Commit 687d2b7e authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 5d718e6b f5210953
add_example_executable(example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp)
if(GPU_TARGETS MATCHES "gfx1100" OR GPU_TARGETS MATCHES "gfx1101" OR GPU_TARGETS MATCHES "gfx1102")
if(GPU_TARGETS MATCHES "gfx11")
add_example_executable(example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp)
endif()
......@@ -43,9 +43,10 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto ASpec = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto BSpec = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceOpInstanceKKNN =
......@@ -55,43 +56,44 @@ using DeviceOpInstanceKKNN =
NumDimK,
ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
ABSpec,
ABSpec,
ASpec,
BSpec,
DESpec,
256,
1,
128,
256,
8,
8,
64,
64,
64,
4,
16,
16,
1,
4,
4,
S<4, 64, 1>,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
4,
4,
true,
S<4, 64, 1>,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
4,
4,
true,
1,
1,
S<1, 32, 1, 8>,
S<1, 64, 1, 2>,
8>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
......@@ -251,21 +253,6 @@ int main(int argc, char* argv[])
ck::index_t K0 = 2048;
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
......@@ -276,13 +263,43 @@ int main(int argc, char* argv[])
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
G0 = std::stoi(argv[4]);
G1 = std::stoi(argv[5]);
M0 = std::stoi(argv[6]);
M1 = std::stoi(argv[7]);
N0 = std::stoi(argv[8]);
N1 = std::stoi(argv[9]);
K0 = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4-10: G0, G1, M0, M1, N0, N1, K0\n");
exit(0);
}
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<BDataType> b_gs_ns_ks(b_gs_ns_ks_lengths, b_gs_ns_ks_strides);
Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, d_gs_ms_ns_strides);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
template <typename BiasLay, typename ResidualLay>
struct LayoutSetting
......@@ -42,41 +42,42 @@ using DeviceConvFwdInstance =
OutputLayout<NDimSpatial>,
InKernelDataType,
WeiKernelDataType,
ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutKernelDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutKernelDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
64, // NPerBlock
64, // KPerBlock
8, // K1
16, // MPerWMMA
16, // NPerWMMA
4, // MRepeat
2, // NRepeat
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
1, // NRepeat
S<4, 32, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
true, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<4, 32, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
true, // BBlockLdsExtraN
4,
2,
S<1, 32, 1, 8>,
1,
1,
S<1, 16, 1, 8>,
8>;
template <ck::index_t NDimSpatial>
......@@ -277,9 +278,10 @@ bool run_grouped_conv_fwd_bias_relu_add_example(int argc, char* argv[])
switch(conv_param.num_dim_spatial_)
{
case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case 2: return run_grouped_conv_fwd_bias_relu_add<2>(config, conv_param);
case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
// case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case 2:
return run_grouped_conv_fwd_bias_relu_add<2>(config, conv_param);
// case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
}
return false;
......
if(GPU_TARGETS MATCHES "gfx11")
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_self_attention_forward_wmma_fp16 self_attention_forward_wmma_fp16.cpp)
add_example_executable(example_cross_attention_forward_wmma_fp16 cross_attention_forward_wmma_fp16.cpp)
add_example_executable(example_multi_query_attention_forward_wmma_fp16 multi_query_attention_forward_wmma_fp16.cpp)
add_example_executable(example_grouped_query_attention_forward_wmma_fp16 grouped_query_attention_forward_wmma_fp16.cpp)
endif()
add_custom_target(example_gemm_scale_softmax_gemm)
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
......@@ -20,4 +29,3 @@ add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_sc
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp)
add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskOutUpperTriangle;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceMHAFactory =
std::tuple<ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc0DataType,
Acc1BiasDataType,
Acc1DataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
// Gemm 0
128, // MPerBlock
64, // LPerBlock
64, // KPerBlock
8, // AK1
8, // BK1
// Gemm 1
64, // NPerBlock
64, // LTilePerBlock
8, // L1
16, // MPerWMMA
16, // LPerWMMA
16, // NPerWMMA
// Per repeat = wave_m = wave_num, wave_n = 1
1, // MRepeat
4, // LRepeat
4, // NRepeat
S<4, 64, 1>, // ABlockTransfer MK -> K0 M K1
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // B0BlockTransfer LK -> K0 L K1
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 8, 8>, // B1BlockTransfer NL -> L0 N L1
S<0, 2, 1>,
S<0, 2, 1>,
1,
8,
1,
false,
1, // CShuffleMWmmaPerWavePerShuffle
2, // CShuffleNWmmaPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec> // MaskingSpecialization
>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 32, 160, 8, 8,
// Gemm 1
80, 32, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 2, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 32, 160, 8, 8,
// Gemm 1
80, 32, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 2, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 128, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 192, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 12, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 192, 48, 8,4,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 12, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 64, 48, 8,4,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_cross_attention_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Grouped Query Attention,
Ainslie, Joshua, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. “GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints.”
arXiv, May 22, 2023. https://doi.org/10.48550/arXiv.2305.13245.
Example is GQA-4
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
static constexpr ck::index_t QueryGroupNumber = 4;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
32,
// Gemm 0
16, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
32,
// Gemm 0
16, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
64,
// Gemm 0
32, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
64,
// Gemm 0
32, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
128,
// Gemm 0
64, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
128,
// Gemm 0
64, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance =
ck::tensor_operation::host::ReferenceBatchedGemm_GQA<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
QueryGroupNumber>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance =
ck::tensor_operation::host::ReferenceBatchedGemm_GQA<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp,
QueryGroupNumber>;
#include "run_grouped_query_attention_forward_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Multi-Query Attention
Shazeer, Noam. “Fast Transformer Decoding: One Write-Head Is All You Need.” arXiv.org, November 6,
2019. https://arxiv.org/abs/1911.02150v1.
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceMultiQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm_MQA<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm_MQA<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_multi_query_attention_forward_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 120;
ck::index_t N = 1000;
ck::index_t K = 64;
ck::index_t O = 128;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
G0,
G1,
alpha,
input_permute,
output_permute);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<Acc0DataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MHA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << G0 << ", HeadNum: " << G1 << ", M: " << M
<< ", N: " << N << ", K: " << K << ", O: " << O << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t q_sequence_length = 256;
ck::index_t kv_sequence_length = 64;
ck::index_t head_dim = 80;
// Output shape C[batch_size, q_sequence_length, head_num, head_dim]. Batch dim, outer dim,
// inner dim must match GEMM shape C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o]) C_g0_m_g1_o =
// permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t batch_size = 2;
ck::index_t head_num = 8;
float alpha = 1;
bool input_permute = true;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
q_sequence_length = std::stoi(argv[4]);
kv_sequence_length = std::stoi(argv[5]);
head_dim = std::stoi(argv[6]);
batch_size = std::stoi(argv[7]);
head_num = std::stoi(argv[8]);
alpha = std::stof(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf(
"arg4 to 8: q_sequence_length, kv_sequence_length, head_dim, batch_size, head_num\n");
printf("arg9: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{batch_size, head_num, q_sequence_length, head_dim};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute ? std::vector<ck::index_t>{q_sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// A layout [batch_size, q_sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * q_sequence_length * head_dim,
q_sequence_length * head_dim,
head_dim,
1}; // A layout [batch_size, head_num, q_sequence_length, head_dim]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{
batch_size, head_num, kv_sequence_length, head_dim};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute ? std::vector<ck::index_t>{kv_sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// B0 layout [batch_size, kv_sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * kv_sequence_length * head_dim,
kv_sequence_length * head_dim,
head_dim,
1}; // B0 layout [batch_size, head_num, kv_sequence_length, head_dim]
std::vector<ck::index_t> b1_gs_os_ns_lengths{
batch_size, head_num, head_dim, kv_sequence_length};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{kv_sequence_length * head_num * head_dim,
head_dim,
1,
head_num * head_dim}
// B1 layout [batch_size, kv_sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * kv_sequence_length * head_dim,
kv_sequence_length * head_dim,
1,
head_dim}; // B1 layout [batch_size, head_num, kv_sequence_length, head_dim]
std::vector<ck::index_t> c_gs_ms_os_lengths{batch_size, head_num, q_sequence_length, head_dim};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute ? std::vector<ck::index_t>{q_sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// C layout [batch_size, q_sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * q_sequence_length * head_dim,
q_sequence_length * head_dim,
head_dim,
1}; // C layout [batch_size, head_num, q_sequence_length, head_dim]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
std::vector<ck::index_t> kv_gs_ns_ks_lengths{
batch_size, head_num, kv_sequence_length, 2, head_dim};
std::vector<ck::index_t> kv_gs_ns_ks_strides = std::vector<ck::index_t>{
kv_sequence_length * head_num * 2 * head_dim,
2 * head_dim,
head_num * 2 * head_dim,
head_dim,
1}; // kv layout [batch_size, q_sequence_length, head_num, 2, head_dim]
Tensor<ADataType> kv_gs_ns_ks(kv_gs_ns_ks_lengths, kv_gs_ns_ks_strides);
// merge kv into a packed pointer send to device
b0_gs_ns_ks.ForEach(
[&](auto& self, auto idx) { kv_gs_ns_ks(idx[0], idx[1], idx[2], 0, idx[3]) = self(idx); });
b1_gs_os_ns.ForEach(
[&](auto& self, auto idx) { kv_gs_ns_ks(idx[0], idx[1], idx[3], 1, idx[2]) = self(idx); });
DeviceMem q_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem kv_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize() +
sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
q_device_buf.ToDevice(a_gs_ms_ks.mData.data());
kv_device_buf.ToDevice(kv_gs_ns_ks.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeCrossAttnInvoker();
auto argument =
gemm.MakeCrossAttnArgument(static_cast<ADataType*>(q_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(kv_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
batch_size,
q_sequence_length,
kv_sequence_length,
head_num,
head_dim,
alpha);
// if(!gemm.IsSupportedArgument(argument))
// {
// std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
// }
ck::index_t BatchCount = batch_size * head_num;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(q_sequence_length) * kv_sequence_length * head_dim * 2 +
size_t(q_sequence_length) * kv_sequence_length * head_dim * 2) *
BatchCount;
std::size_t num_btype = (sizeof(ADataType) * q_sequence_length * head_dim +
sizeof(B0DataType) * head_dim * kv_sequence_length +
sizeof(B1DataType) * kv_sequence_length * head_dim +
sizeof(CDataType) * q_sequence_length * head_dim) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, q_sequence_length, head_dim});
Tensor<B0DataType> b0_g_k_n({BatchCount, head_dim, kv_sequence_length});
Tensor<B1DataType> b1_g_n_o({BatchCount, kv_sequence_length, head_dim});
Tensor<Acc0DataType> acc0_g_m_n(
{BatchCount, q_sequence_length, kv_sequence_length}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount,
q_sequence_length,
kv_sequence_length}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result(
{BatchCount, q_sequence_length, head_dim}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * head_num + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * head_num + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * head_num + idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(kv_sequence_length);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * head_num + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MHA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << batch_size << ", HeadNum: " << head_num
<< ", q_sequence_length: " << q_sequence_length
<< ", kv_sequence_length: " << kv_sequence_length << ", head_dim: " << head_dim
<< std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 64;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 4;
ck::index_t G1 = 16;
ck::index_t KV_head = QueryGroupNumber;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, KV_head, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * K, K, KV_head * K, 1}
// B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{KV_head * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, KV_head, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * O, O, 1, KV_head * O}
// B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{KV_head * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
G0,
G1,
alpha,
input_permute,
output_permute);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1;
std::size_t num_btype =
(sizeof(ADataType) * M * K + sizeof(CDataType) * M * O) * G0 * G1 +
(sizeof(B0DataType) * K * N + sizeof(B1DataType) * N * O) * G0 * QueryGroupNumber;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g0_g1_m_k({G0, G1, M, K});
Tensor<B0DataType> b0_g0_gq_k_n({G0, QueryGroupNumber, K, N});
Tensor<B1DataType> b1_g0_gq_n_o({G0, QueryGroupNumber, N, O});
Tensor<Acc0DataType> acc0_g0_g1_m_n({G0, G1, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g0_g1_m_n({G0, G1, M, N}); // scratch object after softmax
Tensor<CDataType> c_g0_g1_m_o_host_result({G0, G1, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g0_g1_m_k(idx[0], idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g0_gq_k_n(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g0_gq_n_o(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(a_g0_g1_m_k,
b0_g0_gq_k_n,
acc0_g0_g1_m_n,
a_element_op,
b0_element_op,
acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(N);
acc0_g0_g1_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[2], idx[3]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g0_g1_m_n, a1_g0_g1_m_n, 1, 0, {3});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g0_g1_m_n,
b1_g0_gq_n_o,
c_g0_g1_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach(
[&](auto& self, auto idx) { self(idx) = c_g0_g1_m_o_host_result(idx); });
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MQA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << G0 << ", HeadNum: " << G1 << ", M: " << M
<< ", N: " << N << ", K: " << K << ", O: " << O << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 120;
ck::index_t N = 1000;
ck::index_t K = 64;
ck::index_t O = 128;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
ck::index_t KV_head = 1;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, KV_head, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * K, K, KV_head * K, 1}
// B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{KV_head * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, KV_head, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * O, O, 1, KV_head * O}
// B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{KV_head * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
G0,
G1,
alpha,
input_permute,
output_permute);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(CDataType) * M * O) * G0 * G1 +
(sizeof(B0DataType) * K * N + sizeof(B1DataType) * N * O) * G0;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g0_g1_m_k({G0, G1, M, K});
Tensor<B0DataType> b0_g0_1_k_n({G0, 1, K, N});
Tensor<B1DataType> b1_g0_1_n_o({G0, 1, N, O});
Tensor<Acc0DataType> acc0_g0_g1_m_n({G0, G1, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g0_g1_m_n({G0, G1, M, N}); // scratch object after softmax
Tensor<CDataType> c_g0_g1_m_o_host_result({G0, G1, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g0_g1_m_k(idx[0], idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g0_1_k_n(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g0_1_n_o(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(a_g0_g1_m_k,
b0_g0_1_k_n,
acc0_g0_g1_m_n,
a_element_op,
b0_element_op,
acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(N);
acc0_g0_g1_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[2], idx[3]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g0_g1_m_n, a1_g0_g1_m_n, 1, 0, {3});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g0_g1_m_n,
b1_g0_1_n_o,
c_g0_g1_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach(
[&](auto& self, auto idx) { self(idx) = c_g0_g1_m_o_host_result(idx); });
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MQA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << G0 << ", HeadNum: " << G1 << ", M: " << M
<< ", N: " << N << ", K: " << K << ", O: " << O << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t sequence_length = 256;
ck::index_t head_dim = 80;
// Output shape C[batch_size, sequence_length, head_num, head_dim]. Batch dim, outer dim, inner
// dim must match GEMM shape C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o]) C_g0_m_g1_o =
// permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t batch_size = 2;
ck::index_t head_num = 8;
float alpha = 1;
bool input_permute = true;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
sequence_length = std::stoi(argv[4]);
head_dim = std::stoi(argv[5]);
batch_size = std::stoi(argv[6]);
head_num = std::stoi(argv[7]);
alpha = std::stof(argv[8]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: sequence_length, head_dim, batch_size, head_num\n");
printf("arg8: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{batch_size, head_num, sequence_length, head_dim};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute ? std::vector<ck::index_t>{sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// A layout [batch_size, sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * sequence_length * head_dim,
sequence_length * head_dim,
head_dim,
1}; // A layout [batch_size, head_num, sequence_length, head_dim]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{batch_size, head_num, sequence_length, head_dim};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute ? std::vector<ck::index_t>{sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// B0 layout [batch_size, sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * sequence_length * head_dim,
sequence_length * head_dim,
head_dim,
1}; // B0 layout [batch_size, head_num, sequence_length, head_dim]
std::vector<ck::index_t> b1_gs_os_ns_lengths{batch_size, head_num, head_dim, sequence_length};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{sequence_length * head_num * head_dim,
head_dim,
1,
head_num * head_dim}
// B1 layout [batch_size, sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * sequence_length * head_dim,
sequence_length * head_dim,
1,
head_dim}; // B1 layout [batch_size, head_num, sequence_length, head_dim]
std::vector<ck::index_t> c_gs_ms_os_lengths{batch_size, head_num, sequence_length, head_dim};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute ? std::vector<ck::index_t>{sequence_length * head_num * head_dim,
head_dim,
head_num * head_dim,
1}
// C layout [batch_size, sequence_length, head_num, head_dim]
: std::vector<ck::index_t>{
head_num * sequence_length * head_dim,
sequence_length * head_dim,
head_dim,
1}; // C layout [batch_size, head_num, sequence_length, head_dim]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
std::vector<ck::index_t> qkv_gs_ms_ks_lengths{
batch_size, head_num, sequence_length, 3, head_dim};
std::vector<ck::index_t> qkv_gs_ms_ks_strides = std::vector<ck::index_t>{
sequence_length * head_num * 3 * head_dim,
3 * head_dim,
head_num * 3 * head_dim,
head_dim,
1}; // qkv layout [batch_size, sequence_length, head_num, 3, head_dim]
Tensor<ADataType> qkv_gs_ms_ks(qkv_gs_ms_ks_lengths, qkv_gs_ms_ks_strides);
// merge qkv into a packed pointer send to device
a_gs_ms_ks.ForEach(
[&](auto& self, auto idx) { qkv_gs_ms_ks(idx[0], idx[1], idx[2], 0, idx[3]) = self(idx); });
b0_gs_ns_ks.ForEach(
[&](auto& self, auto idx) { qkv_gs_ms_ks(idx[0], idx[1], idx[2], 1, idx[3]) = self(idx); });
b1_gs_os_ns.ForEach(
[&](auto& self, auto idx) { qkv_gs_ms_ks(idx[0], idx[1], idx[3], 2, idx[2]) = self(idx); });
DeviceMem qkv_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize() +
sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize() +
sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
qkv_device_buf.ToDevice(qkv_gs_ms_ks.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeSelfAttnInvoker();
auto argument =
gemm.MakeSelfAttnArgument(static_cast<ADataType*>(qkv_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
batch_size,
sequence_length,
head_num,
head_dim,
alpha);
// if(!gemm.IsSupportedArgument(argument))
// {
// std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
// }
ck::index_t BatchCount = batch_size * head_num;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(sequence_length) * sequence_length * head_dim * 2 +
size_t(sequence_length) * sequence_length * head_dim * 2) *
BatchCount;
std::size_t num_btype = (sizeof(ADataType) * sequence_length * head_dim +
sizeof(B0DataType) * head_dim * sequence_length +
sizeof(B1DataType) * sequence_length * head_dim +
sizeof(CDataType) * sequence_length * head_dim) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, sequence_length, head_dim});
Tensor<B0DataType> b0_g_k_n({BatchCount, head_dim, sequence_length});
Tensor<B1DataType> b1_g_n_o({BatchCount, sequence_length, head_dim});
Tensor<Acc0DataType> acc0_g_m_n(
{BatchCount, sequence_length, sequence_length}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n(
{BatchCount, sequence_length, sequence_length}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result(
{BatchCount, sequence_length, head_dim}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * head_num + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * head_num + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * head_num + idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(sequence_length);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * head_num + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MHA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << batch_size << ", HeadNum: " << head_num
<< ", sequence_length: " << sequence_length << ", head_dim: " << head_dim
<< std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 32, 160, 8, 8,
// Gemm 1
80, 32, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 2, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
32,
// Gemm 0
16, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 64, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
64,
// Gemm 0
32, 32, 160, 8, 8,
// Gemm 1
80, 32, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 2, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 128, 80, 8, 8,
// Gemm 1
80, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 5,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 192, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 12, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
128,
// Gemm 0
64, 64, 48, 8, 8,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
256,
// Gemm 0
128, 192, 48, 8,4,
// Gemm 1
48, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 12, 3,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_self_attention_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
if(GPU_TARGETS MATCHES "gfx11")
add_custom_target(example_fpAintB_gemm_wmma)
add_example_executable(example_fp16int8_gemm_wmma fp16int8_gemm_wmma.cpp)
add_dependencies(example_fpAintB_gemm_wmma example_fp16int8_gemm_wmma)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_fpAintB_gemm.hpp"
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
template <typename IntType>
struct UnsignedWeightPreprocessor
{
};
template <>
struct UnsignedWeightPreprocessor<int8_t>
{
using UnsignedWeight = Tensor<uint8_t>;
using SignedWeight = Tensor<int8_t>;
static UnsignedWeight convert(SignedWeight const& Input)
{
UnsignedWeight Output = Input.template CopyAsType<uint8_t>();
auto f_kn = [&](auto k, auto n) {
const uint8_t adder = 128;
int8_t v_signed_weight;
uint8_t v_unsigned_weight;
ck::tensor_operation::element_wise::PassThrough{}(v_signed_weight, Input(k, n));
v_unsigned_weight = ck::type_convert<uint8_t>(v_signed_weight) + adder;
Output(k, n) = v_unsigned_weight;
};
make_ParallelTensorFunctor(f_kn, Input.mDesc.GetLengths()[0], Input.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
return Output;
}
UnsignedWeight operator()(SignedWeight const& Input) { return convert(Input); }
};
inline bool
parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideC = std::stoi(argv[9]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl;
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp"
// Implementation follows the paper:
// Kim, Young Jin, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. “Who Says Elephants Can’t Run:
// Bringing Large Scale MoE Models into Cloud Scale Production.” arXiv, November 17, 2022.
// https://doi.org/10.48550/arXiv.2211.10017. Assume weight (Matrix B) is add preprocess to
// unsigned.
// The DeviceOp is CDataType = ADataType * Dequant(BDataType) * ScaleDataType
// The HostRef is CDataType = ADataType * Dequant(QuantDataType) * ScaleDataType
// TODO: Current implementation consume more VGPR than expected.
using ADataType = ck::half_t;
using QuantDataType = int8_t;
using BDataType = uint8_t;
using ScaleDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceFpAintBGemm_Wmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
ScaleDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
8, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferencefpAintBGemm<ADataType,
QuantDataType,
ScaleDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
using namespace ck::literals;
auto& [M, N, K, StrideA, StrideB, StrideC] = problem_size;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<QuantDataType> quant_b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
// assume scale tensor is [1, n]
Tensor<ScaleDataType> scale_k_n(f_host_tensor_descriptor(K, N, 0, Row{}));
switch(config.init_method)
{
case 0: break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-1.f, 1.f}(a_m_k);
ck::utils::FillUniformDistributionIntegerValue<QuantDataType>{-1.f, 1.f}(quant_b_k_n);
ck::utils::FillUniformDistributionIntegerValue<ScaleDataType>{-1.f, 1.f}(scale_k_n);
break;
case 2:
ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck::utils::FillUniformDistribution<QuantDataType>{-1.f, 1.f}(quant_b_k_n);
ck::utils::FillUniformDistribution<ScaleDataType>{-1.f, 1.f}(scale_k_n);
break;
default:
ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck::utils::FillUniformDistribution<QuantDataType>{-1.f, 1.f}(quant_b_k_n);
ck::utils::FillUniformDistribution<ScaleDataType>{-1.f, 1.f}(scale_k_n);
}
UnsignedWeightPreprocessor<QuantDataType> preprocessor;
Tensor<BDataType> b_k_n = preprocessor(quant_b_k_n);
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "scale_k_n: " << scale_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
#ifdef BUILD_INT4_EXAMPLE
DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(KernelCDataType) *
c_m_n_device_result.mDesc.GetElementSpaceSize());
const Tensor<KernelADataType> a_m_k_converted(a_m_k);
const Tensor<KernelBDataType> b_k_n_converted(b_k_n);
a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem scale_k_n_device_buf(sizeof(ScaleDataType) * scale_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
scale_k_n_device_buf.ToDevice(scale_k_n.mData.data());
#endif
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#else
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<ScaleDataType*>(scale_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#endif
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
return true;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(config.do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k,
quant_b_k_n,
scale_k_n,
c_m_n_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
#ifdef BUILD_INT4_EXAMPLE
Tensor<CDataType> c_m_n_device_result_converted(c_m_n_host_result.mDesc);
c_m_n_device_buf.FromDevice(c_m_n_device_result_converted.mData.data());
c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>();
return ck::utils::check_err(c_m_n_device_result_converted, c_m_n_host_result);
#else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
return ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#endif
}
return true;
}
bool run_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}
......@@ -7,6 +7,7 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/wmma_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#define CK_MNK_LOOP
......@@ -16,25 +17,45 @@ template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
typename ABlockDesc,
typename BBlockDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
/* A: K0PerBlock x MPerBlock x K1
index_t KPack,
bool AEnableLds = true,
bool BEnableLds = true,
bool TransposeC = false>
/* Option: Read from LDS, big buffer hold all threads required data
* Source
* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* Destination
* C, non-transpose
* thread level: MRepeat x NRepeat x MAccVgprs
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*
* Option: Read from VMEM, small buffer hold each thread own required data (Skip LDS)
* Source:
* A(if skip LDS): MRepeat x KPack
* B(if skip LDS): NRepeat x KPack
* Destination
* C, non-transpose
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
*/
struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
struct BlockwiseGemmWMMA
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
......@@ -42,18 +63,16 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr index_t KPerBlock =
BK0NK1BlockDesc{}.GetLength(I0) * BK0NK1BlockDesc{}.GetLength(I2);
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BK0NK1BlockDesc{}.GetLength(I2);
// When use LDS, each Row(16 consecutive lanes) read whole data from source buffer
// When not use LDS, each Row read half of whole data from source buffer, exchange the data via
// permutation
static constexpr index_t A_KRow = AEnableLds ? 1 : 2;
static constexpr index_t B_KRow = BEnableLds ? 1 : 2;
static constexpr index_t A_K1 = ABlockDesc{}.GetLength(I5);
static constexpr index_t B_K1 = BBlockDesc{}.GetLength(I5);
static constexpr auto wmma_gemm =
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack>{};
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack, TransposeC>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
......@@ -79,26 +98,39 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
// Default, Block buffer in LDS, thread level offset enabled
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
if constexpr(AEnableLds)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |MLane |KPack
return make_tuple(0, 0, waveId_m, WMMA_a_idx, 0);
// |KRepeat |MRepeat|MWave |KRow |MLane |KPack
return make_tuple(0, 0, waveId_m, 0, WMMA_a_idx, 0);
}
else
{
return make_tuple(0, 0, 0, 0, 0, 0);
}
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
if constexpr(BEnableLds)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return make_tuple(0, 0, waveId_n, WMMA_b_idx, 0);
// |KRepeat |NRepeat|Nwave |KRow |NLane |KPack
return make_tuple(0, 0, waveId_n, 0, WMMA_b_idx, 0);
}
else
{
return make_tuple(0, 0, 0, 0, 0, 0);
}
}
template <index_t m0, index_t n0>
......@@ -129,10 +161,26 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle()
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex7D(Number<m0>, Number<n0>)
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk3D();
return make_tuple(
Number<m0>{}, waveId_m, blk_idx[I0], Number<n0>{}, waveId_n, blk_idx[I1], blk_idx[I2]);
}
using Tuple6 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__ BlockwiseGemmWMMA(Tuple6 a_origin = CalculateAThreadOriginDataIndex(),
Tuple6 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(ABlockDesc::IsKnownAtCompileTime() && BBlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
......@@ -143,32 +191,68 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
"wrong!");
}
// Thread level, register decriptor. Vector-write
// transposed WMMA output C' = B' * A'
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
GetCThreadDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I0];
constexpr auto NThreadPerSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I1];
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
constexpr auto NAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, NAccVgprs));
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
constexpr auto AccStride = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I3];
return make_naive_tensor_descriptor(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{},
I1,
MSubGroup,
Number<NRepeat>{},
I1,
NThreadPerSubGroup,
MAccVgprs));
make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, MAccVgprs),
make_tuple(Number<NRepeat>{} * MAccVgprs * AccStride,
Number<NRepeat>{} * MAccVgprs * AccStride,
Number<NRepeat>{} * MAccVgprs * AccStride,
MAccVgprs * AccStride,
MAccVgprs * AccStride,
MAccVgprs * AccStride,
AccStride));
}
// Provide dimension size
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(
make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
}
// transposed WMMA output C' = B' * A'
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
......@@ -179,37 +263,31 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
.MakeCDesc_MBlockxRepeat_MWave_MThreadPerSubGroup_NBlockxRepeat_NWave_NSubGroup_NAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_K0_M0_M1_M2_K1()
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<A_K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWMMA>{})),
make_pass_through_transform(Number<A_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
__host__ __device__ static constexpr auto MakeBBlockDescriptor_K0_N0_N1_N2_K1()
{
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<B_K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWMMA>{})),
make_pass_through_transform(Number<B_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
// Describe how data allocated in thread copy src buffer
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr auto a_block_desc_k0_m0_m1_m2_k1 = MakeABlockDescriptor_K0_M0_M1_M2_K1();
static constexpr auto b_block_desc_k0_n0_n1_n2_k1 = MakeBBlockDescriptor_K0_N0_N1_N2_K1();
static constexpr ABlockDesc a_block_desc_k0_m0_m1_m2_k1;
static constexpr BBlockDesc b_block_desc_k0_n0_n1_n2_k1;
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
......@@ -224,36 +302,48 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
// basic intrinsic to determine loopover direction
if constexpr(MRepeat < NRepeat)
{
static_for<0, KPerBlock / WmmaK, 1>{}(
static_for<0, KPerBlock / KPack, 1>{}(
[&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * WmmaK / A_K1>{}, m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0),
a_thread_buf);
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * WmmaK / B_K1>{}, n0, I0, I0, I0),
make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0),
make_tuple(I0, n0, I0, I0, I0, I0),
b_thread_buf);
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto i) {
vector_type<FloatA, KPack> a_thread_vec;
vector_type<FloatB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1, m0, 0, 0, i % A_K1))>{}];
make_tuple(i / A_K1 / A_KRow,
m0,
0,
(i / A_K1) % A_KRow,
0,
i % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1, n0, 0, 0, i % B_K1))>{}];
make_tuple(i / B_K1 / B_KRow,
n0,
0,
(i / B_K1) % B_KRow,
0,
i % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
......@@ -263,8 +353,8 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
......@@ -272,583 +362,172 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
}
else
{
static_for<0, KPerBlock / WmmaK, 1>{}(
[&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KPerBlock / KPack, 1>{}([&](auto k) { // k=0,1,2 instead of
// k=0,kpack*1, ..
// read B
b_thread_copy_.Run(b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * WmmaK / B_K1>{}, n0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0),
b_thread_buf);
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * WmmaK / A_K1>{}, m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0),
a_thread_buf);
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1, m0, 0, 0, i % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1, n0, 0, 0, i % B_K1))>{}];
});
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0, I0),
b_thread_buf);
// read A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0, I0),
a_thread_buf);
vector_type<FloatA, KPack> a_thread_vec;
vector_type<FloatB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto i) {
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1 / B_KRow,
n0,
0,
(i / B_K1) % B_KRow,
0,
i % B_K1))>{}];
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1 / A_KRow,
m0,
0,
(i / A_K1) % A_KRow,
0,
i % A_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
}
protected:
// A[K0, M0, M1, M2, K1]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / A_K1>{}, Number<MRepeat>{}, I1, I1, Number<A_K1>{}));
// B[K0, N0, N1, N2, K1]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / B_K1>{}, Number<NRepeat>{}, I1, I1, Number<B_K1>{}));
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor(make_tuple(Number<KPack / A_K1 / A_KRow>{},
Number<MRepeat>{},
I1,
Number<A_KRow>{},
I1,
Number<A_K1>{}),
make_tuple(Number<A_K1 * A_KRow>{},
Number<KPack>{},
Number<A_K1 * A_KRow>{},
Number<A_K1>{},
Number<A_K1>{},
Number<1>{}));
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor(make_tuple(Number<KPack / B_K1 / B_KRow>{},
Number<NRepeat>{},
I1,
Number<B_KRow>{},
I1,
Number<B_K1>{}),
make_tuple(Number<B_K1 * B_KRow>{},
Number<KPack>{},
Number<B_K1 * B_KRow>{},
Number<B_K1>{},
Number<B_K1>{},
Number<1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<WmmaK / A_K1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<WmmaK / B_K1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
};
// block wise level pipe designed for inline asm
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
/* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*/
struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr index_t KPerBlock =
BK0NK1BlockDesc{}.GetLength(I0) * BK0NK1BlockDesc{}.GetLength(I2);
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BK0NK1BlockDesc{}.GetLength(I2);
static constexpr auto wmma_gemm =
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
wmma_gemm.GetRegSizePerWmma(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |MLane |KPack
return make_tuple(0, 0, waveId_m, WMMA_a_idx, 0);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return make_tuple(0, 0, waveId_n, WMMA_b_idx, 0);
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
NPerBlock % (NPerWMMA * NRepeat) == 0,
"wrong!");
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I0];
constexpr auto NThreadPerSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I1];
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{},
I1,
MSubGroup,
Number<NRepeat>{},
I1,
NThreadPerSubGroup,
MAccVgprs));
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
template <bool EnableLds>
struct AThreadCopySelector;
const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(
make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
}
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
template <>
struct AThreadCopySelector<true>
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_K0_M0_M1_M2_K1()
using type =
ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<KPack / A_K1 / A_KRow, 1, 1, A_KRow, 1, A_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
A_K1>;
};
template <>
struct AThreadCopySelector<false>
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<A_K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWMMA>{})),
make_pass_through_transform(Number<A_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
__host__ __device__ static constexpr auto MakeBBlockDescriptor_K0_N0_N1_N2_K1()
using type = ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow<
FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
tensor_operation::element_wise::PassThrough,
Sequence<KPack / A_K1 / A_KRow, 1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
0x76543210,
0xfedcba98,
TransposeC ? false : true>;
};
template <bool EnableLds>
struct BThreadCopySelector;
template <>
struct BThreadCopySelector<true>
{
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<B_K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWMMA>{})),
make_pass_through_transform(Number<B_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr auto a_block_desc_k0_m0_m1_m2_k1 = MakeABlockDescriptor_K0_M0_M1_M2_K1();
static constexpr auto b_block_desc_k0_n0_n1_n2_k1 = MakeBBlockDescriptor_K0_N0_N1_N2_K1();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
using type =
ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<KPack / B_K1 / B_KRow, 1, 1, B_KRow, 1, B_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
B_K1,
B_K1>;
};
template <>
struct BThreadCopySelector<false>
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_.GetElementSpaceSize());
constexpr auto RepeatDiff = MRepeat - NRepeat;
// Read all Mrepeat, Nrepeat
static_for<0, NRepeat, 1>{}([&](auto iN) {
b_thread_copy_.Run(b_block_desc_k0_n0_n1_n2_k1,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_thread_buf);
});
static_for<0, MRepeat, 1>{}([&](auto iM) {
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
// Read Consumed Next inner loop A
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<WmmaK / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
static_for<WmmaK, KPerBlock, WmmaK>{}([&](auto iWmmaK) {
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(make_tuple(
iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset = c_thread_desc_.CalculateOffset(
make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(
Number<iWmmaK / A_K1>{}, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_thread_buf);
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<iWmmaK / B_K1>{}, Number<WmmaInnerloop>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop>{}, I0, I0, I0),
b_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<(iWmmaK + WmmaK) / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
});
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
});
}
protected:
// A[M0, M1, M2, K0 = WmmaK]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / A_K1>{}, Number<MRepeat>{}, I1, I1, Number<A_K1>{}));
// B[N0, N1, N2, K0 = WmmaK]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / B_K1>{}, Number<NRepeat>{}, I1, I1, Number<B_K1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<WmmaK / A_K1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<WmmaK / B_K1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
using type = ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow<
FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
tensor_operation::element_wise::PassThrough,
Sequence<KPack / B_K1 / B_KRow, 1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
B_K1,
0x76543210,
0xfedcba98,
TransposeC ? true : false>;
};
typename AThreadCopySelector<AEnableLds>::type a_thread_copy_;
typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment