Commit 6dfb4e78 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into cpu_avx2

parents 397a68f2 1ced00a5
......@@ -139,5 +139,5 @@ int profile_gemm_bias_relu(int argc, char* argv[])
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
return 0;
}
......@@ -144,5 +144,5 @@ int profile_gemm_bias_relu_add(int argc, char* argv[])
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
return 0;
}
......@@ -142,5 +142,5 @@ int profile_gemm_reduce(int argc, char* argv[])
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
return 0;
}
......@@ -79,6 +79,7 @@ int profile_grouped_gemm(int argc, char* argv[])
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
......@@ -97,6 +98,7 @@ int profile_grouped_gemm(int argc, char* argv[])
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
......@@ -115,6 +117,7 @@ int profile_grouped_gemm(int argc, char* argv[])
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
......@@ -133,6 +136,7 @@ int profile_grouped_gemm(int argc, char* argv[])
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
......@@ -153,5 +157,5 @@ int profile_grouped_gemm(int argc, char* argv[])
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
}
return 1;
return 0;
}
#include <iostream>
#include <fstream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>
#include <stdexcept>
#include <sstream>
#include <getopt.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "data_type_enum.hpp"
#include "reduction_enums.hpp"
#include "host_common_util.hpp"
#include "profile_reduce_impl.hpp"
using namespace std;
using ck::NanPropagation;
using ck::ReduceTensorIndices;
using ck::ReduceTensorOp;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
......@@ -38,63 +30,9 @@ static struct option long_options[] = {{"inLengths", required_argument, nullptr,
{"bf16", no_argument, nullptr, '?'},
{"dumpout", required_argument, nullptr, 'o'},
{"verify", required_argument, nullptr, 'v'},
{"log", required_argument, nullptr, 'l'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
template <typename T>
static T getSingleValueFromString(const string& valueStr)
{
std::istringstream iss(valueStr);
T val;
iss >> val;
return (val);
};
template <typename T>
static std::vector<T> getTypeValuesFromString(const char* cstr_values)
{
std::string valuesStr(cstr_values);
std::vector<T> values;
std::size_t pos = 0;
std::size_t new_pos;
new_pos = valuesStr.find(',', pos);
while(new_pos != std::string::npos)
{
const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
pos = new_pos + 1;
new_pos = valuesStr.find(',', pos);
};
std::string sliceStr = valuesStr.substr(pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
return (values);
}
enum struct AppDataType
{
appHalf = 0,
appFloat = 1,
appInt32 = 2,
appInt8 = 3,
appInt8x4 = 4,
appBFloat16 = 5,
appDouble = 6,
};
static void check_reduce_dims(const int rank, const std::vector<int>& reduceDims)
{
for(auto dim : reduceDims)
......@@ -113,7 +51,7 @@ static void check_reduce_dims(const int rank, const std::vector<int>& reduceDims
};
};
class AppArgs
class ReduceProfilerArgs
{
private:
int option_index = 0;
......@@ -130,26 +68,23 @@ class AppArgs
std::vector<float> scales;
ReduceTensorOp reduceOp = ReduceTensorOp::ADD;
AppDataType compTypeId = AppDataType::appFloat;
AppDataType outTypeId = AppDataType::appFloat;
ReduceTensorOp reduceOp = ReduceTensorOp::ADD;
ck::DataTypeEnum compTypeId = ck::DataTypeEnum::Float;
ck::DataTypeEnum outTypeId = ck::DataTypeEnum::Float;
bool compType_assigned = false;
bool outType_assigned = false;
NanPropagation nanOpt = NanPropagation::NOT_PROPAGATE_NAN;
ReduceTensorIndices indicesOpt = ReduceTensorIndices::NO_INDICES;
bool do_log = false;
bool do_verification = false;
bool do_dumpout = false;
int nanOpt = 0;
int indicesOpt = 0;
bool do_verification = false;
bool do_dumpout = false;
int init_method;
bool time_kernel;
bool need_indices = false;
AppArgs() = default;
~AppArgs() = default;
ReduceProfilerArgs() = default;
~ReduceProfilerArgs() = default;
void show_usage(const char* cmd)
{
......@@ -166,8 +101,11 @@ class AppArgs
std::cout << "--outType or -W, optional enum value indicating the type of the reduced "
"output, which could be float when the input data is half"
<< std::endl;
std::cout << "--nanOpt or -N, enum value indicates the selection for NanOpt" << std::endl;
std::cout << "--indicesOpt or -I, enum value indicates the selection for IndicesOpt"
std::cout
<< "--nanOpt or -N, 1/0 value indicates the selection to use or not use Nan-Propagation"
<< std::endl;
std::cout << "--indicesOpt or -I, 1/0 value indicates the selection to use or not use "
"index in reduction"
<< std::endl;
std::cout << "--scales or -S, comma separated two float values for alpha and beta"
<< std::endl;
......@@ -181,18 +119,19 @@ class AppArgs
std::cout << "--dumpout or -o, 1/0 to indicate where to save the reduction result to files "
"for further analysis"
<< std::endl;
std::cout << "--log or -l, 1/0 to indicate whether to log some information" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
optind++; // to skip the "reduce" module name
while(1)
{
ch = getopt_long(argc, argv, "D:R:O:C:W:N:I:S:v:o:l:", long_options, &option_index);
ch = getopt_long(argc, argv, "D:R:O:C:W:N:I:S:v:o:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
......@@ -219,27 +158,27 @@ class AppArgs
if(!optarg)
throw std::runtime_error("Invalid option format!");
compTypeId = static_cast<AppDataType>(std::atoi(optarg));
compTypeId = static_cast<ck::DataTypeEnum>(std::atoi(optarg));
compType_assigned = true;
break;
case 'W':
if(!optarg)
throw std::runtime_error("Invalid option format!");
outTypeId = static_cast<AppDataType>(std::atoi(optarg));
outTypeId = static_cast<ck::DataTypeEnum>(std::atoi(optarg));
outType_assigned = true;
break;
case 'N':
if(!optarg)
throw std::runtime_error("Invalid option format!");
nanOpt = static_cast<NanPropagation>(std::atoi(optarg));
nanOpt = std::atoi(optarg);
break;
case 'I':
if(!optarg)
throw std::runtime_error("Invalid option format!");
indicesOpt = static_cast<ReduceTensorIndices>(std::atoi(optarg));
indicesOpt = std::atoi(optarg);
break;
case 'S':
if(!optarg)
......@@ -262,12 +201,6 @@ class AppArgs
do_dumpout = static_cast<bool>(std::atoi(optarg));
break;
case 'l':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_log = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "half")
use_half = true;
......@@ -295,7 +228,7 @@ class AppArgs
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
init_method = std::atoi(argv[optind++]);
time_kernel = std::atoi(argv[optind]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
......@@ -306,9 +239,6 @@ class AppArgs
if(reduceOp == ReduceTensorOp::MIN || reduceOp == ReduceTensorOp::MAX ||
reduceOp == ReduceTensorOp::AMAX)
{
if(indicesOpt != ReduceTensorIndices::NO_INDICES)
need_indices = true;
// for indexable operations, no need to assign compType and outType, just let them be
// same as inType
compType_assigned = false;
......@@ -322,9 +252,10 @@ class AppArgs
int profile_reduce(int argc, char* argv[])
{
using namespace ck::profiler;
using ck::DataTypeEnum;
using ck::profiler::profile_reduce_impl;
AppArgs args;
ReduceProfilerArgs args;
if(args.processArgs(argc, argv) < 0)
return (-1);
......@@ -339,42 +270,41 @@ int profile_reduce(int argc, char* argv[])
if(args.use_half)
{
if(!args.compType_assigned)
args.compTypeId = AppDataType::appHalf;
args.compTypeId = DataTypeEnum::Half;
if(args.outType_assigned &&
(args.outTypeId != AppDataType::appHalf && args.outTypeId != AppDataType::appFloat))
args.outTypeId = AppDataType::appFloat;
(args.outTypeId != DataTypeEnum::Half && args.outTypeId != DataTypeEnum::Float))
args.outTypeId = DataTypeEnum::Float;
if(!args.outType_assigned)
args.outTypeId = AppDataType::appHalf;
args.outTypeId = DataTypeEnum::Half;
if(args.compTypeId == AppDataType::appHalf)
if(args.compTypeId == DataTypeEnum::Half)
{
profile_reduce_impl<ck::half_t, ck::half_t, ck::half_t>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
args.scales[0],
args.scales[1]);
profile_reduce_impl<ck::half_t, ck::half_t, ck::half_t>(
args.do_verification,
args.init_method,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
else if(args.compTypeId == AppDataType::appFloat)
else if(args.compTypeId == DataTypeEnum::Float)
{
profile_reduce_impl<ck::half_t, float, ck::half_t>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
......@@ -385,56 +315,53 @@ int profile_reduce(int argc, char* argv[])
{
profile_reduce_impl<double, double, double>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
else if(args.use_int8)
{
if(!args.compType_assigned)
args.compTypeId = AppDataType::appInt8;
args.compTypeId = DataTypeEnum::Int8;
if(args.outType_assigned &&
(args.outTypeId != AppDataType::appInt8 && args.outTypeId != AppDataType::appInt32))
args.outTypeId = AppDataType::appInt32;
(args.outTypeId != DataTypeEnum::Int8 && args.outTypeId != DataTypeEnum::Int32))
args.outTypeId = DataTypeEnum::Int32;
if(!args.outType_assigned)
args.outTypeId = AppDataType::appInt8;
args.outTypeId = DataTypeEnum::Int8;
if(args.compTypeId == AppDataType::appInt8)
if(args.compTypeId == DataTypeEnum::Int8)
{
profile_reduce_impl<int8_t, int8_t, int8_t>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
else if(args.compTypeId == AppDataType::appInt32)
else if(args.compTypeId == DataTypeEnum::Int32)
{
profile_reduce_impl<int8_t, int32_t, int8_t>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
......@@ -444,54 +371,51 @@ int profile_reduce(int argc, char* argv[])
else if(args.use_bf16)
{
if(args.outType_assigned &&
(args.outTypeId != AppDataType::appBFloat16 && args.outTypeId != AppDataType::appFloat))
args.outTypeId = AppDataType::appFloat;
(args.outTypeId != DataTypeEnum::BFloat16 && args.outTypeId != DataTypeEnum::Float))
args.outTypeId = DataTypeEnum::Float;
if(!args.outType_assigned)
args.outTypeId = AppDataType::appBFloat16;
args.outTypeId = DataTypeEnum::BFloat16;
profile_reduce_impl<ck::bhalf_t, float, ck::bhalf_t>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
else
{
if(args.compTypeId == AppDataType::appFloat)
if(args.compTypeId == DataTypeEnum::Float)
{
profile_reduce_impl<float, float, float>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
else if(args.compTypeId == AppDataType::appDouble)
else if(args.compTypeId == DataTypeEnum::Double)
{
profile_reduce_impl<float, double, float>(args.do_verification,
args.init_method,
args.do_log,
args.do_dumpout,
args.time_kernel,
args.inLengths,
args.reduceDims,
args.reduceOp,
args.nanOpt,
args.indicesOpt,
static_cast<bool>(args.nanOpt),
static_cast<bool>(args.indicesOpt),
args.scales[0],
args.scales[1]);
}
......
......@@ -13,6 +13,7 @@ int profile_gemm_bias_relu_add(int, char*[]);
int profile_gemm_reduce(int, char*[]);
int profile_batched_gemm(int, char*[]);
int profile_grouped_gemm(int, char*[]);
int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_conv_fwd_bias_relu_atomic_add(int, char*[]);
......@@ -53,7 +54,7 @@ int main(int argc, char* argv[])
}
else if(strcmp(argv[1], "grouped_gemm") == 0)
{
profile_grouped_gemm(argc, argv);
return profile_grouped_gemm(argc, argv);
}
else if(strcmp(argv[1], "conv_fwd") == 0)
{
......@@ -112,7 +113,7 @@ int main(int argc, char* argv[])
" conv1d_bwd_data: BackwardConvolution data 1 dim\n"
" conv2d_bwd_data: BackwardConvolution data 2 dim\n"
" conv3d_bwd_data: BackwardConvolution data 3 dim\n"
" reduce: REDUCE\n"
" reduce: Reduce\n"
" conv2d_bwd_weight: Backward Weight Convolution 2d\n");
// clang-format on
}
......
#!/usr/bin/env python3
import os, io
import argparse
def print_to_string(*args, **kwargs):
output = io.StringIO()
print(*args, file=output, **kwargs)
contents = output.getvalue()
output.close()
return contents
def parse_args():
parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
args = parser.parse_args()
files = []
if os.path.isdir(args.filename):
all_files = os.listdir(args.filename)
for name in all_files:
if not 'log' in name:
continue
files.append(os.path.join(args.filename, name))
else:
files = [args.filename]
args.files = files
return args
def main():
args = parse_args()
results = []
#parse results
glue=""
for filename in args.files:
for line in open(filename):
if 'Best Perf' in line:
lst=line.split()
results.append(print_to_string(glue.join(lst[8:]),lst[4]))
#sort results
#read baseline results for the latest develop branch
#write new results to the db
#compare the results to the baseline
#return 0 if performance criteria met, otherwise return 1
print(results)
return 0
if __name__ == '__main__':
#!/usr/bin/env python3
import os, io, argparse, datetime, re
import numpy as np
import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer
import pymysql
import pandas as pd
from sshtunnel import SSHTunnelForwarder
def print_to_string(*args, **kwargs):
output = io.StringIO()
print(*args, file=output, **kwargs)
contents = output.getvalue()
output.close()
return contents
def parse_args():
parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
args = parser.parse_args()
files = []
if os.path.isdir(args.filename):
all_files = os.listdir(args.filename)
for name in all_files:
if not 'log' in name:
continue
files.append(os.path.join(args.filename, name))
else:
files = [args.filename]
args.files = files
return args
def main():
args = parse_args()
tests = []
kernels=[]
tflops=[]
dtype=[]
alayout=[]
blayout=[]
M=[]
N=[]
K=[]
StrideA=[]
StrideB=[]
StrideC=[]
#parse results, get the Tflops value for "Best Perf" kernels
glue=""
for filename in args.files:
for line in open(filename):
if 'Branch name' in line:
lst=line.split()
branch_name=lst[2]
if 'On branch' in line:
lst=line.split()
branch_name=lst[2]
if 'Node name' in line:
lst=line.split()
node_id=lst[2]
if 'GPU_arch' in line:
lst=line.split()
gpu_arch=lst[2]
if 'HIP version' in line:
lst=line.split()
hip_vers=lst[2]
if 'Compute Unit' in line:
lst=line.split()
compute_units=lst[2]
if 'InstalledDir' in line:
lst=line.split()
rocm_vers=lst[1][lst[1].find('/opt/rocm-')+len('/opt/rocm-'):lst[1].rfind('/llvm/bin')]
print("Branch name:",branch_name)
print("Node name:",node_id)
print("GPU_arch:",gpu_arch)
print("Compute units:",compute_units)
print("ROCM_version:",rocm_vers)
print("HIP_version:",hip_vers)
#parse gemm performance tests:
if 'gemm' in filename:
for filename in args.files:
for line in open(filename):
if 'Best Perf' in line:
lst=line.split()
if len(lst)>=37: #the line is complete
tests.append(glue.join(lst[5:30]))
kernels.append(glue.join(lst[37:]))
tflops.append(lst[33])
dtype.append(lst[5])
alayout.append(lst[8])
blayout.append(lst[11])
M.append(lst[14])
N.append(lst[17])
K.append(lst[20])
StrideA.append(lst[23])
StrideB.append(lst[26])
StrideC.append(lst[29])
elif len(lst)<37 and len(lst)>=33: #the tflops are available
tests.append(glue.join(lst[5:30]))
kernels.append("N/A")
tflops.append(lst[33])
dtype.append(lst[5])
alayout.append(lst[8])
blayout.append(lst[11])
M.append(lst[14])
N.append(lst[17])
K.append(lst[20])
StrideA.append(lst[23])
StrideB.append(lst[26])
StrideC.append(lst[29])
print("warning: incomplete line:",lst)
elif len(lst)<33: #even the tflops are not available
print("Error in ckProfiler output!")
print("warning: incomplete line=",lst)
#sort results
#sorted_tests = sorted(tests)
#print("sorted tests:",sorted_tests)
sorted_tflops = [x for _,x in sorted(zip(tests,tflops))]
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
test_list=list(range(1,len(tests)+1))
#parse resnet50 performance tests:
if 'resnet50' in filename:
for filename in args.files:
for line in open(filename):
if 'Best Perf' in line:
lst=line.split()
tflops.append(lst[4])
print("Number of tests:",len(tflops))
sql_hostname = '127.0.0.1'
sql_username = os.environ["dbuser"]
sql_password = os.environ["dbpassword"]
sql_main_database = 'miopen_perf'
sql_port = 3306
ssh_host = os.environ["dbsship"]
ssh_user = os.environ["dbsshuser"]
ssh_port = int(os.environ["dbsshport"])
ssh_pass = os.environ["dbsshpassword"]
with SSHTunnelForwarder(
(ssh_host, ssh_port),
ssh_username=ssh_user,
ssh_password=ssh_pass,
remote_bind_address=(sql_hostname, sql_port)) as tunnel:
sqlEngine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}'.
format(sql_username, sql_password, sql_hostname, tunnel.local_bind_port, sql_main_database))
conn = sqlEngine.connect()
#save gemm performance tests:
if 'gemm' in filename:
#write the ck_gemm_test_params table
#only needed once the test set changes
'''
sorted_dtypes = [x for _,x in sorted(zip(tests,dtype))]
sorted_alayout = [x for _,x in sorted(zip(tests,alayout))]
sorted_blayout = [x for _,x in sorted(zip(tests,blayout))]
sorted_M = [x for _,x in sorted(zip(tests,M))]
sorted_N = [x for _,x in sorted(zip(tests,N))]
sorted_K = [x for _,x in sorted(zip(tests,K))]
sorted_StrideA = [x for _,x in sorted(zip(tests,StrideA))]
sorted_StrideB = [x for _,x in sorted(zip(tests,StrideB))]
sorted_StrideC = [x for _,x in sorted(zip(tests,StrideC))]
ck_gemm_params=[test_list,sorted_dtypes,sorted_alayout,sorted_blayout,
sorted_M,sorted_N,sorted_K,sorted_StrideA,sorted_StrideB,
sorted_StrideC]
df=pd.DataFrame(np.transpose(ck_gemm_params),columns=['Test_number','Data_type',
'Alayout','BLayout','M','N','K', 'StrideA','StrideB','StrideC'])
print(df)
dtypes = {
'Test_number': Integer(),
'Data_type': NVARCHAR(length=5),
'Alayout': NVARCHAR(length=12),
'Blayout': NVARCHAR(length=12),
'M': Integer(),
'N': Integer(),
'K': Integer(),
'StrideA': Integer(),
'StrideB': Integer(),
'StrideC': Integer()
}
df.to_sql("ck_gemm_test_params",conn,if_exists='replace',index=False, dtype=dtypes)
'''
#read baseline results for the latest develop branch
query = '''SELECT * from ck_gemm_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_gemm_tflops where Branch_ID='develop' );'''
tflops_base = pd.read_sql_query(query, conn)
#write new results to the db
testlist=[]
for i in range(1,len(tests)+1):
testlist.append("Test%i"%i)
ck_gemm_tflops=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(datetime.datetime.now())]
flops=pd.DataFrame(data=[ck_gemm_tflops],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Datetime'])
df_add=pd.DataFrame(data=[sorted_tflops],columns=testlist)
flops=pd.concat([flops,df_add],axis=1)
print("new tflops for gemm tests:",flops)
flops.to_sql("ck_gemm_tflops",conn,if_exists='append',index=False)
#save resnet50 performance tests:
if 'resnet50' in filename:
#read baseline results for the latest develop branch
query = '''SELECT * from ck_resnet50_N256_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_resnet50_N256_tflops where Branch_ID='develop' );'''
tflops_base_N256 = pd.read_sql_query(query, conn)
query = '''SELECT * from ck_resnet50_N4_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_resnet50_N4_tflops where Branch_ID='develop' );'''
tflops_base_N4 = pd.read_sql_query(query, conn)
#write new results to the db
testlist=[]
for i in range(1,50):
testlist.append("Layer%i"%i)
ck_resnet_tflops=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(datetime.datetime.now())]
flops0=pd.DataFrame(data=[ck_resnet_tflops],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Datetime'])
df_add=pd.DataFrame(data=[tflops[0:49]],columns=testlist)
flops=pd.concat([flops0,df_add],axis=1)
print("new tflops for N=256 resnet50 test:",flops)
flops.to_sql("ck_resnet50_N256_tflops",conn,if_exists='append',index=False)
df_add=pd.DataFrame(data=[tflops[49:98]],columns=testlist)
flops=pd.concat([flops0,df_add],axis=1)
print("new tflops for N=4 resnet50 test:",flops)
flops.to_sql("ck_resnet50_N4_tflops",conn,if_exists='append',index=False)
conn.close()
#compare the results to the baseline if baseline exists
regression=0
if 'gemm' in filename:
if not tflops_base.empty:
base=tflops_base[testlist].to_numpy(dtype='float')
base_list=base[0]
ave_perf=0
for i in range(len(base_list)):
# success criterion:
if base_list[i]>1.01*float(sorted_tflops[i]):
print("test # ",i,"shows regression by {:.3f}%".format(
(float(sorted_tflops[i])-base_list[i])/base_list[i]*100))
regression=1
ave_perf=ave_perf+float(sorted_tflops[i])/base_list[i]
if regression==0:
print("no regressions found")
ave_perf=ave_perf/len(base_list)
print("average performance relative to baseline:",ave_perf)
else:
print("could not find a baseline")
if 'resnet50' in filename:
if not tflops_base_N256.empty:
base=tflops_base_N256[testlist].to_numpy(dtype='float')
base_list=base[0]
ave_perf=0
for i in range(len(base_list)):
# success criterion:
if base_list[i]>1.01*float(tflops[i]):
print("layer # ",i,"shows regression by {:.3f}%".format(
(float(tflops[i])-base_list[i])/base_list[i]*100))
regression=1
ave_perf=ave_perf+float(tflops[i])/base_list[i]
if regression==0:
print("no regressions found")
ave_perf=ave_perf/len(base_list)
print("average performance relative to baseline:",ave_perf)
else:
print("could not find a baseline for N=256")
if not tflops_base_N4.empty:
base=tflops_base_N4[testlist].to_numpy(dtype='float')
base_list=base[0]
ave_perf=0
for i in range(len(base_list)):
# success criterion:
if base_list[i]>1.01*float(tflops[i+49]):
print("layer # ",i,"shows regression by {:.3f}%".format(
(float(tflops[i+49])-base_list[i])/base_list[i]*100))
regression=1
ave_perf=ave_perf+float(tflops[i+49])/base_list[i]
if regression==0:
print("no regressions found")
ave_perf=ave_perf/len(base_list)
print("average performance relative to baseline:",ave_perf)
else:
print("could not find a baseline for N=4")
#return 0 if performance criteria met, otherwise return 1
return regression
if __name__ == '__main__':
main()
\ No newline at end of file
......@@ -3,9 +3,9 @@
## GPU visibility
export HIP_VISIBLE_DEVICES=0
make -j ckProfiler
# make -j ckProfiler
DRIVER="./profiler/ckProfiler"
DRIVER="../build/bin/ckProfiler"
OP=$1
DATATYPE=$2
......@@ -51,56 +51,56 @@ REPEAT=$9
# Resnet50 from Bing
#################### op____________________ datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 3 7 7 224 224 2 2 1 1 3 3 3 3
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 256 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 256 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 256 1 1 56 56 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 56 56 2 2 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 512 1 1 28 28 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 28 28 2 2 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 1024 1 1 14 14 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 14 14 2 2 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 7 7 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
#profiler/ckProfiler conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 7 7 1 1 1 1 1 1 1 1
#profiler/ckProfiler conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
####### op_________________ datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C_ Y X Hi_ Wi__ Strides Dilations LeftPads RightPads
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 3 7 7 224 224 2 2 1 1 3 3 3 3
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 256 1 1 56 56 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 56 56 2 2 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 128 128 3 3 28 28 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 128 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 512 1 1 28 28 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 28 28 2 2 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 256 3 3 14 14 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 1024 256 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 1024 1 1 14 14 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 14 14 2 2 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 7 7 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 2048 1 1 7 7 1 1 1 1 0 0 0 0
$DRIVER conv_fwd_bias_relu $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 512 512 3 3 7 7 1 1 1 1 1 1 1 1
$DRIVER conv_fwd_bias_relu_add $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 2048 512 1 1 7 7 1 1 1 1 0 0 0 0
# Resnet50
......
#!/bin/bash
#
# in order to run this script you'd first need to build the ckProfiler executable in ../build/bin/
# and make sure the following python packages are installed in your environment:
# pip3 install --upgrade pip
# pip3 install sqlalchemy
# pip3 install pymysql
# pip3 install pandas
# pip3 install sshtunnel
# you would also need to set up some environment variables in order to
# post your new test results to the database and compare them to the baseline
# please contact Illia.Silin@amd.com for more details
#
export gemm_log="perf_gemm.log"
rm -f $gemm_log
git status | grep -e 'On branch' > ${gemm_log}
echo -n 'Node name: ' >>${gemm_log}; hostname >> ${gemm_log}
#get GPU_arch and number of compute units from rocminfo
echo -n "GPU_arch: " >> ${gemm_log}; rocminfo | grep "Name:" | grep "gfx" >> ${gemm_log}
rocminfo | grep "Compute Unit:" >> ${gemm_log}
hipcc --version | grep -e 'HIP version' >> ${gemm_log}
/opt/rocm/bin/amdclang++ --version | grep -e 'InstalledDir' >> ${gemm_log}
./profile_gemm.sh gemm 0 0 0 1 0 5 | tee -a ${gemm_log}
./profile_gemm.sh gemm 1 0 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 2 0 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 3 0 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 0 1 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 1 1 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 2 1 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 3 1 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 0 2 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 1 2 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 2 2 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 3 2 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 0 3 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 1 3 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 2 3 0 1 0 5 | tee -a $gemm_log
./profile_gemm.sh gemm 3 3 0 1 0 5 | tee -a $gemm_log
python3 parse_perf_data.py ${gemm_log}
#run resnet50 test
export resnet_log="perf_resnet50.log"
rm -f $resnet_log
git status | grep -e 'On branch' > ${resnet_log}
echo -n 'Node name: '>>${resnet_log}; hostname >>${resnet_log}
#get GPU_arch and number of compute units from rocminfo
echo -n "GPU_arch: " >> ${resnet_log}; rocminfo | grep "Name:" | grep "gfx" >> ${resnet_log}
rocminfo | grep "Compute Unit:" >> ${resnet_log}
hipcc --version | grep -e 'HIP version' >> ${resnet_log}
/opt/rocm/bin/amdclang++ --version | grep -e 'InstalledDir' >> ${resnet_log}
#first run tests with N=256
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 256 | tee -a ${resnet_log}
#then run with N=4
./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 4 | tee -a ${resnet_log}
#the script will put the results from N=256 and N=4 runs into separate tables
python3 parse_perf_data.py ${resnet_log}
......@@ -15,6 +15,17 @@ bin/test_reduce_no_index -D 64,4,280,82 -R 1 0 2
bin/test_reduce_no_index -D 64,4,280,82 -R 2 0 2
bin/test_reduce_no_index -D 64,4,280,82 -R 3 0 2
## for float64
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 1,2,3 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 1 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 2 6 2
bin/test_reduce_no_index -D 64,4,280,82 -R 3 6 2
## for float16
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2,3 1 2
bin/test_reduce_no_index -D 64,4,280,82 -R 0,1,2 1 2
......
......@@ -15,6 +15,17 @@ bin/test_reduce_with_index -D 64,4,280,82 -R 1 0 2
bin/test_reduce_with_index -D 64,4,280,82 -R 2 0 2
bin/test_reduce_with_index -D 64,4,280,82 -R 3 0 2
## for float64
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 1,2,3 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 1 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 2 6 2
bin/test_reduce_with_index -D 64,4,280,82 -R 3 6 2
## for float16
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2,3 1 2
bin/test_reduce_with_index -D 64,4,280,82 -R 0,1,2 1 2
......
......@@ -2,6 +2,7 @@ include_directories(BEFORE
${PROJECT_SOURCE_DIR}/
${PROJECT_SOURCE_DIR}/include/ck
${PROJECT_SOURCE_DIR}/include/ck/utility
${PROJECT_SOURCE_DIR}/include/ck/host_utility
${PROJECT_SOURCE_DIR}/include/ck/tensor_description
${PROJECT_SOURCE_DIR}/include/ck/tensor
${PROJECT_SOURCE_DIR}/include/ck/problem_transform
......@@ -68,5 +69,6 @@ add_subdirectory(convnd_fwd)
add_subdirectory(reduce)
add_subdirectory(conv2d_bwd_weight)
add_subdirectory(convnd_bwd_data)
add_subdirectory(block_to_ctile_map)
add_subdirectory(cpu_ukernel)
# DONOT add client_app, that is tested via CI independently
add_gtest_executable(test_block_to_ctile_map test_block_to_ctile_map.cpp)
\ No newline at end of file
#include <ck/config.hpp>
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "gtest/gtest.h"
#include <iostream>
#include <vector>
using namespace ck;
static auto I0 = Number<0>{};
static auto I1 = Number<1>{};
static auto I2 = Number<2>{};
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck1)
{
const index_t M = 384;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
const index_t M01 = 4;
const index_t N01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01,
N01);
BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), true> tile_map(
c_grid_desc_m_n, M01, N01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 16);
// clang-format off
std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1},
{0, 1, 1},
{0, 2, 1},
{0, 3, 0},
{1, 0, 1},
{1, 1, 1},
{1, 2, 1},
{1, 3, 0},
{2, 0, 1},
{2, 1, 1},
{2, 2, 1},
{2, 3, 0},
{3, 0, 0},
{3, 1, 0},
{3, 2, 0},
{3, 3, 0}
};
// clang-format on
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto m0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", m0, n0 = " << m0n0_idx[I0] << ", " << m0n0_idx[I1];
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N00_M01_N01_DeviceCTileIndexCheck0)
{
const index_t M = 384;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t M01 = 4;
const index_t N01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01, N01) = (%d, %d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01,
N01);
BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), false>
tile_map(c_grid_desc_m_n, M01, N01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == false);
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01_DeviceCTileIndexCheck1)
{
const index_t M = 384;
const index_t N = 512;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
const index_t M01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), true> tile_map(
c_grid_desc_m_n, M01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 16);
// clang-format off
std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1},
{1, 0, 1},
{2, 0, 1},
{3, 0, 0},
{0, 1, 1},
{1, 1, 1},
{2, 1, 1},
{3, 1, 0},
{0, 2, 1},
{1, 2, 1},
{2, 2, 1},
{3, 2, 0},
{0, 3, 1},
{1, 3, 1},
{2, 3, 1},
{3, 3, 0}
};
// clang-format on
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto m0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", m0, n0 = " << m0n0_idx[I0] << ", " << m0n0_idx[I1];
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01_DeviceCTileIndexCheck0)
{
const index_t M = 512;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
// clang-format off
std::vector<std::tuple<int, int, bool>> expected_m0_gridsize_validity = {
{5, 15, false},
{4, 12, true},
{3, 18, false},
{2, 12, true},
{1, 12, true}
};
// clang-format on
for(auto e : expected_m0_gridsize_validity)
{
const index_t M01 = std::get<0>(e);
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n), false> tile_map(
c_grid_desc_m_n, M01);
EXPECT_EQ(tile_map.CalculateGridSize(c_grid_desc_m_n), std::get<1>(e));
EXPECT_EQ(tile_map.CheckValidity(c_grid_desc_m_n), std::get<2>(e));
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_M00_N0_M01Adapt)
{
const index_t M = 768;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
constexpr index_t M01 = 4;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n)> tile_map(
c_grid_desc_m_n, M01);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 18);
// clang-format off
std::vector<std::vector<int>> expected_m0idx_n0idx_valid = {
{0, 0, 1},
{1, 0, 1},
{2, 0, 1},
{3, 0, 1},
{0, 1, 1},
{1, 1, 1},
{2, 1, 1},
{3, 1, 1},
{0, 2, 1},
{1, 2, 1},
{2, 2, 1},
{3, 2, 1},
{4, 0, 1},
{5, 0, 1},
{4, 1, 1},
{5, 1, 1},
{4, 2, 1},
{5, 2, 1},
};
// clang-format on
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto m0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", m0, n0 = " << m0n0_idx[I0] << ", " << m0n0_idx[I1];
std::cout << ", valid = " << tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_m0idx_n0idx_valid[i] ==
std::vector<int>{m0n0_idx[I0],
m0n0_idx[I1],
tile_map.ValidCTileIndex(m0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
TEST(BlockToCTileMap, TestBlockToCTileMap_KSplit_M00_N0_M01Adapt)
{
const index_t M = 768;
const index_t N = 384;
const index_t MPerBlock = 128;
const index_t NPerBlock = 128;
const index_t MBlock = M / MPerBlock;
const index_t NBlock = N / NPerBlock;
constexpr index_t M01 = 4;
const index_t KSplit = 3;
auto c_grid_desc_m_n = make_naive_tensor_descriptor_packed(make_tuple(M, N));
printf("(M, N, MPerBlock, NPerBlock, M01) = (%d, %d, %d, %d, %d)\n",
M,
N,
MPerBlock,
NPerBlock,
M01);
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, decltype(c_grid_desc_m_n)>
tile_map(c_grid_desc_m_n, M01, KSplit);
EXPECT_TRUE(tile_map.CheckValidity(c_grid_desc_m_n) == true);
EXPECT_TRUE(tile_map.CalculateGridSize(c_grid_desc_m_n) == 18 * KSplit);
std::vector<std::vector<int>> expected_ksplitidx_m0idx_n0idx_valid = {
{0, 0, 0, 1}, {0, 1, 0, 1}, {0, 2, 0, 1}, {0, 3, 0, 1}, {0, 0, 1, 1}, {0, 1, 1, 1},
{0, 2, 1, 1}, {0, 3, 1, 1}, {0, 0, 2, 1}, {0, 1, 2, 1}, {0, 2, 2, 1}, {0, 3, 2, 1},
{0, 4, 0, 1}, {0, 5, 0, 1}, {0, 4, 1, 1}, {0, 5, 1, 1}, {0, 4, 2, 1}, {0, 5, 2, 1},
{1, 0, 0, 1}, {1, 1, 0, 1}, {1, 2, 0, 1}, {1, 3, 0, 1}, {1, 0, 1, 1}, {1, 1, 1, 1},
{1, 2, 1, 1}, {1, 3, 1, 1}, {1, 0, 2, 1}, {1, 1, 2, 1}, {1, 2, 2, 1}, {1, 3, 2, 1},
{1, 4, 0, 1}, {1, 5, 0, 1}, {1, 4, 1, 1}, {1, 5, 1, 1}, {1, 4, 2, 1}, {1, 5, 2, 1},
{2, 0, 0, 1}, {2, 1, 0, 1}, {2, 2, 0, 1}, {2, 3, 0, 1}, {2, 0, 1, 1}, {2, 1, 1, 1},
{2, 2, 1, 1}, {2, 3, 1, 1}, {2, 0, 2, 1}, {2, 1, 2, 1}, {2, 2, 2, 1}, {2, 3, 2, 1},
{2, 4, 0, 1}, {2, 5, 0, 1}, {2, 4, 1, 1}, {2, 5, 1, 1}, {2, 4, 2, 1}, {2, 5, 2, 1},
};
for(index_t i = 0; i < tile_map.CalculateGridSize(c_grid_desc_m_n); i++)
{
auto ksplitm0n0_idx = tile_map.CalculateBottomIndex(make_multi_index(i));
std::cout << "block_1d_id = " << i << ", ksplit, m0, n0 = " << ksplitm0n0_idx[I0] << ", "
<< ksplitm0n0_idx[I1] << ", " << ksplitm0n0_idx[I2];
std::cout << ", valid = "
<< tile_map.ValidCTileIndex(ksplitm0n0_idx, make_tuple(MBlock, NBlock))
<< std::endl;
bool equal =
expected_ksplitidx_m0idx_n0idx_valid[i] ==
std::vector<int>{ksplitm0n0_idx[I0],
ksplitm0n0_idx[I1],
ksplitm0n0_idx[I2],
tile_map.ValidCTileIndex(ksplitm0n0_idx, make_tuple(MBlock, NBlock))};
EXPECT_TRUE(equal);
}
}
add_test_executable(test_gemm_fp32 gemm_fp32.cpp)
target_link_libraries(test_gemm_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_fp32 PRIVATE device_gemm_instance)
# GEMM XDL
add_test_executable(test_gemm_xdl_fp32 gemm_xdl_fp32.cpp)
target_link_libraries(test_gemm_xdl_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_fp32 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_fp16 gemm_fp16.cpp)
target_link_libraries(test_gemm_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
target_link_libraries(test_gemm_xdl_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_bf16 gemm_bf16.cpp)
target_link_libraries(test_gemm_bf16 PRIVATE host_tensor)
target_link_libraries(test_gemm_bf16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
target_link_libraries(test_gemm_xdl_bf16 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_bf16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_int8 gemm_int8.cpp)
target_link_libraries(test_gemm_int8 PRIVATE host_tensor)
target_link_libraries(test_gemm_int8 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_xdl_int8 gemm_xdl_int8.cpp)
target_link_libraries(test_gemm_xdl_int8 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_int8 PRIVATE device_gemm_instance)
# GEMM DL
add_test_executable(test_gemm_dl_fp32 gemm_dl_fp32.cpp)
target_link_libraries(test_gemm_dl_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_dl_fp32 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_dl_fp16 gemm_dl_fp16.cpp)
target_link_libraries(test_gemm_dl_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_dl_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_dl_int8 gemm_dl_int8.cpp)
target_link_libraries(test_gemm_dl_int8 PRIVATE host_tensor)
TArget_link_libraries(test_gemm_dl_int8 PRIVATE device_gemm_instance)
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
bool res = true;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "../gemm/gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using AccDataType = int;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
AccDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
......@@ -60,7 +60,7 @@ template <typename DeviceGemmPtr_,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
bool RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
const ck::gemm_util::GemmParams& params,
const Tensor<ADataType>& A,
const Tensor<BDataType>& B,
......@@ -73,9 +73,6 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(A.mData.data());
b_k_n_device_buf.ToDevice(B.mData.data());
auto invoker_ptr = gemmPtr->MakeInvokerPointer();
auto argument_ptr =
gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
......@@ -91,21 +88,30 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
b_element_op,
c_element_op);
if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
if(gemmPtr->IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
a_m_k_device_buf.ToDevice(A.mData.data());
b_k_n_device_buf.ToDevice(B.mData.data());
invoker_ptr->Run(argument_ptr.get());
c_m_n_device_buf.FromDevice(C.mData.data());
return true;
}
else
{
std::cout << "device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
<< std::endl;
invoker_ptr->Run(argument_ptr.get());
c_m_n_device_buf.FromDevice(C.mData.data());
return false;
}
}
template <typename DeviceGemmPtr_,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
......@@ -181,6 +187,7 @@ struct TestGemm
ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
......@@ -188,28 +195,40 @@ struct TestGemm
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
bool is_supported = ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = false;
if(std::is_same<CDataType, float>::value)
if(is_supported)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
// Assert
bool res = false;
if(std::is_same<CDataType, float>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, ck::half_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, double>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
return res;
}
else if(std::is_same<CDataType, ck::half_t>::value)
else
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return true;
}
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
return res;
}
};
......@@ -299,6 +318,7 @@ struct TestGemmBF16
// use fp32 host kernel to verify bf16 device kernel
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemm<float,
float,
float,
float,
AElementwiseOperation,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment