Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
6d9a07d7
Commit
6d9a07d7
authored
Feb 29, 2024
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
b30d416c
a776978c
Changes
193
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
737 additions
and
30 deletions
+737
-30
client_example/20_splitk_gemm/splitK_gemm_fp16_f8.cpp
client_example/20_splitk_gemm/splitK_gemm_fp16_f8.cpp
+2
-2
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
.../21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
+2
-2
client_example/22_grouped_gemm/CMakeLists.txt
client_example/22_grouped_gemm/CMakeLists.txt
+3
-0
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_bf16.cpp
...nt_example/22_grouped_gemm/grouped_gemm_fixed_nk_bf16.cpp
+237
-0
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
...nt_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
+2
-2
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
+2
-2
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
+2
-2
client_example/22_im2col_col2im/image_to_column.cpp
client_example/22_im2col_col2im/image_to_column.cpp
+1
-1
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
...ple/23_elementwise_transpose/elementwise_transpose_3d.cpp
+1
-1
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
..._grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
+0
-11
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+40
-0
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
...bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
+217
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
..._fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
+221
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
...d_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
...scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
+1
-1
client_example/24_grouped_conv_activation/grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
+1
-1
No files found.
client_example/20_splitk_gemm/splitK_gemm_fp16_f8.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <vector>
#include <vector>
...
@@ -88,7 +88,7 @@ int main(int argc, char* argv[])
...
@@ -88,7 +88,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -79,7 +79,7 @@ int main()
...
@@ -79,7 +79,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/22_grouped_gemm/CMakeLists.txt
View file @
6d9a07d7
...
@@ -6,3 +6,6 @@ target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel
...
@@ -6,3 +6,6 @@ target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel
add_executable
(
client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp
)
add_executable
(
client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_gemm_operations
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_fixed_nk_bf16 grouped_gemm_fixed_nk_bf16.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_bf16 PRIVATE composable_kernel::device_gemm_operations
)
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_bf16.cpp
0 → 100644
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using
I8
=
int8_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
I8
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
const
int
group_count
=
16
;
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ms
.
push_back
(
256
+
256
*
i
);
Ns
.
push_back
(
128
+
128
*
i
);
Ks
.
push_back
(
128
+
64
*
i
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
std
::
vector
<
SimpleDeviceMem
>
a_dev_bufs
,
b_dev_bufs
,
e_dev_bufs
;
a_dev_bufs
.
reserve
(
group_count
);
b_dev_bufs
.
reserve
(
group_count
);
e_dev_bufs
.
reserve
(
group_count
);
std
::
vector
<
void
*>
p_e
;
p_e
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{}));
b_dev_bufs
.
emplace_back
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{}));
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
1
,
StrideBs
[
i
],
1
,
{
0
}});
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
({
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
{},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
vector
<
const
void
*>
p_a
=
{},
p_b
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_ds
=
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
grouped_gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
SimpleDeviceMem
grouped_gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipGetErrorString
(
hipMemcpy
(
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
grouped_gemm_workspace_dev
.
GetDeviceBuffer
());
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetKBatch
(
argument_ptr
.
get
(),
1
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
j
]
*
Ns
[
j
]
*
Ks
[
j
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
j
]
*
Ks
[
j
]
+
sizeof
(
BDataType
)
*
Ks
[
j
]
*
Ns
[
j
]
+
sizeof
(
EDataType
)
*
Ms
[
j
]
*
Ns
[
j
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -76,7 +76,7 @@ int main()
...
@@ -76,7 +76,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -77,7 +77,7 @@ int main()
...
@@ -77,7 +77,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -77,7 +77,7 @@ int main()
...
@@ -77,7 +77,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
}
...
...
client_example/22_im2col_col2im/image_to_column.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iomanip>
#include <iomanip>
...
...
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <vector>
#include <vector>
...
...
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
deleted
100644 → 0
View file @
b30d416c
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_conv_operations
)
client_example/24_grouped_conv_activation/CMakeLists.txt
0 → 100644
View file @
6d9a07d7
# Fwd scaleadd scaleadd relu
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd scaleadd AB
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8
grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd bilinear
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
client_example/24_grouped_conv_activation/grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
0 → 100644
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_bwd_data_bilinear
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<
InDataType
>
,
InDataType
,
PassThrough
,
PassThrough
,
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
in
.
GetDeviceBuffer
()},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{
in_lengths
},
{
in_strides
},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
+
3
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
in
.
GetDeviceBuffer
()},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{
in_lengths
},
{
in_strides
},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_bwd_data_bilinear
();
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
0 → 100644
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_bilinear.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_bilinear
()
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std
::
array
<
ck
::
index_t
,
6
>
bias_lengths
{
G
,
1
,
K
,
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
6
>
bias_strides
{
K
,
0
,
1
,
0
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
OutDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
out
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
},
{
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
+
3
*
N
*
Ho
*
Wo
*
G
*
K
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
2
*
N
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
out
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
},
{
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
Bilinear
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
int
main
()
{
return
execute_conv_fwd_bilinear
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
→
client_example/24_grouped_
conv_activation/grouped_
convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iomanip>
#include <iomanip>
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
→
client_example/24_grouped_
conv_activation/grouped_
convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple.hpp"
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
→
client_example/24_grouped_
conv_activation/grouped_
convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple.hpp"
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
→
client_example/24_grouped_
conv_activation/grouped_
convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple.hpp"
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
→
client_example/24_grouped_
conv_activation/grouped_
convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple.hpp"
...
...
client_example/2
3_
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
→
client_example/2
4_grouped_conv_activation/
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iomanip>
#include <iomanip>
...
...
client_example/2
3_
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
→
client_example/2
4_grouped_conv_activation/
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
View file @
6d9a07d7
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <tuple>
...
...
Prev
1
2
3
4
5
6
7
8
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment