
float
x1
=
ck
::
type_convert
<
float
>
(
src1
);
const
float
x2
=
ck
::
type_convert
<
float
>
(
src2
);
const
float
y
=
x1
+
x2
;
dst
=
ck
::
type_convert
<
bhalf_t
>
(
y
);
}
};
template
<
typename
Y
,
typename
X1
,
typename
X2
>
struct
Substract
;
template
<
>
struct
Substract
<
double
,
double
,
double
>
{
__host__
__device__
constexpr
void
operator
()(
double
&
dst
,
const
double
&
src1
,
const
double
&
src2
)
const
{
dst
=
src1
-
src2
;
}
};
template
<
>
struct
Substract
<
float
,
float
,
float
>
{
__host__
__device__
constexpr
void
operator
()(
float
&
dst
,
const
float
&
src1
,
const
float
&
src2
)
const
{
dst
=
src1
-
src2
;
}
};
template
<
>
struct
Substract
<
half_t
,
half_t
,
half_t
>
{
__host__
__device__
constexpr
void
operator
()(
half_t
&
dst
,
const
half_t
&
src1
,
const
half_t
&
src2
)
const
{
dst
=
src1
-
src2
;
}
};
template
<
>
struct
Substract
<
bhalf_t
,
bhalf_t
,
bhalf_t
>
{
__host__
__device__
constexpr
void
operator
()(
bhalf_t
&
dst
,
const
bhalf_t
&
src1
,
const
bhalf_t
&
src2
)
const
{
const
float
x1
=
ck
::
type_convert
<
float
>
(
src1
);
const
float
x2
=
ck
::
type_convert
<
float
>
(
src2
);
const
float
y
=
x1
-
x2
;
dst
=
ck
::
type_convert
<
bhalf_t
>
(
y
);
}
};
}
// namespace binary_element_wise
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
View file @
6dfb4e78
#pragma once
#include "data_type.hpp"
#include "math_v2.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -143,6 +144,24 @@ struct AddHardswishAdd
}
};
struct
Normalize
{
Normalize
(
float
epsilon
=
1e-4
)
:
epsilon_
(
epsilon
)
{}
__host__
__device__
constexpr
void
operator
()(
float
&
y
,
const
float
&
x
,
const
float
&
mean
,
const
float
&
mean_square
,
const
float
&
gamma
,
const
float
&
beta
)
const
{
float
variance
=
mean_square
-
(
mean
*
mean
);
y
=
((
x
-
mean
)
/
sqrtf
(
variance
+
epsilon_
))
*
gamma
+
beta
;
}
float
epsilon_
;
};
// Unary operators are usually called element-wisely before/after the reduction is executed on the
// elements. They are needed for easy implementation of reduction types of AVG, NRM1, NRM2
...
...
@@ -278,7 +297,7 @@ struct UnaryAbs<float, float>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
abs
(
x
);
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
...
...
@@ -286,7 +305,7 @@ struct UnaryAbs<half_t, half_t>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
__h
abs
(
x
);
};
__host__
__device__
void
operator
()(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
...
...
@@ -294,7 +313,7 @@ struct UnaryAbs<double, double>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
abs
(
x
);
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
>
...
...
@@ -302,12 +321,7 @@ struct UnaryAbs<int8_t, int8_t>
{
__host__
__device__
UnaryAbs
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
int8_t
sgn
=
x
>>
(
8
-
1
);
y
=
(
x
^
sgn
)
-
sgn
;
};
__host__
__device__
void
operator
()(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
ck
::
math
::
abs
(
x
);
};
};
template
<
typename
Y
,
typename
X
>
...
...
@@ -318,7 +332,7 @@ struct UnarySqrt<float, float>
{
__host__
__device__
UnarySqrt
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
sqrt
f
(
x
);
};
__host__
__device__
void
operator
()(
float
&
y
,
const
float
&
x
)
const
{
y
=
ck
::
math
::
sqrt
(
x
);
};
};
template
<
>
...
...
@@ -326,7 +340,10 @@ struct UnarySqrt<double, double>
{
__host__
__device__
UnarySqrt
(
const
int32_t
divider
=
1
)
{
(
void
)
divider
;
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
sqrt
(
x
);
};
__host__
__device__
void
operator
()(
double
&
y
,
const
double
&
x
)
const
{
y
=
ck
::
math
::
sqrt
(
x
);
};
};
}
// namespace element_wise
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
0 → 100644
View file @
6dfb4e78
#ifndef UTILITY_BLOCK_TO_CTILE_MAP
#define UTILITY_BLOCK_TO_CTILE_MAP
#include "utility/math.hpp"
#include "utility/number.hpp"
#include "tensor_description/tensor_adaptor.hpp"
#include "tensor_description/multi_index_transform_helper.hpp"
namespace
ck
{
// Rows of column-vectors
template
<
index_t
MPerBlock
,
index_t
NPerBlock
,
typename
CGridDesc_M_N
,
bool
DeviceCTileIndexCheck
=
false
>
struct
BlockToCTileMap_M00_N0_M01
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
__host__
__device__
BlockToCTileMap_M00_N0_M01
()
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
1
)
:
M01_
(
M01
),
underlying_map_
(
GetBlockToCTileMap
(
c_grid_desc_m_n
,
M01
))
{
}
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01_
);
const
index_t
grid_size
=
M00
*
M01_
*
N0
;
return
grid_size
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
underlying_map_
.
CalculateBottomIndex
(
idx_top
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
DefaultValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
else
return
true
;
}
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
true
;
// validity check moved to kernel
const
index_t
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
if
(
M0
%
M01_
==
0
)
{
return
true
;
}
else
{
return
false
;
}
}
private:
__host__
__device__
static
constexpr
auto
GetBlockToCTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
)
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01
);
const
auto
m00_n0_m01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_insert_transform
(
1
),
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_pass_through_transform
(
make_tuple
(
N0
))),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
>
{}));
const
auto
cblockid_to_m00_n0_m01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
1
,
M00
,
N0
,
M01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_n0_m01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_n0_m01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
}
index_t
M01_
;
using
UnderlyingMap
=
decltype
(
GetBlockToCTileMap
(
CGridDesc_M_N
{},
1
));
UnderlyingMap
underlying_map_
;
};
// Rows of column-vectors
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template
<
index_t
MPerBlock
,
index_t
NPerBlock
,
typename
CGridDesc_M_N
>
struct
BlockToCTileMap_M00_N0_M01Adapt
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt
()
=
default
;
__host__
__device__
BlockToCTileMap_M00_N0_M01Adapt
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
8
)
:
M01_
(
M01
),
c_grid_desc_m_n_
(
c_grid_desc_m_n
)
{
}
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
index_t
grid_size
=
M0
*
N0
;
return
grid_size
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
// swallow batch index
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
private:
index_t
M01_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
};
// 2D slices of column-vectors in 3D space
// This C-tile map dynamically adjusts M01 when C-tile index is out of range
template
<
index_t
MPerBlock
,
index_t
NPerBlock
,
typename
CGridDesc_M_N
>
struct
BlockToCTileMap_KSplit_M00_N0_M01Adapt
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
__host__
__device__
BlockToCTileMap_KSplit_M00_N0_M01Adapt
()
=
default
;
__host__
__device__
BlockToCTileMap_KSplit_M00_N0_M01Adapt
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
8
,
index_t
KSplit
=
1
)
:
M01_
(
M01
),
KSplit_
(
KSplit
),
c_grid_desc_m_n_
(
c_grid_desc_m_n
)
{
}
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
index_t
grid_size
=
M0
*
N0
*
KSplit_
;
return
grid_size
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_ksplit
,
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
private:
index_t
M01_
;
index_t
KSplit_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
};
// Blocks of row-vectors
template
<
index_t
MPerBlock
,
index_t
NPerBlock
,
typename
CGridDesc_M_N
,
bool
DeviceCTileIndexCheck
=
false
>
struct
BlockToCTileMap_M00_N00_M01_N01
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
__host__
__device__
BlockToCTileMap_M00_N00_M01_N01
()
=
default
;
__host__
__device__
BlockToCTileMap_M00_N00_M01_N01
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
1
,
index_t
N01
=
1
)
:
M01_
(
M01
),
N01_
(
N01
),
underlying_map_
(
GetBlockToCTileMap
(
c_grid_desc_m_n
,
M01
,
N01
))
{
}
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01_
);
const
auto
N00
=
math
::
integer_divide_ceil
(
N0
,
N01_
);
const
index_t
grid_size
=
M00
*
M01_
*
N00
*
N01_
;
return
grid_size
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
underlying_map_
.
CalculateBottomIndex
(
idx_top
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
DefaultValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
else
return
true
;
}
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
true
;
// validity check moved to kernel
const
index_t
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
index_t
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
if
(
M0
%
M01_
==
0
&&
N0
%
N01_
==
0
)
{
return
true
;
}
else
{
return
false
;
}
}
private:
__host__
__device__
static
constexpr
auto
GetBlockToCTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01
);
const
auto
N00
=
math
::
integer_divide_ceil
(
N0
,
N01
);
const
auto
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_insert_transform
(
1
),
// swallow the carry from lower dimensions
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
,
4
>
{}));
const
auto
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
1
,
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
}
index_t
M01_
,
N01_
;
using
UnderlyingMap
=
decltype
(
GetBlockToCTileMap
(
CGridDesc_M_N
{},
1
,
1
));
UnderlyingMap
underlying_map_
;
};
// 2D slices of row-vectors in 3D space
template
<
index_t
MPerBlock
,
index_t
NPerBlock
,
typename
CGridDesc_M_N
,
bool
DeviceCTileIndexCheck
=
false
>
struct
BlockToCTileMap_KSplit_M00_N00_M01_N01
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
__host__
BlockToCTileMap_KSplit_M00_N00_M01_N01
()
=
default
;
__host__
BlockToCTileMap_KSplit_M00_N00_M01_N01
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
=
1
,
index_t
N01
=
1
,
index_t
KSplit
=
1
)
:
M01_
(
M01
),
N01_
(
N01
),
KSplit_
(
KSplit
),
underlying_map_
(
GetBlockToCTileMap
(
c_grid_desc_m_n
,
M01
,
N01
,
KSplit
))
{
}
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01_
);
const
auto
N00
=
math
::
integer_divide_ceil
(
N0
,
N01_
);
const
index_t
grid_size
=
M00
*
M01_
*
N00
*
N01_
*
KSplit_
;
return
grid_size
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
underlying_map_
.
CalculateBottomIndex
(
idx_top
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
DefaultValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
else
return
true
;
}
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
if
constexpr
(
DeviceCTileIndexCheck
)
return
true
;
// validity check moved to kernel
const
index_t
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
index_t
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
if
(
M0
%
M01_
==
0
&&
N0
%
N01_
==
0
)
{
return
true
;
}
else
{
return
false
;
}
}
private:
__host__
static
constexpr
auto
GetBlockToCTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
,
index_t
KSplit
)
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
M00
=
math
::
integer_divide_ceil
(
M0
,
M01
);
const
auto
N00
=
math
::
integer_divide_ceil
(
N0
,
N01
);
const
auto
ksplit_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_pass_through_transform
(
KSplit
),
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
,
4
>
{}));
const
auto
c_blockid_to_ksplit_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
KSplit
,
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
c_blockid_to_ksplit_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
ksplit_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
c_blockid_to_ksplit_m00_m01_n00_n01_block_cluster_adaptor
);
return
c_blockid_to_ksplit_m0_n0_block_cluster_adaptor
;
}
index_t
M01_
,
N01_
,
KSplit_
;
using
UnderlyingMap
=
decltype
(
GetBlockToCTileMap
(
CGridDesc_M_N
{},
1
,
1
,
1
));
UnderlyingMap
underlying_map_
;
};
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
DefaultValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
{
bool
is_valid
=
false
;
const
index_t
m_block
=
c_tile_dim
[
Number
<
0
>
{}];
const
index_t
n_block
=
c_tile_dim
[
Number
<
1
>
{}];
if
constexpr
(
CTileIdx
::
Size
()
==
2
)
{
const
index_t
m_block_idx
=
c_tile_idx
[
Number
<
0
>
{}];
const
index_t
n_block_idx
=
c_tile_idx
[
Number
<
1
>
{}];
if
(
0
<=
m_block_idx
&&
m_block_idx
<
m_block
&&
0
<=
n_block_idx
&&
n_block_idx
<
n_block
)
{
is_valid
=
true
;
}
}
else
if
constexpr
(
CTileIdx
::
Size
()
==
3
)
{
const
index_t
ksplit_idx
=
c_tile_idx
[
Number
<
0
>
{}];
const
index_t
m_block_idx
=
c_tile_idx
[
Number
<
1
>
{}];
const
index_t
n_block_idx
=
c_tile_idx
[
Number
<
2
>
{}];
if
(
0
<=
m_block_idx
&&
m_block_idx
<
m_block
&&
0
<=
n_block_idx
&&
n_block_idx
<
n_block
)
{
is_valid
=
true
;
}
ignore
=
ksplit_idx
;
}
return
is_valid
;
}
}
// namespace ck
#endif // UTILITY_BLOCK_TO_CTILE_MAP
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
deleted
100644 → 0
View file @
397a68f2
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_BLOCKWISE_HPP
#define CK_GRIDWISE_2D_REDUCTION_BLOCKWISE_HPP
#include "data_type.hpp"
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_blockwise.hpp"
#include "reduction_functions_threadwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "cluster_descriptor.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
bool
NeedIndices
,
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InGridDesc_M_K
,
typename
OutGridDesc_M
,
typename
InElementwiseOperation
,
typename
OutElementwiseOperation
>
__global__
void
kernel_reduce_blockwise
(
const
InGridDesc_M_K
in_grid_desc_m_k
,
const
OutGridDesc_M
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
OutElementwiseOperation
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
const
IndexDataType
*
const
__restrict__
p_ws_indices_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
{
if
constexpr
(
!
NeedIndices
)
{
constexpr
bool
IsSecondCall
=
false
;
GridwiseReduction
::
template
Run
<
IsSecondCall
>(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
beta
,
p_out_global
,
p_ws_indices_global
,
p_indices_global
);
}
else
{
GridwiseReduction
::
RunWithIndex
(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
beta
,
p_out_global
,
p_ws_indices_global
,
p_indices_global
);
};
};
template
<
typename
GridwiseReduction
,
bool
NeedIndices
,
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InGridDesc_M_K
,
typename
OutGridDesc_M
,
typename
InElementwiseOperation
,
typename
OutElementwiseOperation
>
__global__
void
kernel_reduce_blockwise_second_call
(
const
InGridDesc_M_K
in_grid_desc_m_k
,
const
OutGridDesc_M
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
OutElementwiseOperation
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
const
IndexDataType
*
const
__restrict__
p_ws_indices_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
{
if
constexpr
(
!
NeedIndices
)
{
constexpr
bool
IsSecondCall
=
true
;
GridwiseReduction
::
template
Run
<
IsSecondCall
>(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
beta
,
p_out_global
,
p_ws_indices_global
,
p_indices_global
);
}
else
{
GridwiseReduction
::
RunSecondCallWithIndex
(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
beta
,
p_out_global
,
p_ws_indices_global
,
p_indices_global
);
};
};
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InGridDesc_M_K
,
typename
OutGridDesc_M
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
OutElementwiseOperation
,
bool
PropagateNan
,
bool
BetaIsZero
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
GridwiseReduction_mk_to_m_blockwise
{
static_assert
(((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
))
&&
(
MThreadSliceSize
%
OutDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static
constexpr
bool
reorder_thread_cluster
=
(
InSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
template
<
bool
IsSecondCall
>
__device__
static
void
Run
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
OutElementwiseOperation
&
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
const
IndexDataType
*
const
__restrict__
p_ws_indices_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
{
if
constexpr
(
IsSecondCall
)
{
static_assert
(
InSrcVectorDim
==
1
,
"InSrcVectorDim must be 1 for BlockwiseSecondCall, please check!"
);
};
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
,
ReduceOperation
,
PropagateNan
>
;
(
void
)
p_ws_indices_global
;
(
void
)
p_indices_global
;
// LDS
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
auto
out_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_buffer
,
BlockSize
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zeroVal
;
});
const
auto
toReduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_1d_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
const
index_t
toReduceTiles
=
(
toReduceLength
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
index_t
reducedTiles
=
0
;
do
{
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
in_elementwise_op
(
in_thread_buf
(
Number
<
offset
>
{}),
in_thread_buf
(
Number
<
offset
>
{}));
});
});
ThreadwiseReduce
::
Reduce
(
in_thread_buf
,
accu_value_buf
);
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
reducedTiles
++
;
}
while
(
reducedTiles
<
toReduceTiles
);
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
static_for
<
0
,
MThreadSliceSize
,
1
>
{}(
[
&
](
auto
I
)
{
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
accu_value_buf
(
I
));
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
if
constexpr
(
!
BetaIsZero
)
{
if
(
!
float_equal_zero
{}(
beta
))
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValueBuf
;
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValueBuf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValueBuf
[
I
])
*
beta
;
});
};
};
auto
threadwise_dst_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_dst_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid_desc_m
,
out_global_buf
);
}
};
__device__
static
void
RunWithIndex
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
OutElementwiseOperation
&
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
const
IndexDataType
*
const
__restrict__
p_ws_indices_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
{
using
BlockwiseReduceWithIndex
=
PartitionedBlockwiseReductionWithIndex
<
AccDataType
,
IndexDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
AccumulationWithIndex
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
(
void
)
p_ws_indices_global
;
// LDS
__shared__
AccDataType
p_reduce_work_val_buffer
[
BlockSize
];
__shared__
IndexDataType
p_reduce_work_idx_buffer
[
BlockSize
];
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
out_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_indices_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_val_buffer
,
BlockSize
);
auto
reduce_work_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_idx_buffer
,
BlockSize
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_val_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_idx_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
,
true
>
accu_index_buf
;
const
auto
toReduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_1d_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
index_t
indexOffset
=
0
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zeroVal
;
accu_index_buf
(
I
)
=
0
;
});
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
const
index_t
toReduceTiles
=
(
toReduceLength
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
index_t
reducedTiles
=
0
;
do
{
// load the thread slice
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
// initialize the indices for the per-thread to-reduce values
in_thread_idx_buf
(
Number
<
offset
>
{})
=
indexOffset
+
thread_k_cluster_id
*
KThreadSliceSize
+
iK
();
// do element-wise pre-reduction operation
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
});
AccDataType
tmpValue
=
zeroVal
;
IndexDataType
tmpIndex
=
0
;
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
AccumulationWithIndex
::
Calculate
(
tmpValue
,
in_thread_val_buf
[
Number
<
offset
>
{}],
tmpIndex
,
in_thread_idx_buf
[
Number
<
offset
>
{}]);
});
BlockwiseReduceWithIndex
::
Reduce
(
reduce_work_val_buf
,
reduce_work_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
iM
),
tmpValue
,
accu_index_buf
(
iM
),
tmpIndex
);
});
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
indexOffset
+=
K_BlockTileSize
;
reducedTiles
++
;
}
while
(
reducedTiles
<
toReduceTiles
);
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
// for indiced operation, acc_elementwise_op shoud do nothing
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
if
constexpr
(
!
BetaIsZero
)
{
if
(
!
float_equal_zero
{}(
beta
))
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValueBuf
;
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValueBuf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValueBuf
[
I
])
*
beta
;
});
};
};
auto
threadwise_dst_val_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dst_idx_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
IndexDataType
,
IndexDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_dst_val_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid_desc_m
,
out_global_val_buf
);
threadwise_dst_idx_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_index_buf
,
out_grid_desc_m
,
out_global_idx_buf
);
}
};
__device__
static
void
RunSecondCallWithIndex
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
OutElementwiseOperation
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_ws_values_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
const
IndexDataType
*
const
__restrict__
p_ws_indices_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
{
static_assert
(
InSrcVectorDim
==
1
,
"InSrcVectorDim must be 1 for BlockwiseSecondCall, please check!"
);
using
BlockwiseReduceWithIndex
=
PartitionedBlockwiseReductionWithIndex
<
AccDataType
,
IndexDataType
,
BlockSize
,
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
AccumulationWithIndex
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
(
void
)
in_elementwise_op
;
// LDS
__shared__
AccDataType
p_reduce_work_val_buffer
[
BlockSize
];
__shared__
IndexDataType
p_reduce_work_idx_buffer
[
BlockSize
];
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
src_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ws_values_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
const
auto
src_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ws_indices_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
out_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_indices_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_val_buffer
,
BlockSize
);
auto
reduce_work_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_idx_buffer
,
BlockSize
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_val_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_idx_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
,
true
>
accu_index_buf
;
const
auto
toReduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_1d_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_val_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_src_idx_load
=
ThreadwiseTensorSliceTransfer_v2
<
IndexDataType
,
IndexDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zeroVal
;
accu_index_buf
(
I
)
=
0
;
});
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
const
index_t
toReduceTiles
=
(
toReduceLength
+
K_BlockTileSize
-
1
)
/
K_BlockTileSize
;
index_t
reducedTiles
=
0
;
do
{
// load the thread slice
threadwise_src_val_load
.
Run
(
in_grid_desc_m_k
,
src_global_val_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
threadwise_src_idx_load
.
Run
(
in_grid_desc_m_k
,
src_global_idx_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_idx_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
AccDataType
tmpValue
=
zeroVal
;
IndexDataType
tmpIndex
=
0
;
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
AccumulationWithIndex
::
Calculate
(
tmpValue
,
in_thread_val_buf
[
Number
<
offset
>
{}],
tmpIndex
,
in_thread_idx_buf
[
Number
<
offset
>
{}]);
});
BlockwiseReduceWithIndex
::
Reduce
(
reduce_work_val_buf
,
reduce_work_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
iM
),
tmpValue
,
accu_index_buf
(
iM
),
tmpIndex
);
});
threadwise_src_val_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_idx_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
reducedTiles
++
;
}
while
(
reducedTiles
<
toReduceTiles
);
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
// for indiced operation, acc_elementwise_op shoud do nothing
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
if
constexpr
(
!
BetaIsZero
)
{
if
(
!
float_equal_zero
{}(
beta
))
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValueBuf
;
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValueBuf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValueBuf
[
I
])
*
beta
;
});
};
};
auto
threadwise_dst_val_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dst_idx_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
IndexDataType
,
IndexDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_dst_val_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid_desc_m
,
out_global_val_buf
);
threadwise_dst_idx_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_index_buf
,
out_grid_desc_m
,
out_global_idx_buf
);
}
};
};
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock
_partial_reduce
.hpp
→
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp
View file @
6dfb4e78
...
...
@@ -23,75 +23,86 @@
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_
PARTIAL_REDUCE_
HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_
PARTIAL_REDUCE_
HPP
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_HPP
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_blockwise.hpp"
#include "reduction_functions_threadwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "cluster_descriptor.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
bool
NeedIndices
,
bool
OutputIndex
,
bool
HaveIndexInput
,
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InGridDesc_M_K
,
typename
Workspace
Desc_M
_K
,
typename
OutGrid
Desc_M
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
>
__global__
void
kernel_partial_reduce_multiblock
(
const
InGridDesc_M_K
in_grid_desc_m_k
,
const
WorkspaceDesc_M_K
workspace_desc_m_k
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
,
index_t
block_group_size
,
index_t
num_k_block_tile_iteration
,
const
InDataType
*
const
__restrict__
p_src_global
,
AccDataType
*
const
__restrict__
p_ws_values_global
,
IndexDataType
*
const
__restrict__
p_ws_indices_global
)
__global__
void
kernel_reduce_multiblock
(
const
InGridDesc_M_K
in_grid_desc_m_k
,
const
OutGridDesc_M
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
,
index_t
block_group_size
,
index_t
num_k_block_tile_iteration
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_value_global
,
const
IndexDataType
*
const
__restrict__
p_in_index_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_value_global
,
IndexDataType
*
const
__restrict__
p_out_index_global
)
{
if
constexpr
(
!
NeedIndices
)
if
constexpr
(
!
OutputIndex
)
{
(
void
)
p_in_index_global
;
(
void
)
p_out_index_global
;
GridwiseReduction
::
Run
(
in_grid_desc_m_k
,
workspace
_desc_m
_k
,
out_grid
_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
block_group_size
,
num_k_block_tile_iteration
,
p_src_global
,
p_ws_values_global
,
p_ws_indices_global
);
alpha
,
p_in_value_global
,
beta
,
p_out_value_global
);
}
else
{
GridwiseReduction
::
RunWithIndex
(
in_grid_desc_m_k
,
workspace_desc_m_k
,
in_elementwise_op
,
acc_elementwise_op
,
block_group_size
,
num_k_block_tile_iteration
,
p_src_global
,
p_ws_values_global
,
p_ws_indices_global
);
GridwiseReduction
::
template
RunWithIndex
<
HaveIndexInput
>(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
num_k_block_tile_iteration
,
alpha
,
p_in_value_global
,
p_in_index_global
,
beta
,
p_out_value_global
,
p_out_index_global
);
};
};
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InGridDesc_M_K
,
typename
Workspace
Desc_M
_K
,
typename
OutGrid
Desc_M
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
InMemoryDataOperationEnum
OutMemoryDataOperation
,
bool
PropagateNan
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
...
...
@@ -101,14 +112,13 @@ template <typename InDataType,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
GridwiseReduction_mk_to_m
k
_multiblock
_partial_reduce
struct
GridwiseReduction_mk_to_m_multiblock
{
static_assert
((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
),
static_assert
(((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
))
&&
(
MThreadSliceSize
%
OutDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
OutDstVectorSize
==
1
,
"OutDstVectorSize must be 1 for MultiBlockPartialReduce!"
);
static
constexpr
bool
reorder_thread_cluster
=
(
InSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
...
...
@@ -127,6 +137,19 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
,
ReduceOperation
,
PropagateNan
>
;
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
...
@@ -135,43 +158,30 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
using
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
__device__
static
void
Run
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
WorkspaceDesc_M_K
&
workspace
_desc_m
_k
,
const
OutGridDesc_M
&
out_grid
_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
index_t
block_group_size
,
index_t
num_k_block_tile_iteration
,
const
InDataType
*
const
__restrict__
p_src_global
,
AccDataType
*
const
__restrict__
p_ws_values_global
,
IndexDataType
*
const
__restrict__
p_ws_indices_global
)
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_value_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_value_global
)
{
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
,
ReduceOperation
,
PropagateNan
>
;
(
void
)
p_ws_indices_global
;
(
void
)
acc_elementwise_op
;
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
// LDS
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_
src
_global
,
const
auto
in_global_
val_
buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_
in_value
_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zero
Val
));
auto
workspace
_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_
ws
_value
s
_global
,
workspace
_desc_m
_k
.
GetElementSpaceSize
());
type_convert
<
InDataType
>
(
identity
Val
));
auto
out
_global_
val_
buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_
out
_value_global
,
out_grid
_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_buffer
,
BlockSize
);
...
...
@@ -181,7 +191,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zero
Val
;
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
identity
Val
;
});
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
...
...
@@ -221,7 +231,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
do
{
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
in_global_
val_
buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_buf
);
...
...
@@ -242,58 +252,97 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
reducedTiles
++
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
// Each block executes multiple parallel reductions on the LDS, and due to the using of
// vector_load, each block/thread is involved into multiple invarirant dimensions.
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
static_for
<
0
,
MThreadSliceSize
,
1
>
{}(
[
&
](
auto
I
)
{
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
accu_value_buf
(
I
));
});
constexpr
auto
reduced_data_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
1
>
{}));
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
auto
threadwise_workspace_store
=
if
(
block_group_size
==
0
&&
!
float_equal_zero
{}(
beta
))
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValueBuf
;
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValueBuf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValueBuf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
Acc
DataType
,
Out
DataType
,
decltype
(
reduced_data_desc
),
Workspace
Desc_M
_K
,
OutGrid
Desc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
,
1
>
,
Sequence
<
0
,
1
>
,
1
,
1
,
In
MemoryDataOperation
Enum
::
Set
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
Out
MemoryDataOperation
,
1
,
true
>
(
workspace
_desc_m
_k
,
out_grid
_desc_m
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_
workspace
_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
,
I0
),
accu_value_buf
,
workspace
_desc_m
_k
,
workspace
_global_buf
);
threadwise_
dst
_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid
_desc_m
,
out
_global_
val_
buf
);
}
};
template
<
bool
HaveIndexInput
>
__device__
static
void
RunWithIndex
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
WorkspaceDesc_M_K
&
workspace_desc_m_k
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
index_t
block_group_size
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
,
index_t
num_k_block_tile_iteration
,
const
InDataType
*
const
__restrict__
p_src_global
,
AccDataType
*
const
__restrict__
p_ws_values_global
,
IndexDataType
*
const
__restrict__
p_ws_indices_global
)
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_value_global
,
const
IndexDataType
*
const
__restrict__
p_in_index_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_value_global
,
IndexDataType
*
const
__restrict__
p_out_index_global
)
{
using
BlockwiseReduceWithIndex
=
PartitionedBlockwiseReductionWithIndex
<
AccDataType
,
IndexDataType
,
BlockSize
,
ThreadCluster
Lengths_M_K
,
Sequence
<
M
ThreadCluster
Size
,
KThreadClusterSize
>
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
...
...
@@ -303,22 +352,24 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
AccDataType
,
IndexDataType
>
;
(
void
)
acc_elementwise_op
;
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
(
void
)
in_elementwise_op
;
// LDS
__shared__
AccDataType
p_reduce_work_val_buffer
[
BlockSize
];
__shared__
i
ndex
_t
p_reduce_work_idx_buffer
[
BlockSize
];
__shared__
I
ndex
DataType
p_reduce_work_idx_buffer
[
BlockSize
];
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_src_global
,
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
auto
workspace_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ws_values_global
,
workspace_desc_m_k
.
GetElementSpaceSize
());
auto
workspace_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ws_indices_global
,
workspace_desc_m_k
.
GetElementSpaceSize
());
type_convert
<
InDataType
>
(
identityVal
));
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_value_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
out_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_index_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_val_buffer
,
BlockSize
);
...
...
@@ -327,6 +378,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_val_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
...
...
@@ -336,10 +388,8 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
,
true
>
accu_index_buf
;
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
block_group_size
;
const
index_t
block_local_id
=
block_global_id
%
block_group_size
;
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_1d_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
...
...
@@ -347,138 +397,239 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
using
ThreadBufferLengths
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
auto
threadwise_src_val_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
index_t
indexOffset
=
block_local_id
*
reduceSizePerBlock
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zero
Val
;
accu_value_buf
(
I
)
=
identity
Val
;
accu_index_buf
(
I
)
=
0
;
});
index_t
reducedTiles
=
0
;
do
{
// load the thread slice
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
// initialize the indices for the per-thread to-reduce values
in_thread_idx_buf
(
Number
<
offset
>
{})
=
indexOffset
+
thread_k_cluster_id
*
KThreadSliceSize
+
iK
();
index_t
reducedTiles
=
0
;
// do element-wise pre-reduction operation
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
if
constexpr
(
HaveIndexInput
)
{
auto
threadwise_src_idx_load
=
ThreadwiseTensorSliceTransfer_v2
<
IndexDataType
,
IndexDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
do
{
// load the thread slice
threadwise_src_val_load
.
Run
(
in_grid_desc_m_k
,
in_global_val_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
threadwise_src_idx_load
.
Run
(
in_grid_desc_m_k
,
in_global_idx_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_idx_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
AccDataType
tmpValue
=
identityVal
;
IndexDataType
tmpIndex
=
0
;
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
AccumulationWithIndex
::
Calculate
(
tmpValue
,
in_thread_val_buf
[
Number
<
offset
>
{}],
tmpIndex
,
in_thread_idx_buf
[
Number
<
offset
>
{}]);
});
BlockwiseReduceWithIndex
::
Reduce
(
reduce_work_val_buf
,
reduce_work_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
iM
),
tmpValue
,
accu_index_buf
(
iM
),
tmpIndex
);
});
AccDataType
tmpValue
=
zeroVal
;
IndexDataType
tmpIndex
=
0
;
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
threadwise_src_val_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_idx_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
AccumulationWithIndex
::
Calculate
(
tmpValue
,
in_thread_val_buf
[
Number
<
offset
>
{}],
tmpIndex
,
in_thread_idx_buf
[
Number
<
offset
>
{}]);
reducedTiles
++
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
}
else
{
index_t
indexOffset
=
0
;
do
{
// load the thread slice
threadwise_src_val_load
.
Run
(
in_grid_desc_m_k
,
in_global_val_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
// initialize the indices for the per-thread to-reduce values
in_thread_idx_buf
(
Number
<
offset
>
{})
=
indexOffset
+
thread_k_cluster_id
*
KThreadSliceSize
+
iK
();
// do element-wise pre-reduction operation
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
});
AccDataType
tmpValue
=
identityVal
;
IndexDataType
tmpIndex
=
0
;
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
AccumulationWithIndex
::
Calculate
(
tmpValue
,
in_thread_val_buf
[
Number
<
offset
>
{}],
tmpIndex
,
in_thread_idx_buf
[
Number
<
offset
>
{}]);
});
BlockwiseReduceWithIndex
::
Reduce
(
reduce_work_val_buf
,
reduce_work_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
iM
),
tmpValue
,
accu_index_buf
(
iM
),
tmpIndex
);
});
BlockwiseReduceWithIndex
::
Reduce
(
reduce_work_val_buf
,
reduce_work_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
iM
),
tmpValue
,
accu_index_buf
(
iM
),
tmpIndex
);
});
threadwise_src_val_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
indexOffset
+=
K_BlockTileSize
;
reducedTiles
++
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
};
indexOffset
+=
K_BlockTileSize
;
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{}
;
reducedTiles
++
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
// for indiced operation, acc_elementwise_op shoud do nothing
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
constexpr
auto
reduced_data_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
1
>
{}));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
auto
threadwise_workspace_val_store
=
if
(
!
float_equal_zero
{}(
beta
))
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValueBuf
;
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValueBuf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValueBuf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_val_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
Acc
DataType
,
Out
DataType
,
decltype
(
reduced_data_desc
),
Workspace
Desc_M
_K
,
OutGrid
Desc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
,
1
>
,
Sequence
<
0
,
1
>
,
1
,
1
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
workspace_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_
workspace
_idx_store
=
auto
threadwise_
dst
_idx_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
IndexDataType
,
IndexDataType
,
decltype
(
reduced_data_desc
),
Workspace
Desc_M
_K
,
OutGrid
Desc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
,
1
>
,
Sequence
<
0
,
1
>
,
1
,
1
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
workspace_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
out_grid_desc_m
,
make_multi_index
(
block_global_1d_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_
workspace
_val_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
,
I0
),
accu_value_buf
,
workspace
_desc_m
_k
,
workspace
_global_val_buf
);
threadwise_
workspace
_idx_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
,
I0
),
accu_index_buf
,
workspace
_desc_m
_k
,
workspace
_global_idx_buf
);
threadwise_
dst
_val_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid
_desc_m
,
out
_global_val_buf
);
threadwise_
dst
_idx_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_index_buf
,
out_grid
_desc_m
,
out
_global_idx_buf
);
}
};
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
deleted
100644 → 0
View file @
397a68f2
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_ATOMIC_ADD_HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_ATOMIC_ADD_HPP
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_blockwise.hpp"
#include "reduction_functions_threadwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InGridDesc_M_K
,
typename
OutGridDesc_M
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
>
__global__
void
kernel_reduce_multiblock_atocmi_add
(
const
InGridDesc_M_K
in_grid_desc_m_k
,
const
OutGridDesc_M
out_grid_desc_m
,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
,
index_t
block_group_size
,
index_t
num_k_block_tile_iteration
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
OutDataType
*
const
__restrict__
p_out_global
)
{
GridwiseReduction
::
Run
(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
block_group_size
,
num_k_block_tile_iteration
,
alpha
,
p_in_global
,
p_out_global
);
};
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InGridDesc_M_K
,
typename
OutGridDesc_M
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
bool
PropagateNan
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
index_t
InSrcVectorSize
,
index_t
OutDstVectorSize
>
struct
GridwiseReduction_mk_to_m_multiblock_atomic_add
{
static_assert
(((
InSrcVectorDim
==
0
&&
MThreadSliceSize
%
InSrcVectorSize
==
0
)
||
(
InSrcVectorDim
==
1
&&
KThreadSliceSize
%
InSrcVectorSize
==
0
))
&&
(
MThreadSliceSize
%
OutDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static
constexpr
bool
reorder_thread_cluster
=
(
InSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
,
ReduceOperation
,
PropagateNan
>
;
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
using
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
__device__
static
void
Run
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
index_t
block_group_size
,
index_t
num_k_block_tile_iteration
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
OutDataType
*
const
__restrict__
p_out_global
)
{
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
// LDS
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
auto
out_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_buffer
,
BlockSize
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zeroVal
;
});
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
block_group_size
;
const
index_t
block_local_id
=
block_global_id
%
block_group_size
;
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
using
ThreadBufferLengths
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
thread_k_cluster_id
*
KThreadSliceSize
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
K_BlockTileSize
);
index_t
reducedTiles
=
0
;
do
{
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
in_elementwise_op
(
in_thread_buf
(
Number
<
offset
>
{}),
in_thread_buf
(
Number
<
offset
>
{}));
});
});
ThreadwiseReduce
::
Reduce
(
in_thread_buf
,
accu_value_buf
);
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
reducedTiles
++
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
// Each block executes multiple parallel reductions on the LDS, and by atomic-adding its
// reduced output to the global location corresponding to each invariant dimension to get a
// consistent reduced result for that invariant dimension. due to the using of vector_load,
// each block/thread is involved into multiple invarirant dimensions.
static_for
<
0
,
MThreadSliceSize
,
1
>
{}(
[
&
](
auto
I
)
{
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
accu_value_buf
(
I
));
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
(
thread_k_cluster_id
==
0
)
{
acc_elementwise_op
(
accu_value_buf
(
I
),
accu_value_buf
(
I
));
accu_value_buf
(
I
)
*=
alpha
;
}
});
if
(
thread_k_cluster_id
==
0
)
{
auto
threadwise_dst_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
AtomicAdd
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_dst_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid_desc_m
,
out_global_buf
);
}
};
};
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp
View file @
6dfb4e78
...
...
@@ -37,7 +37,8 @@
namespace
ck
{
template
<
typename
GridwiseReduction
,
bool
NeedIndices
,
bool
OutputIndex
,
bool
HaveIndexInput
,
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
...
...
@@ -51,34 +52,35 @@ __global__ void kernel_reduce_threadwise(const InGridDesc_M_K in_grid_desc_m_k,
const
InElementwiseOperation
in_elementwise_op
,
const
AccElementwiseOperation
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
const
InDataType
*
const
__restrict__
p_in_value_global
,
const
IndexDataType
*
const
__restrict__
p_in_index_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
IndexDataType
*
const
__restrict__
p_
indices
_global
)
OutDataType
*
const
__restrict__
p_out_
value_
global
,
IndexDataType
*
const
__restrict__
p_
out_index
_global
)
{
if
constexpr
(
!
NeedIndices
)
if
constexpr
(
!
OutputIndex
)
{
GridwiseReduction
::
Run
(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
p_in_
value_
global
,
beta
,
p_out_global
,
p_indices_global
);
p_out_value_global
);
}
else
{
GridwiseReduction
::
RunWithIndices
(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_global
,
beta
,
p_out_global
,
p_indices_global
);
GridwiseReduction
::
template
RunWithIndex
<
HaveIndexInput
>(
in_grid_desc_m_k
,
out_grid_desc_m
,
in_elementwise_op
,
acc_elementwise_op
,
alpha
,
p_in_value_global
,
p_in_index_global
,
beta
,
p_out_value_global
,
p_out_index_global
);
};
};
...
...
@@ -91,11 +93,9 @@ template <typename InDataType,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
InMemoryDataOperationEnum
OutMemoryDataOperation
,
bool
PropagateNan
,
bool
BetaIsZero
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
InSrcVectorDim
,
...
...
@@ -125,10 +125,9 @@ struct GridwiseReduction_mk_to_m_threadwise
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
const
InDataType
*
const
__restrict__
p_in_
value_
global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
OutDataType
*
const
__restrict__
p_out_value_global
)
{
using
ThreadwiseReduce
=
ThreadwiseReduction
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
...
...
@@ -136,21 +135,21 @@ struct GridwiseReduction_mk_to_m_threadwise
ReduceOperation
,
PropagateNan
>
;
(
void
)
p_indices_global
;
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
()
;
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zero
Val
));
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identity
Val
));
auto
dst_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
p_out_
value_
global
,
out_grid_desc_m
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
accu_value_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zero
Val
;
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
identity
Val
;
});
const
auto
toReduceLength
=
in_grid_desc_m_k
.
GetLength
(
Number
<
1
>
{});
...
...
@@ -160,28 +159,29 @@ struct GridwiseReduction_mk_to_m_threadwise
index_t
thread_global_1d_id
=
get_block_1d_id
()
*
BlockSize
+
get_thread_local_1d_id
();
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
,
0
));
auto
threadwise_src_val_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
,
0
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
KThreadSliceSize
);
index_t
reducedLength
=
0
;
do
{
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_buf
);
threadwise_src_
val_
load
.
Run
(
in_grid_desc_m_k
,
in_global_
val_
buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
...
...
@@ -194,7 +194,7 @@ struct GridwiseReduction_mk_to_m_threadwise
ThreadwiseReduce
::
Reduce
(
in_thread_buf
,
accu_value_buf
);
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_
val_
load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
reducedLength
+=
KThreadSliceSize
;
}
while
(
reducedLength
<
toReduceLength
);
...
...
@@ -207,68 +207,65 @@ struct GridwiseReduction_mk_to_m_threadwise
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
if
constexpr
(
!
BetaIsZero
)
if
(
!
float_equal_zero
{}(
beta
)
)
{
if
(
!
float_equal_zero
{}(
beta
))
{
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
1
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValue_buf
;
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
dst_global_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValue_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValue_buf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
1
,
1
,
true
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValue_buf
;
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
dst_global_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValue_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValue_buf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dst_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
OutDataType
,
decltype
(
reduced_data_desc
),
OutGridDesc_M
,
PassThroughOp
,
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
OutMemoryDataOperation
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
),
PassThroughOp
{});
threadwise_dst_store
.
Run
(
reduced_data_desc
,
make_tuple
(
I0
),
accu_value_buf
,
out_grid_desc_m
,
dst_global_buf
);
};
__device__
static
void
RunWithIndices
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_global
,
IndexDataType
*
const
__restrict__
p_indices_global
)
template
<
bool
HaveIndexInput
>
__device__
static
void
RunWithIndex
(
const
InGridDesc_M_K
&
in_grid_desc_m_k
,
const
OutGridDesc_M
&
out_grid_desc_m
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
,
AccDataType
alpha
,
const
InDataType
*
const
__restrict__
p_in_value_global
,
const
IndexDataType
*
const
__restrict__
p_in_index_global
,
AccDataType
beta
,
OutDataType
*
const
__restrict__
p_out_value_global
,
IndexDataType
*
const
__restrict__
p_out_index_global
)
{
using
ThreadwiseReduceWithIndex
=
ThreadwiseReductionWithIndex
<
AccDataType
,
IndexDataType
,
...
...
@@ -279,14 +276,19 @@ struct GridwiseReduction_mk_to_m_threadwise
(
void
)
acc_elementwise_op
;
const
auto
zeroVal
=
ReduceOperation
::
GetReductionZeroVal
();
const
auto
identityVal
=
ReduceOperation
::
GetIdentityValue
();
const
auto
in_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_value_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
identityVal
));
const
auto
in_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_index_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
());
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
,
in_grid_desc_m_k
.
GetElementSpaceSize
(),
type_convert
<
InDataType
>
(
zeroVal
));
auto
out_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_out_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
p_out_
value_
global
,
out_grid_desc_m
.
GetElementSpaceSize
());
auto
out_global_idx_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_
indices
_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
p_
out_index
_global
,
out_grid_desc_m
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
in_thread_val_buf
;
...
...
@@ -301,7 +303,7 @@ struct GridwiseReduction_mk_to_m_threadwise
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
IndexDataType
,
MThreadSliceSize
,
true
>
accu_index_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
=
zero
Val
;
accu_value_buf
(
I
)
=
identity
Val
;
accu_index_buf
(
I
)
=
0
;
});
...
...
@@ -313,50 +315,105 @@ struct GridwiseReduction_mk_to_m_threadwise
index_t
thread_global_1d_id
=
get_block_1d_id
()
*
BlockSize
+
get_thread_local_1d_id
();
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
,
0
));
auto
threadwise_src_val_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
,
0
));
constexpr
auto
in_thread_copy_step
=
make_multi_index
(
0
,
KThreadSliceSize
);
index_t
indexStart
=
0
;
index_t
reducedLength
=
0
;
do
if
constexpr
(
HaveIndexInput
)
{
threadwise_src_load
.
Run
(
in_grid_desc_m_k
,
in_global_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
auto
threadwise_src_idx_load
=
ThreadwiseTensorSliceTransfer_v2
<
IndexDataType
,
IndexDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
,
0
));
do
{
threadwise_src_val_load
.
Run
(
in_grid_desc_m_k
,
in_global_val_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
threadwise_src_idx_load
.
Run
(
in_grid_desc_m_k
,
in_global_idx_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_idx_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
});
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
ThreadwiseReduceWithIndex
::
Reduce
(
in_thread_val_buf
,
in_thread_idx_buf
,
accu_value_buf
,
accu_index_buf
);
in_thread_idx_buf
(
Number
<
offset
>
{})
=
indexStart
+
iK
();
threadwise_src_val_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_idx_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
indexStart
+=
KThreadSliceSize
;
reducedLength
+=
KThreadSliceSize
;
}
while
(
reducedLength
<
toReduceLength
);
}
else
{
do
{
threadwise_src_val_load
.
Run
(
in_grid_desc_m_k
,
in_global_val_buf
,
thread_buffer_desc
,
make_tuple
(
I0
,
I0
),
in_thread_val_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
// do element-wise pre-reduction operation
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset
=
thread_buffer_desc
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
in_thread_idx_buf
(
Number
<
offset
>
{})
=
indexStart
+
iK
();
in_elementwise_op
(
in_thread_val_buf
(
Number
<
offset
>
{}),
in_thread_val_buf
(
Number
<
offset
>
{}));
});
});
});
ThreadwiseReduceWithIndex
::
Reduce
(
in_thread_val_buf
,
in_thread_idx_buf
,
accu_value_buf
,
accu_index_buf
);
ThreadwiseReduceWithIndex
::
Reduce
(
in_thread_val_buf
,
in_thread_idx_buf
,
accu_value_buf
,
accu_index_buf
);
threadwise_src_load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
threadwise_src_
val_
load
.
MoveSrcSliceWindow
(
in_grid_desc_m_k
,
in_thread_copy_step
);
indexStart
+=
KThreadSliceSize
;
reducedLength
+=
KThreadSliceSize
;
}
while
(
reducedLength
<
toReduceLength
);
indexStart
+=
KThreadSliceSize
;
reducedLength
+=
KThreadSliceSize
;
}
while
(
reducedLength
<
toReduceLength
);
};
// for indiced operation, acc_elementwise_op shoud do nothing
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
...
...
@@ -367,36 +424,32 @@ struct GridwiseReduction_mk_to_m_threadwise
constexpr
auto
reduced_data_desc
=
ThreadReduceDstDesc_M
{};
if
constexpr
(
!
BetaIsZero
)
if
(
!
float_equal_zero
{}(
beta
)
)
{
if
(
!
float_equal_zero
{}(
beta
))
{
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
1
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValue_buf
;
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValue_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValue_buf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_load
=
ThreadwiseTensorSliceTransfer_v2
<
OutDataType
,
OutDataType
,
OutGridDesc_M
,
decltype
(
reduced_data_desc
),
Sequence
<
MThreadSliceSize
>
,
Sequence
<
0
>
,
0
,
1
,
1
,
false
>
(
out_grid_desc_m
,
make_multi_index
(
thread_global_1d_id
*
MThreadSliceSize
));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
OutDataType
,
MThreadSliceSize
,
true
>
priorDstValue_buf
;
threadwise_dst_load
.
Run
(
out_grid_desc_m
,
out_global_val_buf
,
reduced_data_desc
,
make_tuple
(
I0
),
priorDstValue_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
accu_value_buf
(
I
)
+=
type_convert
<
AccDataType
>
(
priorDstValue_buf
[
I
])
*
beta
;
});
};
auto
threadwise_dst_val_store
=
...
...
@@ -409,7 +462,7 @@ struct GridwiseReduction_mk_to_m_threadwise
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
In
MemoryDataOperation
Enum
::
Set
,
Out
MemoryDataOperation
,
1
,
false
>
(
out_grid_desc_m
,
...
...
@@ -426,7 +479,7 @@ struct GridwiseReduction_mk_to_m_threadwise
Sequence
<
0
>
,
0
,
OutDstVectorSize
,
In
MemoryDataOperation
Enum
::
Set
,
Out
MemoryDataOperation
,
1
,
false
>
(
out_grid_desc_m
,
...
...
include/ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp
0 → 100644
View file @
6dfb4e78
#pragma once
#include "cluster_descriptor.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace
ck
{
template
<
typename
Gridwise5AryEltwise
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
,
typename
EDataType
,
typename
FDataType
,
typename
AGridDesc_M
,
typename
BGridDesc_M
,
typename
CGridDesc_M
,
typename
DGridDesc_M
,
typename
EGridDesc_M
,
typename
FGridDesc_M
,
typename
ElementwiseFunctor
>
__global__
void
kernel_5ary_elementwise_1d
(
const
ADataType
*
__restrict__
p_a_global
,
const
BDataType
*
__restrict__
p_b_global
,
const
CDataType
*
__restrict__
p_c_global
,
const
DDataType
*
__restrict__
p_d_global
,
const
EDataType
*
__restrict__
p_e_global
,
FDataType
*
__restrict__
p_f_global
,
const
AGridDesc_M
a_grid_desc_m
,
const
BGridDesc_M
b_grid_desc_m
,
const
CGridDesc_M
c_grid_desc_m
,
const
DGridDesc_M
d_grid_desc_m
,
const
EGridDesc_M
e_grid_desc_m
,
const
FGridDesc_M
f_grid_desc_m
,
const
ElementwiseFunctor
functor
)
{
Gridwise5AryEltwise
::
Run
(
p_a_global
,
p_b_global
,
p_c_global
,
p_d_global
,
p_e_global
,
p_f_global
,
a_grid_desc_m
,
b_grid_desc_m
,
c_grid_desc_m
,
d_grid_desc_m
,
e_grid_desc_m
,
f_grid_desc_m
,
functor
);
}
// TODO - implement n-ary Elemenetwise_1D, tuple of inputs and tuple of outputs
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
,
typename
EDataType
,
typename
FDataType
,
typename
ComputeDataType
,
typename
AGridDesc_M
,
typename
BGridDesc_M
,
typename
CGridDesc_M
,
typename
DGridDesc_M
,
typename
EGridDesc_M
,
typename
FGridDesc_M
,
typename
ElementwiseFunctor
,
index_t
MPerThread
,
index_t
AScalarPerVector
,
index_t
BScalarPerVector
,
index_t
CScalarPerVector
,
index_t
DScalarPerVector
,
index_t
EScalarPerVector
,
index_t
FScalarPerVector
>
struct
Gridwise5AryElementwise_1D
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
thread_desc_m
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MPerThread
>
{}));
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
static
__device__
auto
CalculateElementwiseIndex
()
{
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
return
make_multi_index
(
global_thread_id
*
MPerThread
);
}
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_global
,
const
BDataType
*
__restrict__
p_b_global
,
const
CDataType
*
__restrict__
p_c_global
,
const
DDataType
*
__restrict__
p_d_global
,
const
EDataType
*
__restrict__
p_e_global
,
FDataType
*
__restrict__
p_f_global
,
const
AGridDesc_M
a_grid_desc_m
,
const
BGridDesc_M
b_grid_desc_m
,
const
CGridDesc_M
c_grid_desc_m
,
const
DGridDesc_M
d_grid_desc_m
,
const
EGridDesc_M
e_grid_desc_m
,
const
FGridDesc_M
f_grid_desc_m
,
const
ElementwiseFunctor
functor
)
{
const
auto
a_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_global
,
a_grid_desc_m
.
GetElementSpaceSize
());
const
auto
b_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_global
,
b_grid_desc_m
.
GetElementSpaceSize
());
const
auto
c_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_global
,
c_grid_desc_m
.
GetElementSpaceSize
());
const
auto
d_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d_global
,
d_grid_desc_m
.
GetElementSpaceSize
());
const
auto
e_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_global
,
e_grid_desc_m
.
GetElementSpaceSize
());
auto
f_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_f_global
,
f_grid_desc_m
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
a_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
b_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
c_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
d_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
e_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
f_thread_buf
;
const
auto
thread_store_global_offset
=
CalculateElementwiseIndex
();
auto
a_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
ADataType
,
ComputeDataType
,
AGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
AScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
a_grid_desc_m
,
thread_store_global_offset
};
auto
b_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
ComputeDataType
,
BGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
BScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
b_grid_desc_m
,
thread_store_global_offset
};
auto
c_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
CDataType
,
ComputeDataType
,
CGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
CScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
c_grid_desc_m
,
thread_store_global_offset
};
auto
d_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
DDataType
,
ComputeDataType
,
DGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
DScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
d_grid_desc_m
,
thread_store_global_offset
};
auto
e_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
EDataType
,
ComputeDataType
,
EGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
EScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
e_grid_desc_m
,
thread_store_global_offset
};
auto
f_global_write
=
ThreadwiseTensorSliceTransfer_v1r3
<
ComputeDataType
,
FDataType
,
decltype
(
thread_desc_m
),
FGridDesc_M
,
PassThrough
,
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// DstVectorDim
FScalarPerVector
,
// ScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
false
>
{
f_grid_desc_m
,
thread_store_global_offset
,
PassThrough
{}};
const
index_t
blockSize
=
get_block_size
();
const
index_t
blockPerGrid
=
get_grid_size
();
const
auto
M
=
c_grid_desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
blockPerGrid
*
blockSize
*
MPerThread
;
const
auto
loop_step_index
=
make_multi_index
(
loop_step
);
index_t
num_iter
=
M
/
(
loop_step
);
do
{
// read and process MPerThread elements
a_global_load
.
Run
(
a_grid_desc_m
,
a_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
a_thread_buf
);
b_global_load
.
Run
(
b_grid_desc_m
,
b_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
b_thread_buf
);
c_global_load
.
Run
(
c_grid_desc_m
,
c_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
c_thread_buf
);
d_global_load
.
Run
(
d_grid_desc_m
,
d_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
d_thread_buf
);
e_global_load
.
Run
(
e_grid_desc_m
,
e_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
e_thread_buf
);
static_for
<
0
,
MPerThread
,
1
>
{}([
&
](
auto
m
)
{
constexpr
auto
offset
=
thread_desc_m
.
CalculateOffset
(
make_tuple
(
m
));
functor
(
f_thread_buf
(
Number
<
offset
>
{}),
a_thread_buf
(
Number
<
offset
>
{}),
b_thread_buf
(
Number
<
offset
>
{}),
c_thread_buf
(
Number
<
offset
>
{}),
d_thread_buf
(
Number
<
offset
>
{}),
e_thread_buf
(
Number
<
offset
>
{}));
});
f_global_write
.
Run
(
thread_desc_m
,
make_tuple
(
I0
),
// SrcSliceOriginIdx
f_thread_buf
,
f_grid_desc_m
,
f_global_buf
);
a_global_load
.
MoveSrcSliceWindow
(
a_grid_desc_m
,
loop_step_index
);
b_global_load
.
MoveSrcSliceWindow
(
b_grid_desc_m
,
loop_step_index
);
c_global_load
.
MoveSrcSliceWindow
(
c_grid_desc_m
,
loop_step_index
);
d_global_load
.
MoveSrcSliceWindow
(
d_grid_desc_m
,
loop_step_index
);
e_global_load
.
MoveSrcSliceWindow
(
e_grid_desc_m
,
loop_step_index
);
f_global_write
.
MoveDstSliceWindow
(
f_grid_desc_m
,
loop_step_index
);
}
while
(
--
num_iter
);
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp
0 → 100644
View file @
6dfb4e78
#pragma once
#include "cluster_descriptor.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace
ck
{
template
<
typename
GridwiseBinEltwise
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AGridDesc_M
,
typename
BGridDesc_M
,
typename
CGridDesc_M
,
typename
ElementwiseFunctor
>
__global__
void
kernel_binary_elementwise_1d
(
const
ADataType
*
__restrict__
p_a_global
,
const
BDataType
*
__restrict__
p_b_global
,
CDataType
*
__restrict__
p_c_global
,
const
AGridDesc_M
a_grid_desc_m
,
const
BGridDesc_M
b_grid_desc_m
,
const
CGridDesc_M
c_grid_desc_m
,
const
ElementwiseFunctor
functor
)
{
GridwiseBinEltwise
::
Run
(
p_a_global
,
p_b_global
,
p_c_global
,
a_grid_desc_m
,
b_grid_desc_m
,
c_grid_desc_m
,
functor
);
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ComputeDataType
,
typename
AGridDesc_M
,
typename
BGridDesc_M
,
typename
CGridDesc_M
,
typename
ElementwiseFunctor
,
index_t
MPerThread
,
index_t
AScalarPerVector
,
index_t
BScalarPerVector
,
index_t
CScalarPerVector
>
struct
GridwiseBinaryElementwise_1D
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
thread_desc_m
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MPerThread
>
{}));
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
static
__device__
auto
CalculateElementwiseIndex
()
{
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
return
make_multi_index
(
global_thread_id
*
MPerThread
);
}
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_global
,
const
BDataType
*
__restrict__
p_b_global
,
CDataType
*
__restrict__
p_c_global
,
const
AGridDesc_M
a_grid_desc_m
,
const
BGridDesc_M
b_grid_desc_m
,
const
CGridDesc_M
c_grid_desc_m
,
const
ElementwiseFunctor
functor
)
{
const
auto
a_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_global
,
a_grid_desc_m
.
GetElementSpaceSize
());
const
auto
b_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_global
,
b_grid_desc_m
.
GetElementSpaceSize
());
auto
c_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_global
,
c_grid_desc_m
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
a_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
b_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MPerThread
,
true
>
c_thread_buf
;
const
auto
thread_store_global_offset
=
CalculateElementwiseIndex
();
auto
a_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
ADataType
,
ComputeDataType
,
AGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
AScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
a_grid_desc_m
,
thread_store_global_offset
};
auto
b_global_load
=
ThreadwiseTensorSliceTransfer_v2
<
BDataType
,
ComputeDataType
,
BGridDesc_M
,
decltype
(
thread_desc_m
),
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// SrcVectorDim
BScalarPerVector
,
// ScalarPerVector
1
,
// SrcScalarStrideInVector
false
>
{
b_grid_desc_m
,
thread_store_global_offset
};
auto
c_global_write
=
ThreadwiseTensorSliceTransfer_v1r3
<
ComputeDataType
,
CDataType
,
decltype
(
thread_desc_m
),
CGridDesc_M
,
PassThrough
,
Sequence
<
MPerThread
>
,
// SliceLengths
Sequence
<
0
>
,
// DimAccessOrder
0
,
// DstVectorDim
CScalarPerVector
,
// ScalarPerVector
InMemoryDataOperationEnum
::
Set
,
1
,
// DstScalarStrideInVector
false
>
{
c_grid_desc_m
,
thread_store_global_offset
,
PassThrough
{}};
const
index_t
blockSize
=
get_block_size
();
const
index_t
blockPerGrid
=
get_grid_size
();
const
auto
M
=
c_grid_desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
blockPerGrid
*
blockSize
*
MPerThread
;
const
auto
loop_step_index
=
make_multi_index
(
loop_step
);
index_t
num_iter
=
M
/
(
loop_step
);
do
{
// read and process MPerThread elements
a_global_load
.
Run
(
a_grid_desc_m
,
a_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
a_thread_buf
);
b_global_load
.
Run
(
b_grid_desc_m
,
b_global_buf
,
thread_desc_m
,
make_tuple
(
I0
),
b_thread_buf
);
static_for
<
0
,
MPerThread
,
1
>
{}([
&
](
auto
m
)
{
constexpr
auto
offset
=
thread_desc_m
.
CalculateOffset
(
make_tuple
(
m
));
functor
(
c_thread_buf
(
Number
<
offset
>
{}),
a_thread_buf
(
Number
<
offset
>
{}),
b_thread_buf
(
Number
<
offset
>
{}));
});
c_global_write
.
Run
(
thread_desc_m
,
make_tuple
(
I0
),
// SrcSliceOriginIdx
c_thread_buf
,
c_grid_desc_m
,
c_global_buf
);
a_global_load
.
MoveSrcSliceWindow
(
a_grid_desc_m
,
loop_step_index
);
b_global_load
.
MoveSrcSliceWindow
(
b_grid_desc_m
,
loop_step_index
);
c_global_write
.
MoveDstSliceWindow
(
c_grid_desc_m
,
loop_step_index
);
}
while
(
--
num_iter
);
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl
ops
_v1r3.hpp
→
include/ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp
View file @
6dfb4e78
#ifndef CK_GRIDWISE_GEMM_V1R3_HPP
#define CK_GRIDWISE_GEMM_V1R3_HPP
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_dlops_v2r3.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_dl_v2r3.hpp"
#include "blockwise_tensor_slice_transfer_v5r1.hpp"
#include "threadwise_tensor_slice_transfer
_v2
.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
A
K0M0M1K1
GridDesc
,
typename
B
K0N0N1K1
GridDesc
,
typename
CM0M10M11N0N10N11
GridDesc
,
typename
C
Block
IdToM0N0BlockClusterAdaptor
,
typename
AGridDesc
_K0_M0_M1_K1
,
typename
BGridDesc
_K0_N0_N1_K1
,
typename
C
GridDesc_
M0
_
M10
_
M11
_
N0
_
N10
_
N11
,
typename
Block
2CTileMap
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_dlops_v1r3
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AK0M0M1K1GridDesc
a_k0_m0_m1_k1_grid_desc
,
const
BK0N0N1K1GridDesc
b_k0_n0_n1_k1_grid_desc
,
const
CM0M10M11N0N10N11GridDesc
c_m0_m10_m11_n0_n10_n11_grid_desc
,
const
CBlockIdToM0N0BlockClusterAdaptor
cblockid_to_m0_n0_block_cluster_adaptor
)
kernel_gemm_dl_v1r3
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1
,
const
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
c_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
)
{
constexpr
index_t
shared_block_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatAB
);
...
...
@@ -43,10 +43,10 @@ __global__ void
p_b_grid
,
p_c_grid
,
p_shared_block
,
a_k0_m0_m1_k1
_grid_desc
,
b_k0_n0_n1_k1
_grid_desc
,
c_m0_m10_m11_n0_n10_n11
_grid_desc
,
c
block
id_to_m0_n0_block_cluster_adaptor
,
a_
grid_desc_
k0_m0_m1_k1
,
b_
grid_desc_
k0_n0_n1_k1
,
c_
grid_desc_
m0_m10_m11_n0_n10_n11
,
block
_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
}
...
...
@@ -56,12 +56,12 @@ template <index_t BlockSize,
typename
FloatAcc
,
typename
FloatC
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
A
K0MK1
GridDesc
,
typename
B
K0NK1
GridDesc
,
typename
C
MN
GridDesc
,
index_t
MPerBlock
M1
,
index_t
NPerBlock
N1
,
index_t
KPerBlock
,
typename
AGridDesc
_K0_M_K1
,
typename
BGridDesc
_K0_N_K1
,
typename
CGridDesc
_M_N
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K
0
PerBlock
,
index_t
M1PerThreadM111
,
index_t
N1PerThreadN111
,
index_t
KPerThread
,
...
...
@@ -83,13 +83,8 @@ template <index_t BlockSize,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
,
typename
AGridStepHacks
,
typename
BGridStepHacks
,
typename
CGridStepHacks
,
typename
AGridMoveSliceWindowStepHacks
,
typename
BGridMoveSliceWindowStepHacks
>
struct
GridwiseGemmDlops_km_kn_mn_v1r3
index_t
CThreadTransferDstScalarPerVector
>
struct
GridwiseGemmDl_km_kn_mn_v1r3
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
...
...
@@ -97,7 +92,7 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
static
constexpr
auto
I3
=
Number
<
3
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
A
K0MK1
GridDesc
{}.
GetLength
(
I2
);
static
constexpr
auto
K1
=
AGridDesc
_K0_M_K1
{}.
GetLength
(
I2
);
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
...
...
@@ -106,112 +101,112 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_
k_m_
block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
MPerBlock
M1
>
{},
K1
),
max_lds_align
);
constexpr
auto
a_block_desc
_k_m
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K
0
PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_
k_n_
block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
NPerBlock
N1
>
{},
K1
),
max_lds_align
);
constexpr
auto
b_block_desc
_k_n
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K
0
PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_aligned_space_size
=
math
::
integer_least_multiple
(
a_
k_m_
block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
math
::
integer_least_multiple
(
a_block_desc
_k_m
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_aligned_space_size
=
math
::
integer_least_multiple
(
b_
k_n_
block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
math
::
integer_least_multiple
(
b_block_desc
_k_n
.
GetElementSpaceSize
(),
max_lds_align
);
return
2
*
(
a_block_aligned_space_size
+
b_block_aligned_space_size
)
*
sizeof
(
FloatAB
);
}
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
A
K0MK1
GridDesc
&
a_k0_m_k1
_grid_desc
,
const
B
K0NK1
GridDesc
&
b_k0_n_k1
_grid_desc
,
const
C
MN
GridDesc
&
c_m_n
_grid_desc
)
CheckValidity
(
const
AGridDesc
_K0_M_K1
&
a
_grid_desc
_k0_m_k1
,
const
BGridDesc
_K0_N_K1
&
b
_grid_desc
_k0_n_k1
,
const
CGridDesc
_M_N
&
c
_grid_desc
_m_n
)
{
const
auto
M
=
a_
k0_m_k1_
grid_desc
.
GetLength
(
I1
);
const
auto
N
=
b_
k0_n_k1_
grid_desc
.
GetLength
(
I1
);
const
auto
K0
=
a_
k0_m_k1_
grid_desc
.
GetLength
(
I0
);
const
auto
M
=
a_grid_desc
_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc
_k0_n_k1
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc
_k0_m_k1
.
GetLength
(
I0
);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
(
M
==
c_
m_n_
grid_desc
.
GetLength
(
I0
)
&&
N
==
c_
m_n_
grid_desc
.
GetLength
(
I1
)
&&
K0
==
b_
k0_n_k1_
grid_desc
.
GetLength
(
I0
)
&&
K1
==
a_
k0_m_k1_
grid_desc
.
GetLength
(
I2
)
&&
K1
==
b_
k0_n_k1_
grid_desc
.
GetLength
(
I2
))
&&
(
M
%
MPerBlock
M1
==
0
&&
N
%
NPerBlock
N1
==
0
&&
K0
%
KPerBlock
==
0
);
return
(
M
==
c_grid_desc
_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc
_m_n
.
GetLength
(
I1
)
&&
K0
==
b_grid_desc
_k0_n_k1
.
GetLength
(
I0
)
&&
K1
==
a_grid_desc
_k0_m_k1
.
GetLength
(
I2
)
&&
K1
==
b_grid_desc
_k0_n_k1
.
GetLength
(
I2
))
&&
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K0
%
K
0
PerBlock
==
0
);
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
const
index_t
grid_size
=
(
M
/
MPerBlock
M1
)
*
(
N
/
NPerBlock
N1
);
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K0
)
{
const
bool
has_main_k_block_loop
=
(
K0
+
KPerBlock
)
/
(
2
*
KPerBlock
)
>
1
;
const
bool
has_main_k_block_loop
=
(
K0
+
K
0
PerBlock
)
/
(
2
*
K
0
PerBlock
)
>
1
;
return
has_main_k_block_loop
;
}
__host__
__device__
static
constexpr
bool
CalculateHasDoubleTailKBlockLoop
(
index_t
K0
)
{
const
bool
has_double_tail_k_block_loop
=
(
K0
/
KPerBlock
)
%
2
==
0
;
const
bool
has_double_tail_k_block_loop
=
(
K0
/
K
0
PerBlock
)
%
2
==
0
;
return
has_double_tail_k_block_loop
;
}
__host__
__device__
static
constexpr
auto
MakeA
K0M0M1K1
GridDescriptor
(
const
A
K0MK1
GridDesc
&
a_k0_m_k1
_grid_desc
)
MakeAGridDescriptor
_K0_M0_M1_K1
(
const
AGridDesc
_K0_M_K1
&
a
_grid_desc
_k0_m_k1
)
{
const
auto
K0
=
a_
k0_m_k1_
grid_desc
.
GetLength
(
I0
);
const
auto
M
=
a_
k0_m_k1_
grid_desc
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc
_k0_m_k1
.
GetLength
(
I0
);
const
auto
M
=
a_grid_desc
_k0_m_k1
.
GetLength
(
I1
);
const
auto
M1
=
Number
<
MPerBlock
M1
>
{};
const
auto
M1
=
Number
<
MPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
a_k0_m0_m1_k1
_grid_desc
=
transform_tensor_descriptor
(
a_
k0_m_k1_
grid_desc
,
const
auto
a_
grid_desc_
k0_m0_m1_k1
=
transform_tensor_descriptor
(
a_grid_desc
_k0_m_k1
,
make_tuple
(
make_pass_through_transform
(
K0
),
make_unmerge_transform
(
make_tuple
(
M0
,
M1
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
return
a_k0_m0_m1_k1
_grid_desc
;
return
a_
grid_desc_
k0_m0_m1_k1
;
}
__host__
__device__
static
constexpr
auto
MakeB
K0N0N1K1
GridDescriptor
(
const
B
K0NK1
GridDesc
&
b_k0_n_k1
_grid_desc
)
MakeBGridDescriptor
_K0_N0_N1_K1
(
const
BGridDesc
_K0_N_K1
&
b
_grid_desc
_k0_n_k1
)
{
const
auto
K0
=
b_
k0_n_k1_
grid_desc
.
GetLength
(
I0
);
const
auto
N
=
b_
k0_n_k1_
grid_desc
.
GetLength
(
I1
);
const
auto
K0
=
b_grid_desc
_k0_n_k1
.
GetLength
(
I0
);
const
auto
N
=
b_grid_desc
_k0_n_k1
.
GetLength
(
I1
);
const
auto
N1
=
Number
<
NPerBlock
N1
>
{};
const
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
N0
=
N
/
N1
;
const
auto
b_k0_n0_n1_k1
_grid_desc
=
transform_tensor_descriptor
(
b_
k0_n_k1_
grid_desc
,
const
auto
b_
grid_desc_
k0_n0_n1_k1
=
transform_tensor_descriptor
(
b_grid_desc
_k0_n_k1
,
make_tuple
(
make_pass_through_transform
(
K0
),
make_unmerge_transform
(
make_tuple
(
N0
,
N1
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
return
b_k0_n0_n1_k1
_grid_desc
;
return
b_
grid_desc_
k0_n0_n1_k1
;
}
__host__
__device__
static
constexpr
auto
MakeCM0M10M11N0N10N11
GridDescriptor
(
const
C
MN
GridDesc
&
c_m_n
_grid_desc
)
MakeC
GridDescriptor_
M0
_
M10
_
M11
_
N0
_
N10
_
N11
(
const
CGridDesc
_M_N
&
c
_grid_desc
_m_n
)
{
const
auto
M
=
c_
m_n_
grid_desc
.
GetLength
(
I0
);
const
auto
N
=
c_
m_n_
grid_desc
.
GetLength
(
I1
);
const
auto
M
=
c_grid_desc
_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc
_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
M1
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
N1
>
{};
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
...
...
@@ -226,41 +221,29 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
constexpr
auto
M10
=
M1
/
M11
;
constexpr
auto
N10
=
N1
/
N11
;
const
auto
c_m0_m10_m11_n0_n10_n11
_grid_desc
=
transform_tensor_descriptor
(
c_
m_n_
grid_desc
,
const
auto
c_
grid_desc_
m0_m10_m11_n0_n10_n11
=
transform_tensor_descriptor
(
c_grid_desc
_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M0
,
M10
,
M11
)),
make_unmerge_transform
(
make_tuple
(
N0
,
N10
,
N11
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
>
{}));
return
c_m0_m10_m11_n0_n10_n11
_grid_desc
;
return
c_
grid_desc_
m0_m10_m11_n0_n10_n11
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
Make
CBlockIdToM0N0BlockClusterAdaptor
(
const
C
MN
GridDesc
&
c_m_n
_grid_desc
)
Make
DefaultBlock2CTileMap
(
const
CGridDesc
_M_N
&
c
_grid_desc
_m_n
)
{
const
auto
M
=
c_m_n_grid_desc
.
GetLength
(
I0
);
const
auto
N
=
c_m_n_grid_desc
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlockM1
>
{};
constexpr
auto
N1
=
Number
<
NPerBlockN1
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
N0
))),
make_tuple
(
Sequence
<
0
,
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
cblockid_to_m0_n0_block_cluster_adaptor
;
return
BlockToCTileMap_M00_N00_M01_N01
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
A
K0M0M1K1GridDesc
=
decltype
(
MakeA
K0M0M1K1
GridDescriptor
(
AK0MK1GridDesc
{}));
using
B
K0N0N1K1GridDesc
=
decltype
(
MakeB
K0N0N1K1
GridDescriptor
(
BK0NK1GridDesc
{}));
using
C
M0M10M11N0N10N11GridDesc
=
decltype
(
MakeC
M0M10M11N0N10N11
GridDescriptor
(
CMNGridDesc
{}));
using
CBlockIdToM0N0BlockClusterAdaptor
=
decltype
(
MakeCBlockIdToM0N0BlockClusterAdaptor
(
CMN
GridDesc
{}));
using
A
GridDesc_K0_M0_M1_K1
=
decltype
(
MakeAGridDescriptor
_K0_M0_M1_K1
(
AGridDesc_K0_M_K1
{}));
using
B
GridDesc_K0_N0_N1_K1
=
decltype
(
MakeBGridDescriptor
_K0_N0_N1_K1
(
BGridDesc_K0_N_K1
{}));
using
C
GridDesc_
M0
_
M10
_
M11
_
N0
_
N10
_
N11
=
decltype
(
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
decltype
(
MakeDefaultBlock2CTileMap
(
C
GridDesc
_M_N
{}));
template
<
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__device__
static
void
...
...
@@ -268,57 +251,64 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatAB
*
__restrict__
p_shared_block
,
const
A
K0M0M1K1
GridDesc
&
a_k
0_
m
0_
m
1_
k1
_grid_desc
,
const
B
K0N0N1K1
GridDesc
&
b_k
0_
n
0_
n
1_
k1
_grid_desc
,
const
CM0M10M11N0N10N11
GridDesc
&
c_m0_m10_m11_n0_n10_n11
_grid_desc
,
const
C
Block
IdToM0N0BlockClusterAdaptor
&
c
block
id_to_m0_n0_block_cluster_adaptor
,
const
AGridDesc
_K
0_
M
0_
M
1_
K1
&
a
_grid_desc
_k0_m0_m1_k1
,
const
BGridDesc
_K
0_
N
0_
N
1_
K1
&
b
_grid_desc
_k0_n0_n1_k1
,
const
C
GridDesc_
M0
_
M10
_
M11
_
N0
_
N10
_
N11
&
c_grid_des
c_m0_m10_m11_n0_n10_n11
,
const
Block
2CTileMap
&
block
_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
,
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
)
{
const
auto
a_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_k0_m0_m1_k1
_grid_desc
.
GetElementSpaceSize
());
p_a_grid
,
a_
grid_desc_
k0_m0_m1_k1
.
GetElementSpaceSize
());
const
auto
b_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_k0_n0_n1_k1
_grid_desc
.
GetElementSpaceSize
());
p_b_grid
,
b_
grid_desc_
k0_n0_n1_k1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_m0_m10_m11_n0_n10_n11
_grid_desc
.
GetElementSpaceSize
());
p_c_grid
,
c_
grid_desc_
m0_m10_m11_n0_n10_n11
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
c_m0_n0_block_cluster_idx
=
cblockid_to_m0_n0_block_cluster_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force index data into SGPR
const
index_t
im0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I0
]);
const
index_t
in0
=
__builtin_amdgcn_readfirstlane
(
c_m0_n0_block_cluster_idx
[
I1
]);
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
make_tuple
(
im0
,
in0
),
make_tuple
(
c_grid_desc_m0_m10_m11_n0_n10_n11
.
GetLength
(
I0
),
c_grid_desc_m0_m10_m11_n0_n10_n11
.
GetLength
(
I3
))))
{
return
;
}
// TODO: change this. I think it needs multi-dimensional alignment
constexpr
auto
max_lds_align
=
K1
;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
a_k0_m0_m1_k1
_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
I1
,
Number
<
MPerBlock
M1
>
{},
K1
),
max_lds_align
);
constexpr
auto
a_
block_desc_
k0_m0_m1_k1
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K
0
PerBlock
>
{},
I1
,
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
b_k0_n0_n1_k1
_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
I1
,
Number
<
NPerBlock
N1
>
{},
K1
),
max_lds_align
);
constexpr
auto
b_
block_desc_
k0_n0_n1_k1
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K
0
PerBlock
>
{},
I1
,
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr
auto
a_k0_m_k1_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
MPerBlock
M1
>
{},
K1
),
max_lds_align
);
make_tuple
(
Number
<
K
0
PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
// TODO: check alignment
// B matrix in LDS memory, for blockwise GEMM
constexpr
auto
b_k0_n_k1_block_desc
=
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
KPerBlock
>
{},
Number
<
NPerBlock
N1
>
{},
K1
),
max_lds_align
);
make_tuple
(
Number
<
K
0
PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
static_assert
(
a_k0_m0_m1_k1
_block_desc
.
GetElementSpaceSize
()
==
static_assert
(
a_
block_desc_
k0_m0_m1_k1
.
GetElementSpaceSize
()
==
a_k0_m_k1_block_desc
.
GetElementSpaceSize
()
&&
b_k0_n0_n1_k1
_block_desc
.
GetElementSpaceSize
()
==
b_
block_desc_
k0_n0_n1_k1
.
GetElementSpaceSize
()
==
b_k0_n_k1_block_desc
.
GetElementSpaceSize
()
&&
"wrong!"
);
...
...
@@ -326,14 +316,14 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
auto
a_blockwise_copy
=
BlockwiseTensorSliceTransfer_v5r1
<
BlockSize
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
KPerBlock
,
1
,
MPerBlock
M1
,
K1
.
value
>
,
Sequence
<
K
0
PerBlock
,
1
,
MPerBlock
,
K1
.
value
>
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_k0_m0_m1_k1
_grid_desc
),
decltype
(
a_k0_m0_m1_k1
_block_desc
),
remove_reference_t
<
decltype
(
a_
grid_desc_
k0_m0_m1_k1
)
>
,
decltype
(
a_
block_desc_
k0_m0_m1_k1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
,
3
>
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
// SrcVectorTensorLengths
...
...
@@ -341,23 +331,23 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
ABlockTransferSrcVectorTensorContiguousDimOrder
,
// SrcVectorTensorContiguousDimOrder
Sequence
<
0
,
1
,
2
,
3
>
,
// DstVectorTensorContiguousDimOrder
false
,
true
>
(
a_k0_m0_m1_k1
_grid_desc
,
true
>
(
a_
grid_desc_
k0_m0_m1_k1
,
make_multi_index
(
0
,
im0
,
0
,
0
),
a_k0_m0_m1_k1
_block_desc
,
a_
block_desc_
k0_m0_m1_k1
,
make_multi_index
(
0
,
0
,
0
,
0
));
// B matrix blockwise copy
auto
b_blockwise_copy
=
BlockwiseTensorSliceTransfer_v5r1
<
BlockSize
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
KPerBlock
,
1
,
NPerBlock
N1
,
K1
.
value
>
,
Sequence
<
K
0
PerBlock
,
1
,
NPerBlock
,
K1
.
value
>
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_k0_n0_n1_k1
_grid_desc
),
decltype
(
b_k0_n0_n1_k1
_block_desc
),
remove_reference_t
<
decltype
(
b_
grid_desc_
k0_n0_n1_k1
)
>
,
decltype
(
b_
block_desc_
k0_n0_n1_k1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
,
3
>
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
// SrcVectorTensorLengths
...
...
@@ -365,19 +355,19 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
BBlockTransferSrcVectorTensorContiguousDimOrder
,
// SrcVectorTensorContiguousDimOrder
Sequence
<
0
,
1
,
2
,
3
>
,
// DstVectorTensorContiguousDimOrder
false
,
true
>
(
b_k0_n0_n1_k1
_grid_desc
,
true
>
(
b_
grid_desc_
k0_n0_n1_k1
,
make_multi_index
(
0
,
in0
,
0
,
0
),
b_k0_n0_n1_k1
_block_desc
,
b_
block_desc_
k0_n0_n1_k1
,
make_multi_index
(
0
,
0
,
0
,
0
));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock
M1
] is in LDS
// b_mtx[KPerBlocl, NPerBlock
N1
] is in LDS
// c_mtx[MPerBlock
M1
, NPerBlock
N1
] is distributed among threads, and saved in
// a_mtx[K
0
PerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
const
auto
blockwise_gemm
=
BlockwiseGemmDl
ops
_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2
<
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2
<
BlockSize
,
FloatAB
,
FloatAB
,
...
...
@@ -395,58 +385,53 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
constexpr
auto
c_m10_m11_n10_n11_thread_tensor_lengths
=
decltype
(
blockwise_gemm
)
::
GetCThreadTensorLengths_BM0_BM1_BN0_BN1
();
constexpr
auto
c_m10_m11_n10_n11
_thread_desc
=
make_naive_tensor_descriptor_packed
(
constexpr
auto
c_
thread_desc_
m10_m11_n10_n11
=
make_naive_tensor_descriptor_packed
(
sequence_to_tuple_of_number
(
c_m10_m11_n10_n11_thread_tensor_lengths
));
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_aligned_space_size
=
math
::
integer_least_multiple
(
a_k0_m0_m1_k1
_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
a_
block_desc_
k0_m0_m1_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_aligned_space_size
=
math
::
integer_least_multiple
(
b_k0_n0_n1_k1
_block_desc
.
GetElementSpaceSize
(),
max_lds_align
);
b_
block_desc_
k0_n0_n1_k1
.
GetElementSpaceSize
(),
max_lds_align
);
FloatAB
*
p_a_block_double
=
p_shared_block
;
FloatAB
*
p_b_block_double
=
p_shared_block
+
2
*
a_block_aligned_space_size
;
// register allocation for output
auto
c_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
>
(
c_m10_m11_n10_n11
_thread_desc
.
GetElementSpaceSize
());
c_
thread_desc_
m10_m11_n10_n11
.
GetElementSpaceSize
());
ThreadwiseTensorSliceSet_v1
<
FloatAcc
,
decltype
(
c_m10_m11_n10_n11_thread_desc
),
decltype
(
c_m10_m11_n10_n11_thread_tensor_lengths
)
>
{}
.
Run
(
c_m10_m11_n10_n11_thread_desc
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
FloatAcc
{
0
});
// Initialize C
c_thread_buf
.
Clear
();
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
,
0
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
,
0
,
0
,
0
);
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
K
0
PerBlock
,
0
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
K
0
PerBlock
,
0
,
0
,
0
);
auto
a_block_even_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block_double
,
a_k0_m0_m1_k1
_block_desc
.
GetElementSpaceSize
());
p_a_block_double
,
a_
block_desc_
k0_m0_m1_k1
.
GetElementSpaceSize
());
auto
b_block_even_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block_double
,
b_k0_n0_n1_k1
_block_desc
.
GetElementSpaceSize
());
p_b_block_double
,
b_
block_desc_
k0_n0_n1_k1
.
GetElementSpaceSize
());
auto
a_block_odd_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_a_block_double
+
a_block_aligned_space_size
,
a_k0_m0_m1_k1
_block_desc
.
GetElementSpaceSize
());
a_
block_desc_
k0_m0_m1_k1
.
GetElementSpaceSize
());
auto
b_block_odd_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_b_block_double
+
b_block_aligned_space_size
,
b_k0_n0_n1_k1
_block_desc
.
GetElementSpaceSize
());
b_
block_desc_
k0_n0_n1_k1
.
GetElementSpaceSize
());
// LDS double buffer: preload data into LDS
{
a_blockwise_copy
.
RunRead
(
a_k0_m0_m1_k1
_grid_desc
,
a_global_buf
,
AGridStepHacks
{}
);
b_blockwise_copy
.
RunRead
(
b_k0_n0_n1_k1
_grid_desc
,
b_global_buf
,
BGridStepHacks
{}
);
a_blockwise_copy
.
RunRead
(
a_
grid_desc_
k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_
grid_desc_
k0_n0_n1_k1
,
b_global_buf
);
a_blockwise_copy
.
RunWrite
(
a_k0_m0_m1_k1
_block_desc
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_k0_n0_n1_k1
_block_desc
,
b_block_even_buf
);
a_blockwise_copy
.
RunWrite
(
a_
block_desc_
k0_m0_m1_k1
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_
block_desc_
k0_n0_n1_k1
,
b_block_even_buf
);
}
if
constexpr
(
HasMainKBlockLoop
)
{
const
auto
K0
=
a_k0_m0_m1_k1
_grid_desc
.
GetLength
(
I0
);
const
auto
K0
=
a_
grid_desc_
k0_m0_m1_k1
.
GetLength
(
I0
);
index_t
k_block_data_begin
=
0
;
...
...
@@ -455,82 +440,76 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
do
{
// even iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k0_m0_m1_k1_grid_desc
,
a_block_slice_copy_step
,
AGridMoveSliceWindowStepHacks
{});
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k0_n0_n1_k1_grid_desc
,
b_block_slice_copy_step
,
BGridMoveSliceWindowStepHacks
{});
__syncthreads
();
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_k0_m0_m1_k1_grid_desc
,
a_global_buf
,
AGridStepHacks
{});
b_blockwise_copy
.
RunRead
(
b_k0_n0_n1_k1_grid_desc
,
b_global_buf
,
BGridStepHacks
{});
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
block_sync_lds
();
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
c_m10_m11_n10_n11
_thread_desc
,
blockwise_gemm
.
Run
(
c_
thread_desc_
m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_k0_m0_m1_k1
_block_desc
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_k0_n0_n1_k1
_block_desc
,
b_block_odd_buf
);
a_blockwise_copy
.
RunWrite
(
a_
block_desc_
k0_m0_m1_k1
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_
block_desc_
k0_n0_n1_k1
,
b_block_odd_buf
);
// odd iteration
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k0_m0_m1_k1_grid_desc
,
a_block_slice_copy_step
,
AGridMoveSliceWindowStepHacks
{});
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k0_n0_n1_k1_grid_desc
,
b_block_slice_copy_step
,
BGridMoveSliceWindowStepHacks
{});
__syncthreads
();
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy
.
RunRead
(
a_k0_m0_m1_k1_grid_desc
,
a_global_buf
,
AGridStepHacks
{});
b_blockwise_copy
.
RunRead
(
b_k0_n0_n1_k1_grid_desc
,
b_global_buf
,
BGridStepHacks
{});
a_blockwise_copy
.
RunRead
(
a_grid_desc_k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc_k0_n0_n1_k1
,
b_global_buf
);
block_sync_lds
();
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
c_m10_m11_n10_n11
_thread_desc
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
c_
thread_desc_
m10_m11_n10_n11
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
// LDS double buffer: store next data to LDS
a_blockwise_copy
.
RunWrite
(
a_k0_m0_m1_k1
_block_desc
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_k0_n0_n1_k1
_block_desc
,
b_block_even_buf
);
a_blockwise_copy
.
RunWrite
(
a_
block_desc_
k0_m0_m1_k1
,
a_block_even_buf
);
b_blockwise_copy
.
RunWrite
(
b_
block_desc_
k0_n0_n1_k1
,
b_block_even_buf
);
k_block_data_begin
+=
2
*
KPerBlock
;
}
while
(
k_block_data_begin
<
K0
-
2
*
KPerBlock
);
k_block_data_begin
+=
2
*
K
0
PerBlock
;
}
while
(
k_block_data_begin
<
K0
-
2
*
K
0
PerBlock
);
}
// LDS double buffer: tail
if
constexpr
(
HasDoubleTailKBlockLoop
)
// if has 2 iteration left
{
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_k0_m0_m1_k1_grid_desc
,
a_block_slice_copy_step
,
AGridMoveSliceWindowStepHacks
{});
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_k0_n0_n1_k1_grid_desc
,
b_block_slice_copy_step
,
BGridMoveSliceWindowStepHacks
{});
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc_k0_m0_m1_k1
,
a_block_slice_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc_k0_n0_n1_k1
,
b_block_slice_copy_step
);
__syncthrea
ds
();
block_sync_l
ds
();
// LDS double buffer: load last data from device mem
a_blockwise_copy
.
RunRead
(
a_k0_m0_m1_k1
_grid_desc
,
a_global_buf
,
AGridStepHacks
{}
);
b_blockwise_copy
.
RunRead
(
b_k0_n0_n1_k1
_grid_desc
,
b_global_buf
,
BGridStepHacks
{}
);
a_blockwise_copy
.
RunRead
(
a_
grid_desc_
k0_m0_m1_k1
,
a_global_buf
);
b_blockwise_copy
.
RunRead
(
b_
grid_desc_
k0_n0_n1_k1
,
b_global_buf
);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm
.
Run
(
c_m10_m11_n10_n11
_thread_desc
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
c_
thread_desc_
m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
// LDS double buffer: store last data to LDS
a_blockwise_copy
.
RunWrite
(
a_k0_m0_m1_k1
_block_desc
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_k0_n0_n1_k1
_block_desc
,
b_block_odd_buf
);
a_blockwise_copy
.
RunWrite
(
a_
block_desc_
k0_m0_m1_k1
,
a_block_odd_buf
);
b_blockwise_copy
.
RunWrite
(
b_
block_desc_
k0_n0_n1_k1
,
b_block_odd_buf
);
__syncthrea
ds
();
block_sync_l
ds
();
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
c_m10_m11_n10_n11
_thread_desc
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
c_
thread_desc_
m10_m11_n10_n11
,
a_block_odd_buf
,
b_block_odd_buf
,
c_thread_buf
);
}
else
// if has 1 iteration left
{
...
...
@@ -538,12 +517,12 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
// LDS double buffer: GEMM on last data
blockwise_gemm
.
Run
(
c_m10_m11_n10_n11
_thread_desc
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
c_
thread_desc_
m10_m11_n10_n11
,
a_block_even_buf
,
b_block_even_buf
,
c_thread_buf
);
}
// output: register to global memory
{
constexpr
auto
c_m0_m10_m11_n0_n10_n11
_thread_desc
=
constexpr
auto
c_
thread_desc_
m0_m10_m11_n0_n10_n11
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
c_m10_m11_n10_n11_thread_tensor_lengths
[
I0
]
>
{},
...
...
@@ -559,8 +538,9 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatC
,
decltype
(
c_m0_m10_m11_n0_n10_n11_thread_desc
),
decltype
(
c_m0_m10_m11_n0_n10_n11_grid_desc
),
decltype
(
c_thread_desc_m0_m10_m11_n0_n10_n11
),
decltype
(
c_grid_desc_m0_m10_m11_n0_n10_n11
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
1
,
c_m10_m11_n10_n11_thread_tensor_lengths
[
I0
],
c_m10_m11_n10_n11_thread_tensor_lengths
[
I1
],
...
...
@@ -572,22 +552,21 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
CThreadTransferDstScalarPerVector
,
CGlobalMemoryDataOperation
,
1
,
true
>
{
c_m0_m10_m11_n0_n10_n11
_grid_desc
,
true
>
{
c_
grid_desc_
m0_m10_m11_n0_n10_n11
,
make_multi_index
(
im0
,
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I0
],
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I1
],
in0
,
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I2
],
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I3
])}
.
Run
(
c_m0_m10_m11_n0_n10_n11_thread_desc
,
c_m10_m11_n10_n11_thread_origin_idx_on_block
[
I3
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}}
.
Run
(
c_thread_desc_m0_m10_m11_n0_n10_n11
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_m0_m10_m11_n0_n10_n11_grid_desc
,
c_grid_buf
,
CGridStepHacks
{});
c_grid_desc_m0_m10_m11_n0_n10_n11
,
c_grid_buf
);
}
}
};
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/grid/gridwise_gemm_reduce_xdl_cshuffle_v1.hpp
View file @
6dfb4e78
...
...
@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
...
...
@@ -15,11 +16,12 @@ namespace ck {
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
FloatD
,
typename
DPtrsGlobal
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
D1ElementwiseOperation
,
typename
DxsInElementwiseOperation
,
typename
DxsAccElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
...
...
@@ -34,12 +36,12 @@ __global__ void
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatD
*
__restrict__
p_d0_grid
,
FloatD
*
__restrict__
p_d1_grid
,
DPtrsGlobal
p_ds_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
D1ElementwiseOperation
d1_element_op
,
const
DxsInElementwiseOperation
dxs_in_element_op
,
const
DxsAccElementwiseOperation
dxs_out_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
...
...
@@ -53,13 +55,13 @@ __global__ void
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_d0_grid
,
p_d1_grid
,
p_ds_grid
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
d1_element_op
,
dxs_in_element_op
,
dxs_out_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
...
...
@@ -69,12 +71,12 @@ __global__ void
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
p_d0_grid
;
ignore
=
p_d1_grid
;
ignore
=
p_ds_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
ignore
=
d1_element_op
;
ignore
=
dxs_in_element_op
;
ignore
=
dxs_out_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
...
...
@@ -88,15 +90,15 @@ template <typename FloatAB,
typename
FloatCShuffle
,
typename
FloatC
,
typename
FloatReduceAcc
,
typename
FloatD
,
typename
DPtrsGlobal
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
D
0
ReduceOperation
,
typename
D
1Reduc
eOperation
,
typename
D
1
ElementwiseOperation
,
typename
D
xs
ReduceOperation
,
typename
D
xsInElementwis
eOperation
,
typename
D
xsAcc
ElementwiseOperation
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
InMemoryDataOperationEnum
DGlobalMemoryDataOperation
,
typename
DGlobalMemoryDataOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDesc_M_N
,
...
...
@@ -217,10 +219,12 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
...
...
@@ -248,21 +252,15 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
...
...
@@ -308,40 +306,8 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
// FIXME: remove
constexpr
auto
M01
=
I1
;
constexpr
auto
N01
=
I1
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}));
const
auto
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
...
...
@@ -357,13 +323,13 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatD
*
__restrict__
p_d0_grid
,
FloatD
*
__restrict__
p_d1_grid
,
DPtrsGlobal
p_ds_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
D1ElementwiseOperation
&
d1_element_op
,
const
DxsInElementwiseOperation
&
dxs_in_element_op
,
const
DxsAccElementwiseOperation
&
dxs_out_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
...
...
@@ -377,15 +343,19 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
d0_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d0_grid
,
d_grid_desc_mblock_mperblock
.
GetElementSpaceSize
());
auto
d1_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d1_grid
,
d_grid_desc_mblock_mperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
...
...
@@ -527,7 +497,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C
and
write out
// shuffle C
+ reduction +
write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
...
...
@@ -666,6 +636,29 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
// TODO: this should be implemented as a blockwise reduction
// LDS c_reduce_block_desc_mperblock_nperblock
constexpr
auto
c_reduce_block_desc_mperblock_nperblock
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
...
...
@@ -716,16 +709,9 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
constexpr
auto
d_reduce_thread_desc_mblock_mperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mreduce_per_thread
>
{}));
// TODO: this should be implemented as a blockwise reduction
auto
c_reduce_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSpaceSize
());
auto
d0_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
d_reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
auto
d1_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
d_reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
// reduce: threadwise copy from LDS to VGPR
constexpr
auto
c_reduce_thread_cluster_desc
=
make_cluster_descriptor
(
CReduceThreadClusterLengths_MPerBlock_NPerBlock
{},
Sequence
<
1
,
0
>
{});
...
...
@@ -749,47 +735,29 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
1
,
true
>
{
c_reduce_block_desc_mperblock_nperblock
,
c_reduce_thread_data_idx_begin
};
// reduce: copy from VGPR to global
auto
d0_reduce_thread_copy_vgpr_to_global
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatReduceAcc
,
FloatD
,
decltype
(
d_reduce_thread_desc_mblock_mperblock
),
decltype
(
d_grid_desc_mblock_mperblock
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
1
,
mreduce_per_thread
>
,
Sequence
<
0
,
1
>
,
1
,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
,
DGlobalMemoryDataOperation
,
1
,
false
>
{
d_grid_desc_mblock_mperblock
,
make_multi_index
(
block_work_idx
[
I0
],
// mblock
c_reduce_thread_data_idx_begin
[
I0
]),
// mperblock
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
auto
d1_reduce_thread_copy_vgpr_to_global
=
d0_reduce_thread_copy_vgpr_to_global
;
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
auto
dxs_reduce_thread_copy_vgpr_to_global
=
generate_tuple
(
[
&
](
auto
I
)
{
auto
p_d_grid
=
p_ds_grid
[
I
];
auto
d_out_element_op
=
dxs_out_element_op
[
I
];
return
ThreadwiseTensorSliceTransfer_v1r3
<
FloatReduceAcc
,
remove_pointer_t
<
decltype
(
p_d_grid
)
>
,
decltype
(
d_reduce_thread_desc_mblock_mperblock
),
decltype
(
d_grid_desc_mblock_mperblock
),
decltype
(
d_out_element_op
),
Sequence
<
1
,
mreduce_per_thread
>
,
Sequence
<
0
,
1
>
,
1
,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
,
DGlobalMemoryDataOperation
::
At
(
I
),
1
,
false
>
{
d_grid_desc_mblock_mperblock
,
make_multi_index
(
block_work_idx
[
I0
],
// mblock
c_reduce_thread_data_idx_begin
[
I0
]),
// mperblock
d_out_element_op
};
},
Number
<
p_ds_grid
.
Size
()
>
{});
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
...
...
@@ -816,64 +784,73 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
using
ThreadwiseReduce_D0
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
d_reduce_thread_desc_mperblock
),
D0ReduceOperation
,
false
>
;
using
ThreadwiseReduce_D1
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
d_reduce_thread_desc_mperblock
),
D1ReduceOperation
,
false
>
;
const
auto
d0_zeroVal
=
D0ReduceOperation
::
GetReductionZeroVal
();
const
auto
d1_zeroVal
=
D0ReduceOperation
::
GetReductionZeroVal
();
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
I
)
{
d0_thread_buf
(
I
)
=
d0_zeroVal
;
});
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
I
)
{
d1_thread_buf
(
I
)
=
d1_zeroVal
;
});
// reduce
// TODO - extract following into reduction_blockwise
{
// copy from LDS to VGPR
c_reduce_thread_copy_lds_to_vgpr
.
Run
(
c_reduce_block_desc_mperblock_nperblock
,
c_shuffle_block_buf
,
c_reduce_thread_desc_mperblock_nperblock
,
make_tuple
(
I0
,
I0
),
c_reduce_thread_buf
);
// reduce in VGPR
ThreadwiseReduce_D0
::
Reduce
(
c_reduce_thread_buf
,
d0_thread_buf
)
;
static_for
<
0
,
p_ds_grid
.
Size
(),
1
>
{}([
&
](
auto
In
)
{
auto
&
p_d_grid
=
p_ds_grid
[
In
]
;
static_for
<
0
,
mreduce_per_thread
,
1
>
{}([
&
](
auto
im
)
{
static_for
<
0
,
nreduce_per_thread
,
1
>
{}([
&
](
auto
in
)
{
constexpr
auto
offset
=
Number
<
c_reduce_thread_desc_mperblock_nperblock
.
CalculateOffset
(
make_tuple
(
im
,
in
))
>
{};
auto
d_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_d_grid
,
d_grid_desc_mblock_mperblock
.
GetElementSpaceSize
());
d1_element_op
(
c_reduce_thread_buf
(
offset
),
c_reduce_thread_buf
(
offset
));
});
});
auto
d_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
d_reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
auto
&
d_in_element_op
=
dxs_in_element_op
[
In
];
auto
&
d_reduce_thread_copy_vgpr_to_global
=
dxs_reduce_thread_copy_vgpr_to_global
(
In
);
ThreadwiseReduce_D1
::
Reduce
(
c_reduce_thread_buf
,
d1_thread_buf
);
using
DReduceOperation
=
remove_cvref_t
<
decltype
(
DxsReduceOperation
{}[
In
])
>
;
using
ThreadwiseReduce
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
d_reduce_thread_desc_mperblock
),
DReduceOperation
,
false
>
;
// copy from VGPR to Global
d0_reduce_thread_copy_vgpr_to_global
.
Run
(
d_reduce_thread_desc_mblock_mperblock
,
make_tuple
(
I0
,
I0
),
d0_thread_buf
,
d_grid_desc_mblock_mperblock
,
d0_grid_buf
);
// Global write Gemm shuffle + reduction
const
auto
d_identityVal
=
DReduceOperation
::
GetIdentityValue
();
d1_reduce_thread_copy_vgpr_to_global
.
Run
(
d_reduce_thread_desc_mblock_mperblock
,
make_tuple
(
I0
,
I0
),
d1_thread_buf
,
d_grid_desc_mblock_mperblock
,
d1_grid_buf
);
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
I
)
{
d_thread_buf
(
I
)
=
d_identityVal
;
});
// reduce in VGPR
static_for
<
0
,
mreduce_per_thread
,
1
>
{}([
&
](
auto
im
)
{
static_for
<
0
,
nreduce_per_thread
,
1
>
{}([
&
](
auto
in
)
{
constexpr
auto
offset
=
Number
<
c_reduce_thread_desc_mperblock_nperblock
.
CalculateOffset
(
make_tuple
(
im
,
in
))
>
{};
d_in_element_op
(
c_reduce_thread_buf
(
offset
),
c_reduce_thread_buf
(
offset
));
});
});
ThreadwiseReduce
::
Reduce
(
c_reduce_thread_buf
,
d_thread_buf
);
// copy from VGPR to Global
d_reduce_thread_copy_vgpr_to_global
.
Run
(
d_reduce_thread_desc_mblock_mperblock
,
make_tuple
(
I0
,
I0
),
d_thread_buf
,
d_grid_desc_mblock_mperblock
,
d_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
d_reduce_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
d_grid_desc_mblock_mperblock
,
make_tuple
(
c_global_step
[
I0
],
c_global_step
[
I1
]));
}
});
}
if
constexpr
(
access_id
<
num_access
-
1
)
...
...
@@ -883,18 +860,10 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
// move on D0
d0_reduce_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
d_grid_desc_mblock_mperblock
,
make_tuple
(
c_global_step
[
I0
],
c_global_step
[
I1
]));
// move on D1
d1_reduce_thread_copy_vgpr_to_global
.
MoveDstSliceWindow
(
d_grid_desc_mblock_mperblock
,
make_tuple
(
c_global_step
[
I0
],
c_global_step
[
I1
]));
}
});
// Reduction
}
}
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp
View file @
6dfb4e78
...
...
@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
...
...
@@ -190,10 +191,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
...
...
@@ -217,21 +220,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
index_t
grid_size
=
(
M
/
MPerBlock
)
*
(
N
/
NPerBlock
);
return
grid_size
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
...
...
@@ -262,40 +259,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
// FIXME: remove
constexpr
auto
M01
=
I1
;
constexpr
auto
N01
=
I1
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}));
const
auto
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
cblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
cblockid_to_m0_n0_block_cluster_adaptor
;
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
...
...
@@ -329,6 +294,14 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
...
...
Prev
1
2
3
4
5
6
7
8
9
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment