Commit 6b9a4bd5 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop-staging-0423' into amd-master

parents 56de337f c5f1cdf7
# ONLY XDL_AND_DL_KERNELS
set(CONV2D_PERLAYER_QUANT_SRC conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp)
set(CONV2D_PERCHANNEL_QUANT_SRC conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp)
set(CONV2D_BIAS_PERLAYER_QUANT_SRC conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp)
......
......@@ -52,21 +52,23 @@ Best Perf: 1.42509 ms, 102.988 TFlops, 234.086 GB/s
#arg1: tensor operation (contraction_bilinear=CONTRACTION+Bilinear)
#arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
#arg4: Number of dimension for M, N and K (one for all)
#arg5: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
#arg5: verification (0: no; 1: yes)
#arg6: initialization (0: no init; 1: integer value; 2: decimal value)
#arg7: print tensor value (0: no; 1: yes)
#arg8: time kernel (0: no, 1: yes)
#arg9: alpha
#arg10: beta
#arg11 to 16: M0, M1, N0, N1, K0, K1
#arg17 to 32: Strides for A, B, D and E (skip for default)
#arg6: verification (0: no; 1: yes)
#arg7: initialization (0: no init; 1: integer value; 2: decimal
# value)
#arg8: print tensor value (0: no; 1: yes)
#arg9: time kernel (0: no, 1: yes)
#arg10: alpha
#arg11: beta
#arg12 to 17/29: M0, M1, N0, N1, K0, K1
#arg18/30 to 33/77: Strides for A, B, D and E (skip for default)
################ op datatype compute_datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
################ op datatype compute_datatype num_dim layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 0 2 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
```
Result (MI100)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -22,6 +22,7 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/host_utility/io.hpp"
......@@ -34,7 +35,8 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using F32 = float;
using F64 = double;
template <typename ALayout,
template <index_t NumDimMNK,
typename ALayout,
typename BLayout,
typename CDELayout,
typename DataType,
......@@ -104,18 +106,24 @@ int profile_contraction_impl(ck::index_t do_verification,
e_device_buf.SetZero();
d_device_buf.ToDevice(d_m_n.mData.data());
const std::vector<index_t> a_ms_ks_lengths = {M[0], M[1], K[0], K[1]};
const std::vector<index_t> b_ns_ks_lengths = {N[0], N[1], K[0], K[1]};
const std::vector<index_t> e_ms_ns_lengths = {M[0], M[1], N[0], N[1]};
const std::vector<index_t> d_m_n_lengths = {M[0], M[1], N[0], N[1]};
auto merge_dims = [](const std::vector<ck::index_t>& dims01,
const std::vector<ck::index_t>& dims23) {
std::vector<ck::index_t> dims_szt(dims01.begin(), dims01.end());
dims_szt.insert(dims_szt.end(), dims23.begin(), dims23.end());
return dims_szt;
};
const std::vector<index_t> a_ms_ks_lengths = merge_dims(M, K);
const std::vector<index_t> b_ns_ks_lengths = merge_dims(N, K);
const std::vector<index_t> e_ms_ns_lengths = merge_dims(M, N);
const std::vector<index_t> d_m_n_lengths = merge_dims(M, N);
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
constexpr ck::index_t NumDim = 2;
using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD<NumDim,
NumDim,
NumDim,
using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD<NumDimMNK,
NumDimMNK,
NumDimMNK,
DataType,
DataType,
DTupleDataType,
......@@ -138,9 +146,9 @@ int profile_contraction_impl(ck::index_t do_verification,
if(do_verification)
{
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDim,
NumDim,
NumDim,
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimMNK,
NumDimMNK,
NumDimMNK,
DataType,
DataType,
DataType,
......@@ -159,33 +167,20 @@ int profile_contraction_impl(ck::index_t do_verification,
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_m_n_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_m_n_host_result.mDesc.GetLengths()[1]; ++m1)
e_m_n_host_result.ForEach([&](auto& self, auto idx) {
if constexpr(is_same<CDElementOp, Bilinear>::value)
{
for(size_t n0 = 0; n0 < e_m_n_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_m_n_host_result.mDesc.GetLengths()[3]; ++n1)
{
if constexpr(is_same<CDElementOp, Bilinear>::value)
{
cde_element_op(e_m_n_host_result(m0, m1, n0, n1),
c_m_n_host_result(m0, m1, n0, n1),
d_m_n(m0, m1, n0, n1));
}
else if constexpr(is_same<CDElementOp, Scale>::value)
{
cde_element_op(e_m_n_host_result(m0, m1, n0, n1),
c_m_n_host_result(m0, m1, n0, n1));
}
else
{
static_assert("Unsupported CDElementOp in contraction profiler.");
}
}
}
cde_element_op(self(idx), c_m_n_host_result(idx), d_m_n(idx));
}
}
else if constexpr(is_same<CDElementOp, Scale>::value)
{
cde_element_op(self(idx), c_m_n_host_result(idx));
}
else
{
static_assert("Unsupported CDElementOp in contraction profiler.");
}
});
}
std::string best_op_name;
......@@ -242,9 +237,12 @@ int profile_contraction_impl(ck::index_t do_verification,
auto invoker_ptr = op_ptr->MakeInvokerPointer();
auto nelems_m = M[0] * M[1];
auto nelems_n = N[0] * N[1];
auto nelems_k = K[0] * K[1];
auto nelems_m = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin(), NumDimMNK, 1, std::multiplies<>{});
auto nelems_n = ck::accumulate_n<ck::index_t>(
b_ns_ks_lengths.begin(), NumDimMNK, 1, std::multiplies<>{});
auto nelems_k = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimMNK, NumDimMNK, 1, std::multiplies<>{});
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -48,14 +48,36 @@ inline void collect_index_params(char* argv[],
// Defualt strides for row-major: {Dim1 * Dim2 * Dim3, Dim2 * Dim3, Dim3, 1}
// Defualt strides for column-major: {Dim1, 1, Dim0 * Dim1 * Dim3, Dim0 * Dim1}
// M1, 1, M0 * M1 * K1, M0 * M1
// K0, K1, M0, M1
inline void
assign_default_strides(Row, std::vector<ck::index_t>& strides, std::vector<ck::index_t> dims)
{
strides = {dims[1] * dims[2] * dims[3], dims[2] * dims[3], dims[3], 1};
ck::index_t stride = 1;
for(ck::index_t s = strides.size() - 1; s >= 0; s--)
{
strides[s] = stride;
stride *= dims[s];
}
}
inline void
assign_default_strides(Col, std::vector<ck::index_t>& strides, std::vector<ck::index_t> dims)
{
strides = {dims[1], 1, dims[0] * dims[1] * dims[3], dims[0] * dims[1]};
// Assign second half of strides
ck::index_t stride = 1;
for(ck::index_t s = strides.size() / 2 - 1; s >= 0; s--)
{
strides[s] = stride;
stride *= dims[s];
}
// Assign first half of strides
for(ck::index_t s = strides.size() - 1; s > static_cast<ck::index_t>(strides.size()) / 2 - 1;
s--)
{
strides[s] = stride;
stride *= dims[s];
}
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -31,7 +31,9 @@ template <ck::index_t NDimSpatial,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
typename OutDataType,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool profile_grouped_conv_fwd_impl(int do_verification,
int init_method,
bool do_log,
......@@ -209,7 +211,9 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
OutElementOp,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multiple_d_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_grouped_gemm_two_stage_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
#if DEBUG_LOG
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
#endif // DEBUG_LOG
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemm<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_c,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
DeviceMem gemm_desc_workspace(gemm_ptr->GetWorkSpaceSize(argument_ptr.get()));
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString();
using DeviceOpSplitK =
ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// skip non-splitk grouped_gemm
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) == nullptr)
{
continue;
}
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
{
kbatch_list = {kbatch};
}
for(std::size_t j = 0; j < kbatch_list.size(); j++)
{
auto kbatch_curr = kbatch_list[j];
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
DeviceMem gemm_arg_dev_mem(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->GetDeviceKernelArgSize(argument_ptr.get()));
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetDeviceKernelArgs(argument_ptr.get(), gemm_arg_dev_mem.GetDeviceBuffer());
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
gemm_desc_workspace.SetZero();
for(std::size_t i = 0; i < gemm_descs.size(); i++)
c_device_buf[i]->SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
if(time_kernel)
{
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << ", KBatch = " << best_kbatch
<< std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -8,12 +8,14 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_scale.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -21,25 +23,6 @@
#include "ck/library/utility/literals.hpp"
namespace ck {
template <typename HostTensorA,
typename HostTensorB,
typename AElementOp,
typename BElementOp,
typename ScaleElementOp>
void reference_permute_scale(HostTensorB& b_tensor,
const HostTensorA& a_tensor,
AElementOp a_tensor_op,
BElementOp b_tensor_op,
ScaleElementOp scale_op)
{
b_tensor.ForEach([&](auto& self, auto idx) {
auto tmp_val = a_tensor(idx);
b_tensor_op(tmp_val, tmp_val);
scale_op(tmp_val, tmp_val);
a_tensor_op(self(idx), tmp_val);
});
}
namespace profiler {
template <typename ADataType, typename BDataType, index_t NumDim>
......@@ -54,12 +37,11 @@ bool profile_permute_scale_impl(int do_verification,
bool pass = true;
bool instance_found = false;
using ElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using ElementOp = ck::tensor_operation::element_wise::Scale;
float scale = 2.f;
Tensor<ADataType> a(lengths_vector, input_strides_vector);
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(lengths_vector, input_strides_vector)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(lengths_vector, output_strides_vector);
Tensor<BDataType> host_b(lengths_vector, output_strides_vector);
......@@ -80,12 +62,8 @@ bool profile_permute_scale_impl(int do_verification,
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
ElementOp,
UnaryOp,
Scale,
NumDim>;
using DeviceOp = ck::tensor_operation::device::
DeviceElementwise<ck::Tuple<ADataType>, ck::Tuple<BDataType>, ElementOp, NumDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......@@ -100,7 +78,14 @@ bool profile_permute_scale_impl(int do_verification,
if(do_verification)
{
reference_permute_scale(host_b, a, ElementOp{}, UnaryOp{}, Scale{scale});
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, ElementOp>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, ElementOp{scale});
ref_invoker.Run(ref_argument);
}
auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
......@@ -113,14 +98,8 @@ bool profile_permute_scale_impl(int do_verification,
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
{input_strides},
{output_strides},
input,
output,
ElementOp{},
UnaryOp{},
Scale{scale});
auto argument_ptr = op_ptr->MakeArgumentPointer(
lengths, {input_strides}, {output_strides}, input, output, ElementOp{scale});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......@@ -141,6 +120,7 @@ bool profile_permute_scale_impl(int do_verification,
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "host_b: ", host_b.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl;
}
}
......
......@@ -2,19 +2,6 @@
set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_multiply.cpp
profile_gemm_multiply_add.cpp
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
profile_batched_gemm_reduce.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_bwd_data.cpp
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm_bwd_data.cpp
profile_groupnorm_fwd.cpp
......@@ -29,36 +16,58 @@ set(PROFILER_SOURCES
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
profile_transpose.cpp
profile_permute_scale.cpp
)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
set(PROFILER_EXECUTABLE ckProfiler)
......@@ -68,25 +77,6 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility getopt::getopt)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
......@@ -96,39 +86,65 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -19,7 +19,8 @@ static void print_helper_msg()
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg4: Number of dimension for M, N and K (one for all)\n"
<< "arg5: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -27,23 +28,23 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg6: verification (0: no; 1: yes)\n"
<< "arg7: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10: beta\n"
<< "arg11 to 16: M0, M1, N0, N1, K0, K1\n"
<< "arg17 to 32: Strides for A, B, D and E (skip for default)\n"
<< "arg8: print tensor value (0: no; 1: yes)\n"
<< "arg9: time kernel (0: no, 1: yes)\n"
<< "arg10: alpha\n"
<< "arg11: beta\n"
<< "arg12 to 17/29: M0, M1, N0, N1, K0, K1\n"
<< "arg18/30 to 33/77: Strides for A, B, D and E (skip for default)\n"
<< std::endl;
}
int profile_contraction_bilinear(int argc, char* argv[])
{
const bool default_strides = argc == 17;
const bool default_strides = argc == 18 || 30;
if(argc != 33 && argc != 17)
if(argc != 34 && argc != 78 && !default_strides)
{
print_helper_msg();
exit(1);
......@@ -51,32 +52,33 @@ int profile_contraction_bilinear(int argc, char* argv[])
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
const float beta = std::stof(argv[10]);
const ck::index_t NumDimMNK = std::stoi(argv[4]);
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const ck::index_t init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
const float alpha = std::stof(argv[10]);
const float beta = std::stof(argv[11]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 11;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
std::vector<ck::index_t> StridesA;
std::vector<ck::index_t> StridesB;
std::vector<ck::index_t> StridesE;
std::vector<ck::index_t> StridesD;
const ck::index_t dims_arg_num = 12;
collect_index_params(argv, M, dims_arg_num, NumDimMNK);
collect_index_params(argv, N, dims_arg_num + NumDimMNK, NumDimMNK);
collect_index_params(argv, K, dims_arg_num + NumDimMNK * 2, NumDimMNK);
std::vector<ck::index_t> StridesA(NumDimMNK * 2);
std::vector<ck::index_t> StridesB(NumDimMNK * 2);
std::vector<ck::index_t> StridesE(NumDimMNK * 2);
std::vector<ck::index_t> StridesD(NumDimMNK * 2);
if(!default_strides)
{
collect_index_params(argv, StridesA, dims_arg_num + 6, 4);
collect_index_params(argv, StridesB, dims_arg_num + 10, 4);
collect_index_params(argv, StridesE, dims_arg_num + 14, 4);
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
collect_index_params(argv, StridesA, dims_arg_num + NumDimMNK * 3, NumDimMNK * 2);
collect_index_params(argv, StridesB, dims_arg_num + NumDimMNK * 5, NumDimMNK * 2);
collect_index_params(argv, StridesE, dims_arg_num + NumDimMNK * 7, NumDimMNK * 2);
collect_index_params(argv, StridesD, dims_arg_num + NumDimMNK * 9, NumDimMNK * 2);
}
using F16 = ck::half_t;
......@@ -95,31 +97,71 @@ int profile_contraction_bilinear(int argc, char* argv[])
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
auto merge_dims = [](const std::vector<ck::index_t>& dims01,
const std::vector<ck::index_t>& dims23) {
std::vector<ck::index_t> dims_szt(dims01.begin(), dims01.end());
dims_szt.insert(dims_szt.end(), dims23.begin(), dims23.end());
return dims_szt;
};
assign_default_strides(a_layout, StridesA, merge_dims(M, K));
assign_default_strides(b_layout, StridesB, merge_dims(N, K));
assign_default_strides(cde_layout, StridesE, merge_dims(M, N));
assign_default_strides(cde_layout, StridesD, merge_dims(M, N));
}
if(NumDimMNK == 2)
{
bool pass = ck::profiler::profile_contraction_impl<2,
ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
}
else if(NumDimMNK == 6)
{
bool pass = ck::profiler::profile_contraction_impl<6,
ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
}
else
{
throw std::runtime_error("Not supported NumDimMNK");
return false;
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -19,7 +19,8 @@ static void print_helper_msg()
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg4: Number of dimension for M, N and K (one for all)\n"
<< "arg5: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -27,22 +28,22 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg6: verification (0: no; 1: yes)\n"
<< "arg7: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10 to 15: M0, M1, N0, N1, K0, K1\n"
<< "arg16 to 31: Strides for A, B, D and E (skip for default)\n"
<< "arg8: print tensor value (0: no; 1: yes)\n"
<< "arg9: time kernel (0: no, 1: yes)\n"
<< "arg10: alpha\n"
<< "arg11 to 16/28: M0, M1, N0, N1, K0, K1\n"
<< "arg17/29 to 32/63: Strides for A, B, E (skip for default)\n"
<< std::endl;
}
int profile_contraction_scale(int argc, char* argv[])
{
const bool default_strides = argc == 16;
const bool default_strides = argc == 17 || argc == 29;
if(argc != 32 && argc != 16)
if(argc != 29 && argc != 65 && !default_strides)
{
print_helper_msg();
exit(1);
......@@ -50,31 +51,30 @@ int profile_contraction_scale(int argc, char* argv[])
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
const ck::index_t NumDimMNK = std::stoi(argv[4]);
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const ck::index_t init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
const float alpha = std::stof(argv[10]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 10;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
std::vector<ck::index_t> StridesA;
std::vector<ck::index_t> StridesB;
std::vector<ck::index_t> StridesE;
std::vector<ck::index_t> StridesD;
const ck::index_t dims_arg_num = 11;
collect_index_params(argv, M, dims_arg_num, NumDimMNK);
collect_index_params(argv, N, dims_arg_num + NumDimMNK, NumDimMNK);
collect_index_params(argv, K, dims_arg_num + NumDimMNK * 2, NumDimMNK);
std::vector<ck::index_t> StridesA(NumDimMNK * 2);
std::vector<ck::index_t> StridesB(NumDimMNK * 2);
std::vector<ck::index_t> StridesE(NumDimMNK * 2);
if(!default_strides)
{
collect_index_params(argv, StridesA, dims_arg_num + 6, 4);
collect_index_params(argv, StridesB, dims_arg_num + 10, 4);
collect_index_params(argv, StridesE, dims_arg_num + 14, 4);
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
collect_index_params(argv, StridesA, dims_arg_num + NumDimMNK * 3, NumDimMNK * 2);
collect_index_params(argv, StridesB, dims_arg_num + NumDimMNK * 5, NumDimMNK * 2);
collect_index_params(argv, StridesE, dims_arg_num + NumDimMNK * 7, NumDimMNK * 2);
}
using F16 = ck::half_t;
......@@ -93,32 +93,71 @@ int profile_contraction_scale(int argc, char* argv[])
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
auto merge_dims = [](const std::vector<ck::index_t>& dims01,
const std::vector<ck::index_t>& dims23) {
std::vector<ck::index_t> dims_szt(dims01.begin(), dims01.end());
dims_szt.insert(dims_szt.end(), dims23.begin(), dims23.end());
return dims_szt;
};
assign_default_strides(a_layout, StridesA, merge_dims(M, K));
assign_default_strides(b_layout, StridesB, merge_dims(N, K));
assign_default_strides(cde_layout, StridesE, merge_dims(M, N));
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<>,
Scale>(do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
if(NumDimMNK == 2)
{
bool pass = ck::profiler::profile_contraction_impl<2,
ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<>,
Scale>(do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesE);
return pass;
}
else if(NumDimMNK == 6)
{
bool pass = ck::profiler::profile_contraction_impl<6,
ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<>,
Scale>(do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesE);
return pass;
}
else
{
throw std::runtime_error("Not supported NumDimMNK");
return false;
}
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
......
......@@ -24,6 +24,9 @@ enum struct ConvDataType
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
F8_F8_F8, // 4
BF8_BF8_F8, // 5
F8_BF8_F8, // 6
BF8_F8_F8, // 7
};
#define OP_NAME "grouped_conv_fwd"
......@@ -38,7 +41,10 @@ static void print_helper_msg()
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8\n"
<< " 4: Input fp8, Weight fp8, Output fp8)\n"
<< " 4: Input fp8, Weight fp8, Output fp8\n"
<< " 5: Input bf8, Weight bf8, Output fp8\n"
<< " 6: Input fp8, Weight bf8, Output fp8\n"
<< " 7: Input bf8, Weight fp8, Output fp8)\n"
<< "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
<< " 1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
......@@ -82,6 +88,7 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
using BF16 = ck::bhalf_t;
using INT8 = int8_t;
using F8 = ck::f8_t;
using BF8 = ck::bf8_t;
//
using GNWC = ck::tensor_layout::convolution::GNWC;
......@@ -115,7 +122,9 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
auto out_layout,
auto in_type,
auto wei_type,
auto out_type) {
auto out_type,
auto a_compute_type,
auto b_compute_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
......@@ -126,13 +135,18 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using AComputeType = decltype(a_compute_type);
using BComputeType = decltype(b_compute_type);
bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType>(
OutDataType,
AComputeType,
BComputeType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
......@@ -143,57 +157,59 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
return profile(
I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
return profile(
I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
// NHWGC_GKYXC_NHWGK
......@@ -201,61 +217,75 @@ int profile_grouped_conv_fwd(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{});
return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
return profile(
I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
return profile(
I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
}
else if(data_type == ConvDataType::F8_F8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{}, F8{}, F8{});
}
else if(data_type == ConvDataType::BF8_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, BF8{}, F8{}, BF8{}, BF8{});
}
else if(data_type == ConvDataType::F8_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, BF8{}, F8{}, F8{}, BF8{});
}
else if(data_type == ConvDataType::BF8_F8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, F8{}, F8{}, BF8{}, F8{});
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_gemm_two_stage_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
};
enum struct GemmDataType
{
F16_F16_F16, // 0
BF16_INT8_BF16 // 1
};
#define OP_NAME "grouped_gemm_two_stage"
#define OP_DESC "Grouped GEMM TwoStage"
namespace {
std::vector<int> argToIntArray(char* input)
{
std::vector<int> out;
std::istringstream in(input);
std::string item;
while(std::getline(in, item, ','))
{
out.push_back(std::stoi(item));
}
return out;
}
int profile_grouped_gemm_two_stage(int argc, char* argv[])
{
if(argc < 14)
{
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp16; 1: bf16@int8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n]);\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0=n0, 1=yes)\n"
<< "arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "arg15: kbatch value (default 1)\n"
<< "optional:\n"
<< "arg16: number of warm-up cycles (default 1)\n"
<< "arg17: number of iterations (default 10)\n"
<< std::endl;
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const auto Ms = argToIntArray(argv[8]);
const auto Ns = argToIntArray(argv[9]);
const auto Ks = argToIntArray(argv[10]);
auto StrideAs = argToIntArray(argv[11]);
auto StrideBs = argToIntArray(argv[12]);
auto StrideCs = argToIntArray(argv[13]);
const int kbatch = argc == 15 ? std::stoi(argv[14]) : 1;
const int DefaultStrideA = Ks[0];
const int DefaultStrideB = Ns[0];
const int DefaultStrideC = Ns[0];
for(size_t i = 0; i < Ms.size(); ++i)
{
StrideAs[i] = StrideAs[i] == -1 ? DefaultStrideA : StrideAs[i];
StrideBs[i] = StrideBs[i] == -1 ? DefaultStrideB : StrideBs[i];
StrideCs[i] = StrideCs[i] == -1 ? DefaultStrideC : StrideCs[i];
}
int n_warmup = 1;
int n_iter = 10;
if(argc == 17)
{
n_warmup = std::stoi(argv[16]);
n_iter = std::stoi(argv[17]);
}
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_two_stage_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch,
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::BF16_INT8_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_two_stage_impl<ck::bhalf_t,
int8_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch,
n_warmup,
n_iter);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
}
return 0;
}
} // anonymous namespace
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_gemm_two_stage);
......@@ -37,6 +37,20 @@ static void print_helper_msg()
// clang-format on
}
void init_strides(const std::vector<ck::index_t>& lengths,
const std::vector<ck::index_t>& dims_order,
std::vector<ck::index_t>& strides)
{
ck::index_t stride = 1;
for(ck::index_t d = lengths.size() - 1; d >= 0; d--)
{
ck::index_t dim = dims_order[d];
strides[dim] = stride;
stride *= lengths[dim];
}
}
} // namespace
int profile_permute_scale(int argc, char* argv[])
......@@ -58,16 +72,21 @@ int profile_permute_scale(int argc, char* argv[])
const int num_dims = dims_argc / 3;
std::vector<ck::index_t> lengths(num_dims);
std::vector<ck::index_t> input_strides(num_dims);
std::vector<ck::index_t> output_strides(num_dims);
std::vector<ck::index_t> input_dims_order(num_dims);
std::vector<ck::index_t> output_dims_order(num_dims);
for(int i = 0; i < num_dims; i++)
{
lengths[i] = std::stoi(argv[control_argc + i]);
input_strides[i] = std::stoi(argv[control_argc + num_dims + i]);
output_strides[i] = std::stoi(argv[control_argc + 2 * num_dims + i]);
lengths[i] = std::stoi(argv[control_argc + i]);
input_dims_order[i] = std::stoi(argv[control_argc + num_dims + i]);
output_dims_order[i] = std::stoi(argv[control_argc + 2 * num_dims + i]);
}
std::vector<ck::index_t> input_strides(num_dims);
std::vector<ck::index_t> output_strides(num_dims);
init_strides(lengths, input_dims_order, input_strides);
init_strides(lengths, output_dims_order, output_strides);
using F32 = float;
using F16 = ck::half_t;
......
#!/bin/bash
## GPU visibility
export HIP_VISIBLE_DEVICES=0
DRIVER="../build/bin/ckProfiler"
echo $DRIVER
OP=$1
DATATYPE=$2
VERIFY=$3
INIT=$4
LOG=$5
TIME=$6
# 1D
######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 67108864 0 0
# # 2D
# ######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8192 8192 0 1 1 0
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8192 8192 1 0 0 1
# 3D
######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 1024 8192 0 1 2 2 1 0
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 1024 8192 2 1 0 0 1 2
# 4D
######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 512 8192 0 1 2 3 3 2 1 0
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 512 8192 3 2 1 0 0 1 2 3
# 5D
######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 2 256 8192 0 1 2 3 4 4 3 2 1 0
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 2 256 8192 4 3 2 1 0 0 1 2 3 4
# 6D
######## op datatype verify init log time dims in_strides_order out_strides_order
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 2 2 128 8192 0 1 2 3 4 5 5 4 3 2 1 0
$DRIVER $OP $DATATYPE $VERIFY $INIT $LOG $TIME 8 2 2 2 128 8192 5 4 3 2 1 0 0 1 2 3 4 5
......@@ -46,7 +46,18 @@ function(add_test_executable TEST_NAME)
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT GPU_TARGETS MATCHES "gfx9" AND source MATCHES "xdl")
message("removing xdl test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
message("removing wmma test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
#only continue if there are some source files left on the list
if(ARGN)
add_executable(${TEST_NAME} ${ARGN})
......@@ -100,6 +111,18 @@ function(add_gtest_executable TEST_NAME)
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT GPU_TARGETS MATCHES "gfx9" AND source MATCHES "xdl")
message("removing xdl test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
message("removing wmma test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
#only continue if there are some source files left on the list
if(ARGN)
add_executable(${TEST_NAME} ${ARGN})
......@@ -117,6 +140,7 @@ function(add_gtest_executable TEST_NAME)
set(result ${result} PARENT_SCOPE)
endfunction()
add_compile_options(-Wno-c++20-extensions)
add_subdirectory(magic_number_division)
add_subdirectory(space_filling_curve)
add_subdirectory(conv_util)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_gtest_executable(test_batched_gemm test_batched_gemm.cpp)
add_gtest_executable(test_batched_gemm test_batched_gemm_xdl.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm PRIVATE utility device_batched_gemm_instance)
set(target 1)
endif()
endforeach()
\ No newline at end of file
endif()
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(test_batched_gemm_gemm)
add_gtest_executable(test_batched_gemm_gemm_fp16 test_batched_gemm_gemm_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_gemm_fp16 PRIVATE utility device_batched_gemm_gemm_instance)
add_dependencies(test_batched_gemm_gemm test_batched_gemm_gemm_fp16)
set(target 1)
endif()
endif()
endforeach()
\ No newline at end of file
add_gtest_executable(test_batched_gemm_gemm_fp16 test_batched_gemm_gemm_fp16_xdl.cpp)
if(result EQUAL 0)
add_custom_target(test_batched_gemm_gemm)
target_link_libraries(test_batched_gemm_gemm_fp16 PRIVATE utility device_batched_gemm_gemm_instance)
add_dependencies(test_batched_gemm_gemm test_batched_gemm_gemm_fp16)
endif()
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE utility device_batched_gemm_reduce_instance)
set(target 1)
endif()
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16_xdl.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE utility device_batched_gemm_reduce_instance)
endif()
endforeach()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment