Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
687d2b7e
Commit
687d2b7e
authored
Mar 19, 2024
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
5d718e6b
f5210953
Changes
161
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
4299 additions
and
692 deletions
+4299
-692
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
+1
-1
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
..._bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
+50
-33
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
...ple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
+18
-16
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+9
-1
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
...m_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
+166
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
...emm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
+288
-0
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
..._scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
+354
-0
example/32_batched_gemm_scale_softmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
...oftmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
+302
-0
example/32_batched_gemm_scale_softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
..._softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
+287
-0
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
...gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
+340
-0
example/32_batched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
...ched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
+384
-0
example/32_batched_gemm_scale_softmax_gemm/run_grouped_query_attention_forward_wmma.inc
...softmax_gemm/run_grouped_query_attention_forward_wmma.inc
+340
-0
example/32_batched_gemm_scale_softmax_gemm/run_multi_query_attention_forward_wmma.inc
...e_softmax_gemm/run_multi_query_attention_forward_wmma.inc
+339
-0
example/32_batched_gemm_scale_softmax_gemm/run_self_attention_wmma.inc
...tched_gemm_scale_softmax_gemm/run_self_attention_wmma.inc
+376
-0
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
...m_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
+332
-0
example/64_fpAintB_gemm/CMakeLists.txt
example/64_fpAintB_gemm/CMakeLists.txt
+5
-0
example/64_fpAintB_gemm/common.hpp
example/64_fpAintB_gemm/common.hpp
+123
-0
example/64_fpAintB_gemm/fp16int8_gemm_wmma.cpp
example/64_fpAintB_gemm/fp16int8_gemm_wmma.cpp
+93
-0
example/64_fpAintB_gemm/run_gemm_example.inc
example/64_fpAintB_gemm/run_gemm_example.inc
+172
-0
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
...ude/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
+320
-641
No files found.
example/29_batched_gemm_bias_e_permute/CMakeLists.txt
View file @
687d2b7e
add_example_executable
(
example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx11
00"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102
"
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_example_executable
(
example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp
)
endif
()
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
View file @
687d2b7e
...
...
@@ -43,9 +43,10 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
ASpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
BSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
DeviceOpInstanceKKNN
=
...
...
@@ -55,43 +56,44 @@ using DeviceOpInstanceKKNN =
NumDimK
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
A
B
Spec
,
A
BSpec
,
ASpec
,
BSpec
,
DESpec
,
256
,
1
,
128
,
256
,
8
,
8
,
64
,
64
,
64
,
4
,
16
,
16
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
4
,
4
,
true
,
S
<
4
,
64
,
1
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
4
,
4
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
1
,
64
,
1
,
2
>
,
8
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
...
...
@@ -251,21 +253,6 @@ int main(int argc, char* argv[])
ck
::
index_t
K0
=
2048
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
...
...
@@ -276,13 +263,43 @@ int main(int argc, char* argv[])
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
G0
=
std
::
stoi
(
argv
[
4
]);
G1
=
std
::
stoi
(
argv
[
5
]);
M0
=
std
::
stoi
(
argv
[
6
]);
M1
=
std
::
stoi
(
argv
[
7
]);
N0
=
std
::
stoi
(
argv
[
8
]);
N1
=
std
::
stoi
(
argv
[
9
]);
K0
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4-10: G0, G1, M0, M1, N0, N1, K0
\n
"
);
exit
(
0
);
}
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
BDataType
>
b_gs_ns_ks
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
Tensor
<
DDataType
>
d_gs_ms_ns
(
d_gs_ms_ns_lengths
,
d_gs_ms_ns_strides
);
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
template
<
typename
BiasLay
,
typename
ResidualLay
>
struct
LayoutSetting
...
...
@@ -42,41 +42,42 @@ using DeviceConvFwdInstance =
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
1
,
// Prefetch stage
128
,
// BlockSize
64
,
// MPerBlock
64
,
// NPerBlock
64
,
// KPerBlock
8
,
// K1
16
,
// MPerWMMA
16
,
// NPerWMMA
4
,
// MRepeat
2
,
// NRepeat
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
1
,
// NRepeat
S
<
4
,
32
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
true
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
4
,
32
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
true
,
// BBlockLdsExtraN
4
,
2
,
S
<
1
,
32
,
1
,
8
>
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
>
...
...
@@ -277,9 +278,10 @@ bool run_grouped_conv_fwd_bias_relu_add_example(int argc, char* argv[])
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_fwd_bias_relu_add
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_fwd_bias_relu_add
<
3
>
(
config
,
conv_param
);
// case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
// case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
}
return
false
;
...
...
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
687d2b7e
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
)
add_example_executable
(
example_self_attention_forward_wmma_fp16 self_attention_forward_wmma_fp16.cpp
)
add_example_executable
(
example_cross_attention_forward_wmma_fp16 cross_attention_forward_wmma_fp16.cpp
)
add_example_executable
(
example_multi_query_attention_forward_wmma_fp16 multi_query_attention_forward_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_query_attention_forward_wmma_fp16 grouped_query_attention_forward_wmma_fp16.cpp
)
endif
()
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
...
...
@@ -20,4 +29,3 @@ add_example_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_sc
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskOutUpperTriangle
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
DeviceMHAFactory
=
std
::
tuple
<
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
// MPerBlock
64
,
// LPerBlock
64
,
// KPerBlock
8
,
// AK1
8
,
// BK1
// Gemm 1
64
,
// NPerBlock
64
,
// LTilePerBlock
8
,
// L1
16
,
// MPerWMMA
16
,
// LPerWMMA
16
,
// NPerWMMA
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
// MRepeat
4
,
// LRepeat
4
,
// NRepeat
S
<
4
,
64
,
1
>
,
// ABlockTransfer MK -> K0 M K1
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// B0BlockTransfer LK -> K0 L K1
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
8
,
8
>
,
// B1BlockTransfer NL -> L0 N L1
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
1
,
// CShuffleMWmmaPerWavePerShuffle
2
,
// CShuffleNWmmaPerWavePerShuffle
S
<
1
,
64
,
1
,
4
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
// MaskingSpecialization
>
;
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
#endif
>
;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
32
,
160
,
8
,
8
,
// Gemm 1
80
,
32
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
2
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
32
,
160
,
8
,
8
,
// Gemm 1
80
,
32
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
2
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
128
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
192
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
12
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
192
,
48
,
8
,
4
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
12
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
64
,
48
,
8
,
4
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
#endif
>
;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_cross_attention_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Grouped Query Attention,
Ainslie, Joshua, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. “GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints.”
arXiv, May 22, 2023. https://doi.org/10.48550/arXiv.2305.13245.
Example is GQA-4
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
static
constexpr
ck
::
index_t
QueryGroupNumber
=
4
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
32
,
// Gemm 0
16
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
32
,
// Gemm 0
16
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
64
,
// Gemm 0
32
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
64
,
// Gemm 0
32
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
128
,
// Gemm 0
64
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
128
,
// Gemm 0
64
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceGroupedQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
QueryGroupNumber
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
#endif
>
;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm_GQA
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
QueryGroupNumber
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm_GQA
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
,
QueryGroupNumber
>
;
#include "run_grouped_query_attention_forward_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Multi-Query Attention
Shazeer, Noam. “Fast Transformer Decoding: One Write-Head Is All You Need.” arXiv.org, November 6,
2019. https://arxiv.org/abs/1911.02150v1.
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
64
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceMultiQueryAttentionForward_Wmma
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
128
,
64
,
8
,
8
,
// Gemm 1
64
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
4
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
#endif
>
;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm_MQA
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm_MQA
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_multi_query_attention_forward_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
120
;
ck
::
index_t
N
=
1000
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
G0
=
7
;
ck
::
index_t
G1
=
13
;
float
alpha
=
1
;
bool
input_permute
=
false
;
bool
output_permute
=
true
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
input_permute
=
std
::
stoi
(
argv
[
11
]);
output_permute
=
std
::
stoi
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
printf
(
"arg11 to 12: input / output permute
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// A layout [G0, M, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
K
,
M
*
K
,
K
,
1
};
// A layout [G0, G1, M, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// B0 layout [G0, N, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
K
,
N
*
K
,
K
,
1
};
// B0 layout [G0, G1, N, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
}
// B1 layout [G0, N, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
O
,
N
*
O
,
1
,
O
};
// B1 layout [G0, G1, N, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// C layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// C layout [G0, G1, M, O]
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
case
4
:
// A, B0, B1 1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
5
:
// Rand: b1 b0; unit: a
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
6
:
// Rand: a b0 ; unit: B1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
7
:
// Rand: a b1 ; unit: b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
8
:
// Rand: a ; unit: b0 b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
9
:
// Rand: b0 ; unit: a b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
10
:
// Rand: b1 ; unit: a b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
float
best_perf
=
.0
;
float
best_time
=
.0
;
int
not_pass
=
0
;
std
::
string
best_kernel
=
""
;
printf
(
"Verification: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
);
// TODO ANT: replace array with vector?
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
DeviceMHAFactory
>
,
1
>
{}([
&
](
auto
i
)
->
void
{
const
auto
device_mha_instance
=
std
::
get
<
i
>
(
DeviceMHAFactory
{});
using
DeviceMHAInstance
=
ck
::
remove_cvref_t
<
decltype
(
device_mha_instance
)
>
;
auto
gemm
=
DeviceMHAInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
G0
,
G1
,
alpha
,
input_permute
,
output_permute
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
// return 0;
}
ck
::
index_t
BatchCount
=
G0
*
G1
;
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
tflops
>
best_perf
)
{
best_perf
=
tflops
;
best_time
=
ave_time
*
1000
;
best_kernel
=
gemm
.
GetTypeString
();
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
Acc0DataType
>
acc0_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
({
BatchCount
,
M
,
O
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
const
auto
mask
=
typename
DeviceMHAInstance
::
C0MatrixMask
(
N
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
bool
this_run_verification
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
);
printf
(
"Verification: %s, Pass: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
,
this_run_verification
?
"YES"
:
"NO"
);
if
(
!
this_run_verification
)
{
not_pass
=
1
;
printf
(
"%d th MHA instance verification Failed
\n
"
,
i
.
value
);
}
}
});
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Problem Size: BatchCount: "
<<
G0
<<
", HeadNum: "
<<
G1
<<
", M: "
<<
M
<<
", N: "
<<
N
<<
", K: "
<<
K
<<
", O: "
<<
O
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Best kernel: "
<<
best_kernel
<<
" , "
<<
best_perf
<<
" TFlops , "
<<
best_time
<<
" us"
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
return
not_pass
;
}
example/32_batched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
q_sequence_length
=
256
;
ck
::
index_t
kv_sequence_length
=
64
;
ck
::
index_t
head_dim
=
80
;
// Output shape C[batch_size, q_sequence_length, head_num, head_dim]. Batch dim, outer dim,
// inner dim must match GEMM shape C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o]) C_g0_m_g1_o =
// permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
batch_size
=
2
;
ck
::
index_t
head_num
=
8
;
float
alpha
=
1
;
bool
input_permute
=
true
;
bool
output_permute
=
true
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
q_sequence_length
=
std
::
stoi
(
argv
[
4
]);
kv_sequence_length
=
std
::
stoi
(
argv
[
5
]);
head_dim
=
std
::
stoi
(
argv
[
6
]);
batch_size
=
std
::
stoi
(
argv
[
7
]);
head_num
=
std
::
stoi
(
argv
[
8
]);
alpha
=
std
::
stof
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 8: q_sequence_length, kv_sequence_length, head_dim, batch_size, head_num
\n
"
);
printf
(
"arg9: scale (alpha)
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
batch_size
,
head_num
,
q_sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
q_sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// A layout [batch_size, q_sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
q_sequence_length
*
head_dim
,
q_sequence_length
*
head_dim
,
head_dim
,
1
};
// A layout [batch_size, head_num, q_sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
batch_size
,
head_num
,
kv_sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
kv_sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// B0 layout [batch_size, kv_sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
kv_sequence_length
*
head_dim
,
kv_sequence_length
*
head_dim
,
head_dim
,
1
};
// B0 layout [batch_size, head_num, kv_sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
batch_size
,
head_num
,
head_dim
,
kv_sequence_length
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
kv_sequence_length
*
head_num
*
head_dim
,
head_dim
,
1
,
head_num
*
head_dim
}
// B1 layout [batch_size, kv_sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
kv_sequence_length
*
head_dim
,
kv_sequence_length
*
head_dim
,
1
,
head_dim
};
// B1 layout [batch_size, head_num, kv_sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
batch_size
,
head_num
,
q_sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
q_sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// C layout [batch_size, q_sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
q_sequence_length
*
head_dim
,
q_sequence_length
*
head_dim
,
head_dim
,
1
};
// C layout [batch_size, head_num, q_sequence_length, head_dim]
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
case
4
:
// A, B0, B1 1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
5
:
// Rand: b1 b0; unit: a
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
6
:
// Rand: a b0 ; unit: B1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
7
:
// Rand: a b1 ; unit: b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
8
:
// Rand: a ; unit: b0 b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
9
:
// Rand: b0 ; unit: a b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
10
:
// Rand: b1 ; unit: a b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
std
::
vector
<
ck
::
index_t
>
kv_gs_ns_ks_lengths
{
batch_size
,
head_num
,
kv_sequence_length
,
2
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
kv_gs_ns_ks_strides
=
std
::
vector
<
ck
::
index_t
>
{
kv_sequence_length
*
head_num
*
2
*
head_dim
,
2
*
head_dim
,
head_num
*
2
*
head_dim
,
head_dim
,
1
};
// kv layout [batch_size, q_sequence_length, head_num, 2, head_dim]
Tensor
<
ADataType
>
kv_gs_ns_ks
(
kv_gs_ns_ks_lengths
,
kv_gs_ns_ks_strides
);
// merge kv into a packed pointer send to device
b0_gs_ns_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
kv_gs_ns_ks
(
idx
[
0
],
idx
[
1
],
idx
[
2
],
0
,
idx
[
3
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
kv_gs_ns_ks
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
1
,
idx
[
2
])
=
self
(
idx
);
});
DeviceMem
q_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
kv_device_buf
(
sizeof
(
B0DataType
)
*
b0_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
()
+
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
q_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
kv_device_buf
.
ToDevice
(
kv_gs_ns_ks
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
float
best_perf
=
.0
;
float
best_time
=
.0
;
int
not_pass
=
0
;
std
::
string
best_kernel
=
""
;
printf
(
"Verification: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
);
// TODO ANT: replace array with vector?
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
DeviceMHAFactory
>
,
1
>
{}([
&
](
auto
i
)
->
void
{
const
auto
device_mha_instance
=
std
::
get
<
i
>
(
DeviceMHAFactory
{});
using
DeviceMHAInstance
=
ck
::
remove_cvref_t
<
decltype
(
device_mha_instance
)
>
;
auto
gemm
=
DeviceMHAInstance
{};
auto
invoker
=
gemm
.
MakeCrossAttnInvoker
();
auto
argument
=
gemm
.
MakeCrossAttnArgument
(
static_cast
<
ADataType
*>
(
q_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
kv_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
batch_size
,
q_sequence_length
,
kv_sequence_length
,
head_num
,
head_dim
,
alpha
);
// if(!gemm.IsSupportedArgument(argument))
// {
// std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
// }
ck
::
index_t
BatchCount
=
batch_size
*
head_num
;
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
q_sequence_length
)
*
kv_sequence_length
*
head_dim
*
2
+
size_t
(
q_sequence_length
)
*
kv_sequence_length
*
head_dim
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
q_sequence_length
*
head_dim
+
sizeof
(
B0DataType
)
*
head_dim
*
kv_sequence_length
+
sizeof
(
B1DataType
)
*
kv_sequence_length
*
head_dim
+
sizeof
(
CDataType
)
*
q_sequence_length
*
head_dim
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
tflops
>
best_perf
)
{
best_perf
=
tflops
;
best_time
=
ave_time
*
1000
;
best_kernel
=
gemm
.
GetTypeString
();
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
q_sequence_length
,
head_dim
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
head_dim
,
kv_sequence_length
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
kv_sequence_length
,
head_dim
});
Tensor
<
Acc0DataType
>
acc0_g_m_n
(
{
BatchCount
,
q_sequence_length
,
kv_sequence_length
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
q_sequence_length
,
kv_sequence_length
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
(
{
BatchCount
,
q_sequence_length
,
head_dim
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
const
auto
mask
=
typename
DeviceMHAInstance
::
C0MatrixMask
(
kv_sequence_length
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
head_num
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
bool
this_run_verification
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
);
printf
(
"Verification: %s, Pass: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
,
this_run_verification
?
"YES"
:
"NO"
);
if
(
!
this_run_verification
)
{
not_pass
=
1
;
printf
(
"%d th MHA instance verification Failed
\n
"
,
i
.
value
);
}
}
});
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Problem Size: BatchCount: "
<<
batch_size
<<
", HeadNum: "
<<
head_num
<<
", q_sequence_length: "
<<
q_sequence_length
<<
", kv_sequence_length: "
<<
kv_sequence_length
<<
", head_dim: "
<<
head_dim
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Best kernel: "
<<
best_kernel
<<
" , "
<<
best_perf
<<
" TFlops , "
<<
best_time
<<
" us"
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
return
not_pass
;
}
example/32_batched_gemm_scale_softmax_gemm/run_grouped_query_attention_forward_wmma.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
64
;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
G0
=
4
;
ck
::
index_t
G1
=
16
;
ck
::
index_t
KV_head
=
QueryGroupNumber
;
float
alpha
=
1
;
bool
input_permute
=
false
;
bool
output_permute
=
true
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
input_permute
=
std
::
stoi
(
argv
[
11
]);
output_permute
=
std
::
stoi
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
printf
(
"arg11 to 12: input / output permute
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// A layout [G0, M, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
K
,
M
*
K
,
K
,
1
};
// A layout [G0, G1, M, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
KV_head
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
KV_head
*
K
,
K
,
KV_head
*
K
,
1
}
// B0 layout [G0, N, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
KV_head
*
N
*
K
,
N
*
K
,
K
,
1
};
// B0 layout [G0, G1, N, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
KV_head
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
KV_head
*
O
,
O
,
1
,
KV_head
*
O
}
// B1 layout [G0, N, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
KV_head
*
N
*
O
,
N
*
O
,
1
,
O
};
// B1 layout [G0, G1, N, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// C layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// C layout [G0, G1, M, O]
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
case
4
:
// A, B0, B1 1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
5
:
// Rand: b1 b0; unit: a
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
6
:
// Rand: a b0 ; unit: B1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
7
:
// Rand: a b1 ; unit: b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
8
:
// Rand: a ; unit: b0 b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
9
:
// Rand: b0 ; unit: a b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
10
:
// Rand: b1 ; unit: a b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
float
best_perf
=
.0
;
float
best_time
=
.0
;
int
not_pass
=
0
;
std
::
string
best_kernel
=
""
;
printf
(
"Verification: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
);
// TODO ANT: replace array with vector?
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
DeviceMHAFactory
>
,
1
>
{}([
&
](
auto
i
)
->
void
{
const
auto
device_mha_instance
=
std
::
get
<
i
>
(
DeviceMHAFactory
{});
using
DeviceMHAInstance
=
ck
::
remove_cvref_t
<
decltype
(
device_mha_instance
)
>
;
auto
gemm
=
DeviceMHAInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
G0
,
G1
,
alpha
,
input_permute
,
output_permute
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
// return 0;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
CDataType
)
*
M
*
O
)
*
G0
*
G1
+
(
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
)
*
G0
*
QueryGroupNumber
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
tflops
>
best_perf
)
{
best_perf
=
tflops
;
best_time
=
ave_time
*
1000
;
best_kernel
=
gemm
.
GetTypeString
();
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g0_g1_m_k
({
G0
,
G1
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g0_gq_k_n
({
G0
,
QueryGroupNumber
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g0_gq_n_o
({
G0
,
QueryGroupNumber
,
N
,
O
});
Tensor
<
Acc0DataType
>
acc0_g0_g1_m_n
({
G0
,
G1
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g0_g1_m_n
({
G0
,
G1
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g0_g1_m_o_host_result
({
G0
,
G1
,
M
,
O
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g0_g1_m_k
(
idx
[
0
],
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g0_gq_k_n
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g0_gq_n_o
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g0_g1_m_k
,
b0_g0_gq_k_n
,
acc0_g0_g1_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
const
auto
mask
=
typename
DeviceMHAInstance
::
C0MatrixMask
(
N
);
acc0_g0_g1_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
2
],
idx
[
3
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g0_g1_m_n
,
a1_g0_g1_m_n
,
1
,
0
,
{
3
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g0_g1_m_n
,
b1_g0_gq_n_o
,
c_g0_g1_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
c_g0_g1_m_o_host_result
(
idx
);
});
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
bool
this_run_verification
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
);
printf
(
"Verification: %s, Pass: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
,
this_run_verification
?
"YES"
:
"NO"
);
if
(
!
this_run_verification
)
{
not_pass
=
1
;
printf
(
"%d th MQA instance verification Failed
\n
"
,
i
.
value
);
}
}
});
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Problem Size: BatchCount: "
<<
G0
<<
", HeadNum: "
<<
G1
<<
", M: "
<<
M
<<
", N: "
<<
N
<<
", K: "
<<
K
<<
", O: "
<<
O
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Best kernel: "
<<
best_kernel
<<
" , "
<<
best_perf
<<
" TFlops , "
<<
best_time
<<
" us"
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
return
not_pass
;
}
example/32_batched_gemm_scale_softmax_gemm/run_multi_query_attention_forward_wmma.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
120
;
ck
::
index_t
N
=
1000
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
G0
=
7
;
ck
::
index_t
G1
=
13
;
ck
::
index_t
KV_head
=
1
;
float
alpha
=
1
;
bool
input_permute
=
false
;
bool
output_permute
=
true
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
input_permute
=
std
::
stoi
(
argv
[
11
]);
output_permute
=
std
::
stoi
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
printf
(
"arg11 to 12: input / output permute
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// A layout [G0, M, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
K
,
M
*
K
,
K
,
1
};
// A layout [G0, G1, M, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
KV_head
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
KV_head
*
K
,
K
,
KV_head
*
K
,
1
}
// B0 layout [G0, N, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
KV_head
*
N
*
K
,
N
*
K
,
K
,
1
};
// B0 layout [G0, G1, N, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
KV_head
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
KV_head
*
O
,
O
,
1
,
KV_head
*
O
}
// B1 layout [G0, N, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
KV_head
*
N
*
O
,
N
*
O
,
1
,
O
};
// B1 layout [G0, G1, N, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// C layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// C layout [G0, G1, M, O]
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
case
4
:
// A, B0, B1 1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
5
:
// Rand: b1 b0; unit: a
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
6
:
// Rand: a b0 ; unit: B1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
7
:
// Rand: a b1 ; unit: b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
8
:
// Rand: a ; unit: b0 b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
9
:
// Rand: b0 ; unit: a b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
10
:
// Rand: b1 ; unit: a b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
float
best_perf
=
.0
;
float
best_time
=
.0
;
int
not_pass
=
0
;
std
::
string
best_kernel
=
""
;
printf
(
"Verification: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
);
// TODO ANT: replace array with vector?
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
DeviceMHAFactory
>
,
1
>
{}([
&
](
auto
i
)
->
void
{
const
auto
device_mha_instance
=
std
::
get
<
i
>
(
DeviceMHAFactory
{});
using
DeviceMHAInstance
=
ck
::
remove_cvref_t
<
decltype
(
device_mha_instance
)
>
;
auto
gemm
=
DeviceMHAInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
G0
,
G1
,
alpha
,
input_permute
,
output_permute
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
// return 0;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
CDataType
)
*
M
*
O
)
*
G0
*
G1
+
(
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
)
*
G0
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
tflops
>
best_perf
)
{
best_perf
=
tflops
;
best_time
=
ave_time
*
1000
;
best_kernel
=
gemm
.
GetTypeString
();
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g0_g1_m_k
({
G0
,
G1
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g0_1_k_n
({
G0
,
1
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g0_1_n_o
({
G0
,
1
,
N
,
O
});
Tensor
<
Acc0DataType
>
acc0_g0_g1_m_n
({
G0
,
G1
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g0_g1_m_n
({
G0
,
G1
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g0_g1_m_o_host_result
({
G0
,
G1
,
M
,
O
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g0_g1_m_k
(
idx
[
0
],
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g0_1_k_n
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g0_1_n_o
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g0_g1_m_k
,
b0_g0_1_k_n
,
acc0_g0_g1_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
const
auto
mask
=
typename
DeviceMHAInstance
::
C0MatrixMask
(
N
);
acc0_g0_g1_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
2
],
idx
[
3
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g0_g1_m_n
,
a1_g0_g1_m_n
,
1
,
0
,
{
3
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g0_g1_m_n
,
b1_g0_1_n_o
,
c_g0_g1_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
c_g0_g1_m_o_host_result
(
idx
);
});
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
bool
this_run_verification
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
);
printf
(
"Verification: %s, Pass: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
,
this_run_verification
?
"YES"
:
"NO"
);
if
(
!
this_run_verification
)
{
not_pass
=
1
;
printf
(
"%d th MQA instance verification Failed
\n
"
,
i
.
value
);
}
}
});
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Problem Size: BatchCount: "
<<
G0
<<
", HeadNum: "
<<
G1
<<
", M: "
<<
M
<<
", N: "
<<
N
<<
", K: "
<<
K
<<
", O: "
<<
O
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Best kernel: "
<<
best_kernel
<<
" , "
<<
best_perf
<<
" TFlops , "
<<
best_time
<<
" us"
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
return
not_pass
;
}
example/32_batched_gemm_scale_softmax_gemm/run_self_attention_wmma.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
sequence_length
=
256
;
ck
::
index_t
head_dim
=
80
;
// Output shape C[batch_size, sequence_length, head_num, head_dim]. Batch dim, outer dim, inner
// dim must match GEMM shape C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o]) C_g0_m_g1_o =
// permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
batch_size
=
2
;
ck
::
index_t
head_num
=
8
;
float
alpha
=
1
;
bool
input_permute
=
true
;
bool
output_permute
=
true
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
sequence_length
=
std
::
stoi
(
argv
[
4
]);
head_dim
=
std
::
stoi
(
argv
[
5
]);
batch_size
=
std
::
stoi
(
argv
[
6
]);
head_num
=
std
::
stoi
(
argv
[
7
]);
alpha
=
std
::
stof
(
argv
[
8
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 7: sequence_length, head_dim, batch_size, head_num
\n
"
);
printf
(
"arg8: scale (alpha)
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
batch_size
,
head_num
,
sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// A layout [batch_size, sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
sequence_length
*
head_dim
,
sequence_length
*
head_dim
,
head_dim
,
1
};
// A layout [batch_size, head_num, sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
batch_size
,
head_num
,
sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// B0 layout [batch_size, sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
sequence_length
*
head_dim
,
sequence_length
*
head_dim
,
head_dim
,
1
};
// B0 layout [batch_size, head_num, sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
batch_size
,
head_num
,
head_dim
,
sequence_length
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
sequence_length
*
head_num
*
head_dim
,
head_dim
,
1
,
head_num
*
head_dim
}
// B1 layout [batch_size, sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
sequence_length
*
head_dim
,
sequence_length
*
head_dim
,
1
,
head_dim
};
// B1 layout [batch_size, head_num, sequence_length, head_dim]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
batch_size
,
head_num
,
sequence_length
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
sequence_length
*
head_num
*
head_dim
,
head_dim
,
head_num
*
head_dim
,
1
}
// C layout [batch_size, sequence_length, head_num, head_dim]
:
std
::
vector
<
ck
::
index_t
>
{
head_num
*
sequence_length
*
head_dim
,
sequence_length
*
head_dim
,
head_dim
,
1
};
// C layout [batch_size, head_num, sequence_length, head_dim]
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
case
4
:
// A, B0, B1 1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
5
:
// Rand: b1 b0; unit: a
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
6
:
// Rand: a b0 ; unit: B1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
7
:
// Rand: a b1 ; unit: b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
8
:
// Rand: a ; unit: b0 b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
9
:
// Rand: b0 ; unit: a b1
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
B1DataType
>
{});
break
;
case
10
:
// Rand: b1 ; unit: a b0
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
std
::
vector
<
ck
::
index_t
>
qkv_gs_ms_ks_lengths
{
batch_size
,
head_num
,
sequence_length
,
3
,
head_dim
};
std
::
vector
<
ck
::
index_t
>
qkv_gs_ms_ks_strides
=
std
::
vector
<
ck
::
index_t
>
{
sequence_length
*
head_num
*
3
*
head_dim
,
3
*
head_dim
,
head_num
*
3
*
head_dim
,
head_dim
,
1
};
// qkv layout [batch_size, sequence_length, head_num, 3, head_dim]
Tensor
<
ADataType
>
qkv_gs_ms_ks
(
qkv_gs_ms_ks_lengths
,
qkv_gs_ms_ks_strides
);
// merge qkv into a packed pointer send to device
a_gs_ms_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
qkv_gs_ms_ks
(
idx
[
0
],
idx
[
1
],
idx
[
2
],
0
,
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
qkv_gs_ms_ks
(
idx
[
0
],
idx
[
1
],
idx
[
2
],
1
,
idx
[
3
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
qkv_gs_ms_ks
(
idx
[
0
],
idx
[
1
],
idx
[
3
],
2
,
idx
[
2
])
=
self
(
idx
);
});
DeviceMem
qkv_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
()
+
sizeof
(
B0DataType
)
*
b0_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
()
+
sizeof
(
B1DataType
)
*
b1_gs_os_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
qkv_device_buf
.
ToDevice
(
qkv_gs_ms_ks
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{
alpha
};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
float
best_perf
=
.0
;
float
best_time
=
.0
;
int
not_pass
=
0
;
std
::
string
best_kernel
=
""
;
printf
(
"Verification: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
);
// TODO ANT: replace array with vector?
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
DeviceMHAFactory
>
,
1
>
{}([
&
](
auto
i
)
->
void
{
const
auto
device_mha_instance
=
std
::
get
<
i
>
(
DeviceMHAFactory
{});
using
DeviceMHAInstance
=
ck
::
remove_cvref_t
<
decltype
(
device_mha_instance
)
>
;
auto
gemm
=
DeviceMHAInstance
{};
auto
invoker
=
gemm
.
MakeSelfAttnInvoker
();
auto
argument
=
gemm
.
MakeSelfAttnArgument
(
static_cast
<
ADataType
*>
(
qkv_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
batch_size
,
sequence_length
,
head_num
,
head_dim
,
alpha
);
// if(!gemm.IsSupportedArgument(argument))
// {
// std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
// }
ck
::
index_t
BatchCount
=
batch_size
*
head_num
;
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
sequence_length
)
*
sequence_length
*
head_dim
*
2
+
size_t
(
sequence_length
)
*
sequence_length
*
head_dim
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
sequence_length
*
head_dim
+
sizeof
(
B0DataType
)
*
head_dim
*
sequence_length
+
sizeof
(
B1DataType
)
*
sequence_length
*
head_dim
+
sizeof
(
CDataType
)
*
sequence_length
*
head_dim
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
tflops
>
best_perf
)
{
best_perf
=
tflops
;
best_time
=
ave_time
*
1000
;
best_kernel
=
gemm
.
GetTypeString
();
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
sequence_length
,
head_dim
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
head_dim
,
sequence_length
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
sequence_length
,
head_dim
});
Tensor
<
Acc0DataType
>
acc0_g_m_n
(
{
BatchCount
,
sequence_length
,
sequence_length
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
(
{
BatchCount
,
sequence_length
,
sequence_length
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
(
{
BatchCount
,
sequence_length
,
head_dim
});
// scratch object after gemm1
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
head_num
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
const
auto
mask
=
typename
DeviceMHAInstance
::
C0MatrixMask
(
sequence_length
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
head_num
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1
e
-
3
;
double
atol
=
1
e
-
3
;
// when BF16 is taken, set absolute error and relative error to 0.01
if
(
std
::
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B0DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
B1DataType
,
ck
::
bhalf_t
>
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
)
{
rtol
=
1
e
-
2
;
atol
=
1
e
-
2
;
}
bool
this_run_verification
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
);
printf
(
"Verification: %s, Pass: %s
\n
"
,
do_verification
?
"ON"
:
"OFF"
,
this_run_verification
?
"YES"
:
"NO"
);
if
(
!
this_run_verification
)
{
not_pass
=
1
;
printf
(
"%d th MHA instance verification Failed
\n
"
,
i
.
value
);
}
}
});
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Problem Size: BatchCount: "
<<
batch_size
<<
", HeadNum: "
<<
head_num
<<
", sequence_length: "
<<
sequence_length
<<
", head_dim: "
<<
head_dim
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
std
::
cout
<<
"Best kernel: "
<<
best_kernel
<<
" , "
<<
best_perf
<<
" TFlops , "
<<
best_time
<<
" us"
<<
std
::
endl
;
std
::
cout
<<
"---------------------------------------------------------------------------------"
"-----------"
<<
std
::
endl
;
return
not_pass
;
}
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
Acc0DataType
=
F32
;
using
Acc1DataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
32
,
160
,
8
,
8
,
// Gemm 1
80
,
32
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
2
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
32
,
// Gemm 0
16
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
2
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
64
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
64
,
// Gemm 0
32
,
32
,
160
,
8
,
8
,
// Gemm 1
80
,
32
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
2
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
4
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
128
,
80
,
8
,
8
,
// Gemm 1
80
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
8
,
5
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
192
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
12
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
128
,
// Gemm 0
64
,
64
,
48
,
8
,
8
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
4
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
2
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
// Gemm 0
128
,
192
,
48
,
8
,
4
,
// Gemm 1
48
,
64
,
8
,
16
,
16
,
16
,
// Per repeat = wave_m = wave_num, wave_n = 1
1
,
12
,
3
,
// ABlockTransfer MK -> K0 M K1
S
<
2
,
128
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
// B0BlockTransfer LK -> K0 L K1
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
// B1BlockTransfer NL -> L0 N L1
S
<
2
,
16
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
128
,
1
,
2
>
,
8
,
MaskingSpec
>
#endif
>
;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
Acc0DataType
,
Acc1DataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
Acc0DataType
,
ADataType
,
Acc0DataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
Acc1DataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_self_attention_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/64_fpAintB_gemm/CMakeLists.txt
0 → 100644
View file @
687d2b7e
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_custom_target
(
example_fpAintB_gemm_wmma
)
add_example_executable
(
example_fp16int8_gemm_wmma fp16int8_gemm_wmma.cpp
)
add_dependencies
(
example_fpAintB_gemm_wmma example_fp16int8_gemm_wmma
)
endif
()
example/64_fpAintB_gemm/common.hpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_fpAintB_gemm.hpp"
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
typename
IntType
>
struct
UnsignedWeightPreprocessor
{
};
template
<
>
struct
UnsignedWeightPreprocessor
<
int8_t
>
{
using
UnsignedWeight
=
Tensor
<
uint8_t
>
;
using
SignedWeight
=
Tensor
<
int8_t
>
;
static
UnsignedWeight
convert
(
SignedWeight
const
&
Input
)
{
UnsignedWeight
Output
=
Input
.
template
CopyAsType
<
uint8_t
>();
auto
f_kn
=
[
&
](
auto
k
,
auto
n
)
{
const
uint8_t
adder
=
128
;
int8_t
v_signed_weight
;
uint8_t
v_unsigned_weight
;
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_signed_weight
,
Input
(
k
,
n
));
v_unsigned_weight
=
ck
::
type_convert
<
uint8_t
>
(
v_signed_weight
)
+
adder
;
Output
(
k
,
n
)
=
v_unsigned_weight
;
};
make_ParallelTensorFunctor
(
f_kn
,
Input
.
mDesc
.
GetLengths
()[
0
],
Input
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
Output
;
}
UnsignedWeight
operator
()(
SignedWeight
const
&
Input
)
{
return
convert
(
Input
);
}
};
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ProblemSize
&
problem_size
,
ExecutionConfig
&
config
)
{
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
example/64_fpAintB_gemm/fp16int8_gemm_wmma.cpp
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp"
// Implementation follows the paper:
// Kim, Young Jin, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. “Who Says Elephants Can’t Run:
// Bringing Large Scale MoE Models into Cloud Scale Production.” arXiv, November 17, 2022.
// https://doi.org/10.48550/arXiv.2211.10017. Assume weight (Matrix B) is add preprocess to
// unsigned.
// The DeviceOp is CDataType = ADataType * Dequant(BDataType) * ScaleDataType
// The HostRef is CDataType = ADataType * Dequant(QuantDataType) * ScaleDataType
// TODO: Current implementation consume more VGPR than expected.
using
ADataType
=
ck
::
half_t
;
using
QuantDataType
=
int8_t
;
using
BDataType
=
uint8_t
;
using
ScaleDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceFpAintBGemm_Wmma_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
ScaleDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
// Prefetch stage
128
,
// BlockSize
64
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
8
,
// K1
16
,
// MPerWmma
16
,
// NPerWmma
2
,
// M-Repeat // M-PerWmma / M-Repeat = M-Wave
4
,
// N-Repeat // N-PerWmma / N-Repeat = N-Wave
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
// C shuffle (M Repeat) Per store
1
,
// C shuffle (N Repeat) Per store
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferencefpAintBGemm
<
ADataType
,
QuantDataType
,
ScaleDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/64_fpAintB_gemm/run_gemm_example.inc
0 → 100644
View file @
687d2b7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
]
=
problem_size
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
QuantDataType
>
quant_b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
// assume scale tensor is [1, n]
Tensor
<
ScaleDataType
>
scale_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
0
,
Row
{}));
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
QuantDataType
>
{
-
1.
f
,
1.
f
}(
quant_b_k_n
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ScaleDataType
>
{
-
1.
f
,
1.
f
}(
scale_k_n
);
break
;
case
2
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
QuantDataType
>
{
-
1.
f
,
1.
f
}(
quant_b_k_n
);
ck
::
utils
::
FillUniformDistribution
<
ScaleDataType
>
{
-
1.
f
,
1.
f
}(
scale_k_n
);
break
;
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
QuantDataType
>
{
-
1.
f
,
1.
f
}(
quant_b_k_n
);
ck
::
utils
::
FillUniformDistribution
<
ScaleDataType
>
{
-
1.
f
,
1.
f
}(
scale_k_n
);
}
UnsignedWeightPreprocessor
<
QuantDataType
>
preprocessor
;
Tensor
<
BDataType
>
b_k_n
=
preprocessor
(
quant_b_k_n
);
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"scale_k_n: "
<<
scale_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
#ifdef BUILD_INT4_EXAMPLE
DeviceMem
a_m_k_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
const
Tensor
<
KernelADataType
>
a_m_k_converted
(
a_m_k
);
const
Tensor
<
KernelBDataType
>
b_k_n_converted
(
b_k_n
);
a_m_k_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
#else
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
scale_k_n_device_buf
(
sizeof
(
ScaleDataType
)
*
scale_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
scale_k_n_device_buf
.
ToDevice
(
scale_k_n
.
mData
.
data
());
#endif
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
#ifdef BUILD_INT4_EXAMPLE
static_cast
<
KernelADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelBDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#else
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ScaleDataType
*>
(
scale_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#endif
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
quant_b_k_n
,
scale_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
#ifdef BUILD_INT4_EXAMPLE
Tensor
<
CDataType
>
c_m_n_device_result_converted
(
c_m_n_host_result
.
mDesc
);
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result_converted
.
mData
.
data
());
c_m_n_device_result
=
c_m_n_device_result_converted
.
CopyAsType
<
CDataType
>
();
return
ck
::
utils
::
check_err
(
c_m_n_device_result_converted
,
c_m_n_host_result
);
#else
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#endif
}
return
true
;
}
bool
run_gemm_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
return
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
||
run_gemm
(
problem_size
,
config
);
}
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
View file @
687d2b7e
...
...
@@ -7,6 +7,7 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/wmma_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#define CK_MNK_LOOP
...
...
@@ -16,25 +17,45 @@ template <index_t BlockSize,
typename
FloatA
,
typename
FloatB
,
typename
FloatAcc
,
typename
AK0MK1BlockDesc
,
typename
BK0NK1BlockDesc
,
typename
ABlockDesc
,
typename
BBlockDesc
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
MPerWMMA
,
index_t
NPerWMMA
,
index_t
MRepeat
,
index_t
NRepeat
,
index_t
KPack
>
/* A: K0PerBlock x MPerBlock x K1
index_t
KPack
,
bool
AEnableLds
=
true
,
bool
BEnableLds
=
true
,
bool
TransposeC
=
false
>
/* Option: Read from LDS, big buffer hold all threads required data
* Source
* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* Destination
* C, non-transpose
* thread level: MRepeat x NRepeat x MAccVgprs
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*
* Option: Read from VMEM, small buffer hold each thread own required data (Skip LDS)
* Source:
* A(if skip LDS): MRepeat x KPack
* B(if skip LDS): NRepeat x KPack
* Destination
* C, non-transpose
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
*/
struct
BlockwiseGemmWMMA
_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
struct
BlockwiseGemmWMMA
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
WmmaK
=
Number
<
16
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
...
...
@@ -42,18 +63,16 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static
constexpr
index_t
WaveSize
=
32
;
static
constexpr
index_t
MPerBlock
=
AK0MK1BlockDesc
{}.
GetLength
(
I1
);
static
constexpr
index_t
NPerBlock
=
BK0NK1BlockDesc
{}.
GetLength
(
I1
);
static
constexpr
index_t
KPerBlock
=
BK0NK1BlockDesc
{}.
GetLength
(
I0
)
*
BK0NK1BlockDesc
{}.
GetLength
(
I2
);
static
constexpr
index_t
A_K0
=
AK0MK1BlockDesc
{}.
GetLength
(
I0
);
static
constexpr
index_t
B_K0
=
BK0NK1BlockDesc
{}.
GetLength
(
I0
);
static
constexpr
index_t
A_K1
=
AK0MK1BlockDesc
{}.
GetLength
(
I2
);
static
constexpr
index_t
B_K1
=
BK0NK1BlockDesc
{}.
GetLength
(
I2
);
// When use LDS, each Row(16 consecutive lanes) read whole data from source buffer
// When not use LDS, each Row read half of whole data from source buffer, exchange the data via
// permutation
static
constexpr
index_t
A_KRow
=
AEnableLds
?
1
:
2
;
static
constexpr
index_t
B_KRow
=
BEnableLds
?
1
:
2
;
static
constexpr
index_t
A_K1
=
ABlockDesc
{}.
GetLength
(
I5
);
static
constexpr
index_t
B_K1
=
BBlockDesc
{}.
GetLength
(
I5
);
static
constexpr
auto
wmma_gemm
=
WmmaGemm
<
FloatA
,
FloatB
,
FloatAcc
,
MPerWMMA
,
NPerWMMA
,
KPack
>
{};
WmmaGemm
<
FloatA
,
FloatB
,
FloatAcc
,
MPerWMMA
,
NPerWMMA
,
KPack
,
TransposeC
>
{};
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerWMMA
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerWMMA
);
...
...
@@ -79,26 +98,39 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
// Default, Block buffer in LDS, thread level offset enabled
__device__
static
auto
CalculateAThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
if
constexpr
(
AEnableLds
)
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
WMMA_a_idx
=
wmma_gemm
.
CalculateAThreadOriginDataIndex
();
const
auto
WMMA_a_idx
=
wmma_gemm
.
CalculateAThreadOriginDataIndex
();
// |KRepeat |MRepeat|MWave |MLane |KPack
return
make_tuple
(
0
,
0
,
waveId_m
,
WMMA_a_idx
,
0
);
// |KRepeat |MRepeat|MWave |KRow |MLane |KPack
return
make_tuple
(
0
,
0
,
waveId_m
,
0
,
WMMA_a_idx
,
0
);
}
else
{
return
make_tuple
(
0
,
0
,
0
,
0
,
0
,
0
);
}
}
__device__
static
auto
CalculateBThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_n
=
wave_idx
[
I1
];
if
constexpr
(
BEnableLds
)
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
WMMA_b_idx
=
wmma_gemm
.
CalculateBThreadOriginDataIndex
();
const
auto
WMMA_b_idx
=
wmma_gemm
.
CalculateBThreadOriginDataIndex
();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return
make_tuple
(
0
,
0
,
waveId_n
,
WMMA_b_idx
,
0
);
// |KRepeat |NRepeat|Nwave |KRow |NLane |KPack
return
make_tuple
(
0
,
0
,
waveId_n
,
0
,
WMMA_b_idx
,
0
);
}
else
{
return
make_tuple
(
0
,
0
,
0
,
0
,
0
,
0
);
}
}
template
<
index_t
m0
,
index_t
n0
>
...
...
@@ -129,10 +161,26 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
return
make_tuple
(
c_thread_m
,
c_thread_n
);
}
__host__
__device__
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
()
template
<
index_t
m0
,
index_t
n0
>
__device__
static
auto
CalculateCThreadOriginDataIndex7D
(
Number
<
m0
>
,
Number
<
n0
>
)
{
static_assert
(
AK0MK1BlockDesc
::
IsKnownAtCompileTime
()
&&
BK0NK1BlockDesc
::
IsKnownAtCompileTime
(),
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
blk_idx
=
wmma_gemm
.
GetBeginOfThreadBlk3D
();
return
make_tuple
(
Number
<
m0
>
{},
waveId_m
,
blk_idx
[
I0
],
Number
<
n0
>
{},
waveId_n
,
blk_idx
[
I1
],
blk_idx
[
I2
]);
}
using
Tuple6
=
decltype
(
CalculateAThreadOriginDataIndex
());
__host__
__device__
BlockwiseGemmWMMA
(
Tuple6
a_origin
=
CalculateAThreadOriginDataIndex
(),
Tuple6
b_origin
=
CalculateBThreadOriginDataIndex
())
:
a_thread_copy_
(
a_origin
),
b_thread_copy_
(
b_origin
)
{
static_assert
(
ABlockDesc
::
IsKnownAtCompileTime
()
&&
BBlockDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
static_assert
(
ThisThreadBlock
::
GetNumOfThread
()
==
MWaves
*
NWaves
*
WaveSize
,
...
...
@@ -143,32 +191,68 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
"wrong!"
);
}
//
Thread level, register decriptor. Vector-write
//
transposed WMMA output C' = B' * A'
__host__
__device__
static
constexpr
auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_N
ThreadPer
SubGroup_
M
AccVgprs
()
GetCThreadDescriptor_MRepeat_MWave_M
ThreadPer
SubGroup_NRepeat_NWave_NSubGroup_
N
AccVgprs
()
{
constexpr
auto
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
=
wmma_gemm
.
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths
();
constexpr
auto
MSubGroup
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I0
];
constexpr
auto
NThreadPerSubGroup
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I1
];
constexpr
auto
MAccVgprs
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I2
];
constexpr
auto
NAccVgprs
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I2
];
return
make_naive_tensor_descriptor_packed
(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple
(
Number
<
MRepeat
>
{},
I1
,
I1
,
Number
<
NRepeat
>
{},
I1
,
I1
,
NAccVgprs
));
}
// Thread level, register decriptor. Vector-write
__host__
__device__
static
constexpr
auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
()
{
constexpr
auto
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
=
wmma_gemm
.
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths
();
constexpr
auto
MAccVgprs
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I2
];
constexpr
auto
AccStride
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I3
];
return
make_naive_tensor_descriptor
(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple
(
Number
<
MRepeat
>
{},
I1
,
MSubGroup
,
Number
<
NRepeat
>
{},
I1
,
NThreadPerSubGroup
,
MAccVgprs
));
make_tuple
(
Number
<
MRepeat
>
{},
I1
,
I1
,
Number
<
NRepeat
>
{},
I1
,
I1
,
MAccVgprs
),
make_tuple
(
Number
<
NRepeat
>
{}
*
MAccVgprs
*
AccStride
,
Number
<
NRepeat
>
{}
*
MAccVgprs
*
AccStride
,
Number
<
NRepeat
>
{}
*
MAccVgprs
*
AccStride
,
MAccVgprs
*
AccStride
,
MAccVgprs
*
AccStride
,
MAccVgprs
*
AccStride
,
AccStride
));
}
// Provide dimension size
template
<
typename
CGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
()
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
(
MWaves
*
MPerWMMA
),
MWaves
,
MPerWMMA
)),
make_unmerge_transform
(
make_tuple
(
N
/
(
NWaves
*
NPerWMMA
),
NWaves
,
NPerWMMA
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
>
{}));
return
wmma_gemm
.
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
);
}
// transposed WMMA output C' = B' * A'
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs
()
{
constexpr
auto
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
...
...
@@ -179,37 +263,31 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
Number
<
NPerWMMA
>
{}));
return
wmma_gemm
.
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_N
ThreadPer
SubGroup_
M
AccVgprs
(
.
MakeCDesc_MBlockxRepeat_MWave_M
ThreadPer
SubGroup_NBlockxRepeat_NWave_NSubGroup_
N
AccVgprs
(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
);
}
__host__
__device__
static
constexpr
auto
MakeABlockDescriptor_K0_M0_M1_M2_K1
()
// Provide dimension size
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
()
{
return
transform_tensor_descriptor
(
AK0MK1BlockDesc
{},
make_tuple
(
make_pass_through_transform
(
Number
<
A_K0
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWMMA
>
{})),
make_pass_through_transform
(
Number
<
A_K1
>
{})),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
,
3
>
{},
Sequence
<
4
>
{}));
}
constexpr
auto
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWMMA
>
{},
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWMMA
>
{}));
__host__
__device__
static
constexpr
auto
MakeBBlockDescriptor_K0_N0_N1_N2_K1
()
{
return
transform_tensor_descriptor
(
BK0NK1BlockDesc
{},
make_tuple
(
make_pass_through_transform
(
Number
<
B_K0
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWMMA
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
,
3
>
{},
Sequence
<
4
>
{}));
return
wmma_gemm
.
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
);
}
// Describe how data allocated in thread copy src buffer
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static
constexpr
auto
a_block_desc_k0_m0_m1_m2_k1
=
MakeABlockDescriptor_K0_M0_M1_M2_K1
()
;
static
constexpr
auto
b_block_desc_k0_n0_n1_n2_k1
=
MakeBBlockDescriptor_K0_N0_N1_N2_K1
()
;
static
constexpr
ABlockDesc
a_block_desc_k0_m0_m1_m2_k1
;
static
constexpr
BBlockDesc
b_block_desc_k0_n0_n1_n2_k1
;
template
<
typename
ABlockBuffer
,
typename
BBlockBuffer
,
typename
CThreadBuffer
>
__device__
void
Run
(
const
ABlockBuffer
&
a_block_buf
,
...
...
@@ -224,36 +302,48 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
// basic intrinsic to determine loopover direction
if
constexpr
(
MRepeat
<
NRepeat
)
{
static_for
<
0
,
KPerBlock
/
WmmaK
,
1
>
{}(
static_for
<
0
,
KPerBlock
/
KPack
,
1
>
{}(
[
&
](
auto
k
)
{
// k=0,1,2 instead of k=0,kpack*1, ...
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
// read A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
WmmaK
/
A_K1
>
{},
m0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
),
a_thread_buf
);
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf
);
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
n0
)
{
// read B
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
k
*
WmmaK
/
B_K
1
>
{},
n0
,
I0
,
I0
,
I0
),
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_K
Row
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
),
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf
);
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
i
)
{
vector_type
<
FloatA
,
KPack
>
a_thread_vec
;
vector_type
<
FloatB
,
KPack
>
b_thread_vec
;
static_for
<
0
,
KPack
,
1
>
{}([
&
](
auto
i
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
i
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
A_K1
,
m0
,
0
,
0
,
i
%
A_K1
))
>
{}];
make_tuple
(
i
/
A_K1
/
A_KRow
,
m0
,
0
,
(
i
/
A_K1
)
%
A_KRow
,
0
,
i
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
i
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
B_K1
,
n0
,
0
,
0
,
i
%
B_K1
))
>
{}];
make_tuple
(
i
/
B_K1
/
B_KRow
,
n0
,
0
,
(
i
/
B_K1
)
%
B_KRow
,
0
,
i
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
...
...
@@ -263,8 +353,8 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
m0
,
n0
,
0
));
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()
(
Number
<
0
>{})
,
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()
(
Number
<
0
>
{})
,
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>(),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>(),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>{}));
});
});
...
...
@@ -272,583 +362,172 @@ struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
}
else
{
static_for
<
0
,
KPerBlock
/
WmmaK
,
1
>
{}(
[
&
](
auto
k
)
{
// k=0,1,2 instead of k=0,kpack*1, ...
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
n0
)
{
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
n0
)
{
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
static_for
<
0
,
KPerBlock
/
KPack
,
1
>
{}([
&
](
auto
k
)
{
// k=0,1,2 instead of
// k=0,kpack*1, ..
// read B
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
k
*
WmmaK
/
B_K1
>
{},
n0
,
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
),
b_thread_buf
);
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
// read A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
WmmaK
/
A_K1
>
{},
m0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
),
a_thread_buf
);
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
i
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
i
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
A_K1
,
m0
,
0
,
0
,
i
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
i
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
B_K1
,
n0
,
0
,
0
,
i
%
B_K1
))
>
{}];
});
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_KRow
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
,
I0
),
b_thread_buf
);
// read A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
,
I0
),
a_thread_buf
);
vector_type
<
FloatA
,
KPack
>
a_thread_vec
;
vector_type
<
FloatB
,
KPack
>
b_thread_vec
;
static_for
<
0
,
KPack
,
1
>
{}([
&
](
auto
i
)
{
b_thread_vec
.
template
AsType
<
FloatB
>()(
i
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
B_K1
/
B_KRow
,
n0
,
0
,
(
i
/
B_K1
)
%
B_KRow
,
0
,
i
%
B_K1
))
>
{}];
a_thread_vec
.
template
AsType
<
FloatA
>()(
i
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
i
/
A_K1
/
A_KRow
,
m0
,
0
,
(
i
/
A_K1
)
%
A_KRow
,
0
,
i
%
A_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
m0
,
n0
,
0
));
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
m0
,
n0
,
0
));
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
});
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>(),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>(),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>{}));
});
});
});
}
}
protected:
// A[K0, M0, M1, M2, K1]
static
constexpr
auto
a_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
WmmaK
/
A_K1
>
{},
Number
<
MRepeat
>
{},
I1
,
I1
,
Number
<
A_K1
>
{}));
// B[K0, N0, N1, N2, K1]
static
constexpr
auto
b_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
WmmaK
/
B_K1
>
{},
Number
<
NRepeat
>
{},
I1
,
I1
,
Number
<
B_K1
>
{}));
static
constexpr
auto
a_thread_desc_
=
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KPack
/
A_K1
/
A_KRow
>
{},
Number
<
MRepeat
>
{},
I1
,
Number
<
A_KRow
>
{},
I1
,
Number
<
A_K1
>
{}),
make_tuple
(
Number
<
A_K1
*
A_KRow
>
{},
Number
<
KPack
>
{},
Number
<
A_K1
*
A_KRow
>
{},
Number
<
A_K1
>
{},
Number
<
A_K1
>
{},
Number
<
1
>
{}));
static
constexpr
auto
b_thread_desc_
=
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KPack
/
B_K1
/
B_KRow
>
{},
Number
<
NRepeat
>
{},
I1
,
Number
<
B_KRow
>
{},
I1
,
Number
<
B_K1
>
{}),
make_tuple
(
Number
<
B_K1
*
B_KRow
>
{},
Number
<
KPack
>
{},
Number
<
B_K1
*
B_KRow
>
{},
Number
<
B_K1
>
{},
Number
<
B_K1
>
{},
Number
<
1
>
{}));
// C[M, N, NumRegWMMA]
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
wmma_gemm
.
GetRegSizePerWmma
()));
using
AThreadCopy
=
ThreadwiseTensorSliceTransfer_v4
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
Sequence
<
WmmaK
/
A_K1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
>
,
4
,
A_K1
,
A_K1
>
;
using
BThreadCopy
=
ThreadwiseTensorSliceTransfer_v4
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
Sequence
<
WmmaK
/
B_K1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
>
,
4
,
B_K1
,
B_K1
>
;
AThreadCopy
a_thread_copy_
{
CalculateAThreadOriginDataIndex
()};
BThreadCopy
b_thread_copy_
{
CalculateBThreadOriginDataIndex
()};
};
// block wise level pipe designed for inline asm
template
<
index_t
BlockSize
,
typename
FloatA
,
typename
FloatB
,
typename
FloatAcc
,
typename
AK0MK1BlockDesc
,
typename
BK0NK1BlockDesc
,
index_t
MPerWMMA
,
index_t
NPerWMMA
,
index_t
MRepeat
,
index_t
NRepeat
,
index_t
KPack
>
/* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*/
struct
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
WmmaK
=
Number
<
16
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static
constexpr
index_t
WaveSize
=
32
;
static
constexpr
index_t
MPerBlock
=
AK0MK1BlockDesc
{}.
GetLength
(
I1
);
static
constexpr
index_t
NPerBlock
=
BK0NK1BlockDesc
{}.
GetLength
(
I1
);
static
constexpr
index_t
KPerBlock
=
BK0NK1BlockDesc
{}.
GetLength
(
I0
)
*
BK0NK1BlockDesc
{}.
GetLength
(
I2
);
static
constexpr
index_t
A_K0
=
AK0MK1BlockDesc
{}.
GetLength
(
I0
);
static
constexpr
index_t
B_K0
=
BK0NK1BlockDesc
{}.
GetLength
(
I0
);
static
constexpr
index_t
A_K1
=
AK0MK1BlockDesc
{}.
GetLength
(
I2
);
static
constexpr
index_t
B_K1
=
BK0NK1BlockDesc
{}.
GetLength
(
I2
);
static
constexpr
auto
wmma_gemm
=
WmmaGemm
<
FloatA
,
FloatB
,
FloatAcc
,
MPerWMMA
,
NPerWMMA
,
KPack
>
{};
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerWMMA
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerWMMA
);
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
MRepeat
*
NRepeat
,
wmma_gemm
.
GetRegSizePerWmma
(),
true
>
c_thread_buf_
;
__host__
__device__
constexpr
auto
&
GetCThreadBuffer
()
{
return
c_thread_buf_
;
}
__device__
static
auto
GetWaveIdx
()
{
const
index_t
thread_id
=
ThisThreadBlock
::
GetThreadId
();
constexpr
auto
threadid_to_wave_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
MWaves
,
NWaves
,
WaveSize
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
threadid_to_wave_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
thread_id
));
}
__device__
static
auto
CalculateAThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
WMMA_a_idx
=
wmma_gemm
.
CalculateAThreadOriginDataIndex
();
// |KRepeat |MRepeat|MWave |MLane |KPack
return
make_tuple
(
0
,
0
,
waveId_m
,
WMMA_a_idx
,
0
);
}
__device__
static
auto
CalculateBThreadOriginDataIndex
()
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
WMMA_b_idx
=
wmma_gemm
.
CalculateBThreadOriginDataIndex
();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return
make_tuple
(
0
,
0
,
waveId_n
,
WMMA_b_idx
,
0
);
}
template
<
index_t
m0
,
index_t
n0
>
__device__
static
auto
CalculateCThreadOriginDataIndex
(
Number
<
m0
>
,
Number
<
n0
>
)
{
const
auto
wave_idx
=
GetWaveIdx
();
const
auto
waveId_m
=
wave_idx
[
I0
];
const
auto
waveId_n
=
wave_idx
[
I1
];
const
auto
blk_idx
=
wmma_gemm
.
GetBeginOfThreadBlk
();
constexpr
auto
mrepeat_mwave_mperWMMA_to_m_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MRepeat
,
MWaves
,
MPerWMMA
))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}));
constexpr
auto
nrepeat_nwave_nperWMMA_to_n_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_unmerge_transform
(
make_tuple
(
NRepeat
,
NWaves
,
NPerWMMA
))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}));
const
index_t
c_thread_m
=
mrepeat_mwave_mperWMMA_to_m_adaptor
.
CalculateBottomIndex
(
make_tuple
(
m0
,
waveId_m
,
blk_idx
[
I0
]))[
I0
];
const
index_t
c_thread_n
=
nrepeat_nwave_nperWMMA_to_n_adaptor
.
CalculateBottomIndex
(
make_tuple
(
n0
,
waveId_n
,
blk_idx
[
I1
]))[
I0
];
return
make_tuple
(
c_thread_m
,
c_thread_n
);
}
__host__
__device__
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
()
{
static_assert
(
AK0MK1BlockDesc
::
IsKnownAtCompileTime
()
&&
BK0NK1BlockDesc
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
static_assert
(
ThisThreadBlock
::
GetNumOfThread
()
==
MWaves
*
NWaves
*
WaveSize
,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize
\n
"
);
static_assert
(
MPerBlock
%
(
MPerWMMA
*
MRepeat
)
==
0
&&
NPerBlock
%
(
NPerWMMA
*
NRepeat
)
==
0
,
"wrong!"
);
}
// Thread level, register decriptor. Vector-write
__host__
__device__
static
constexpr
auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
()
{
constexpr
auto
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
=
wmma_gemm
.
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths
();
constexpr
auto
MSubGroup
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I0
];
constexpr
auto
NThreadPerSubGroup
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I1
];
constexpr
auto
MAccVgprs
=
c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens
[
I2
];
return
make_naive_tensor_descriptor_packed
(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple
(
Number
<
MRepeat
>
{},
I1
,
MSubGroup
,
Number
<
NRepeat
>
{},
I1
,
NThreadPerSubGroup
,
MAccVgprs
));
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
template
<
bool
EnableLds
>
struct
AThreadCopySelector
;
const
auto
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M
/
(
MWaves
*
MPerWMMA
),
MWaves
,
MPerWMMA
)),
make_unmerge_transform
(
make_tuple
(
N
/
(
NWaves
*
NPerWMMA
),
NWaves
,
NPerWMMA
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
>
{}));
return
wmma_gemm
.
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma
);
}
// Provide dimension size
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
()
template
<
>
struct
AThreadCopySelector
<
true
>
{
constexpr
auto
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{}
,
Number
<
MWaves
>
{}
,
Number
<
MPerWMMA
>
{}
,
Number
<
NRepeat
>
{}
,
Number
<
NWaves
>
{}
,
Number
<
NPerWMMA
>
{}));
return
wmma_gemm
.
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs
(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma
)
;
}
__host__
__device__
static
constexpr
auto
MakeABlockDescriptor_K0_M0_M1_M2_K1
()
using
type
=
ThreadwiseTensorSliceTransfer_v4
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
)
,
decltype
(
a_thread_desc_
)
,
Sequence
<
KPack
/
A_K1
/
A_KRow
,
1
,
1
,
A_KRow
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
A_K1
,
A_K1
>
;
}
;
template
<
>
struct
AThreadCopySelector
<
false
>
{
return
transform_tensor_descriptor
(
AK0MK1BlockDesc
{},
make_tuple
(
make_pass_through_transform
(
Number
<
A_K0
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWMMA
>
{})),
make_pass_through_transform
(
Number
<
A_K1
>
{})),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
,
3
>
{},
Sequence
<
4
>
{}));
}
__host__
__device__
static
constexpr
auto
MakeBBlockDescriptor_K0_N0_N1_N2_K1
()
using
type
=
ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
KPack
/
A_K1
/
A_KRow
,
1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
A_K1
,
0x76543210
,
0xfedcba98
,
TransposeC
?
false
:
true
>
;
};
template
<
bool
EnableLds
>
struct
BThreadCopySelector
;
template
<
>
struct
BThreadCopySelector
<
true
>
{
return
transform_tensor_descriptor
(
BK0NK1BlockDesc
{},
make_tuple
(
make_pass_through_transform
(
Number
<
B_K0
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWMMA
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
,
3
>
{},
Sequence
<
4
>
{}));
}
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static
constexpr
auto
a_block_desc_k0_m0_m1_m2_k1
=
MakeABlockDescriptor_K0_M0_M1_M2_K1
();
static
constexpr
auto
b_block_desc_k0_n0_n1_n2_k1
=
MakeBBlockDescriptor_K0_N0_N1_N2_K1
();
template
<
typename
ABlockBuffer
,
typename
BBlockBuffer
,
typename
CThreadBuffer
>
__device__
void
Run
(
const
ABlockBuffer
&
a_block_buf
,
const
BBlockBuffer
&
b_block_buf
,
CThreadBuffer
&
c_thread_buf
)
const
using
type
=
ThreadwiseTensorSliceTransfer_v4
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
Sequence
<
KPack
/
B_K1
/
B_KRow
,
1
,
1
,
B_KRow
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
B_K1
,
B_K1
>
;
};
template
<
>
struct
BThreadCopySelector
<
false
>
{
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatA
>
(
a_thread_desc_
.
GetElementSpaceSize
());
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatB
>
(
b_thread_desc_
.
GetElementSpaceSize
());
constexpr
auto
RepeatDiff
=
MRepeat
-
NRepeat
;
// Read all Mrepeat, Nrepeat
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
iN
)
{
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
I0
,
Number
<
iN
>
{},
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
Number
<
iN
>
{},
I0
,
I0
,
I0
),
b_thread_buf
);
});
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
iM
)
{
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
I0
,
Number
<
iM
>
{},
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
Number
<
iM
>
{},
I0
,
I0
,
I0
),
a_thread_buf
);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for
<
0
,
RepeatDiff
,
1
>
{}([
&
](
auto
iCut
)
{
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
iN
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
iCut
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
iN
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
iCut
,
iN
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
if
constexpr
(
KPerBlock
>
WmmaK
)
{
// Read Consumed Next inner loop A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
WmmaK
/
A_K1
>
{},
Number
<
iCut
>
{},
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
Number
<
iCut
>
{},
I0
,
I0
,
I0
),
a_thread_buf
);
}
});
static_for
<
WmmaK
,
KPerBlock
,
WmmaK
>
{}([
&
](
auto
iWmmaK
)
{
// Stage 2: Run FIFO fashion loopover in Square
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
WmmaInnerloop
)
{
// Row Repeatation
static_for
<
WmmaInnerloop
,
NRepeat
,
1
>
{}([
&
](
auto
iN
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
WmmaInnerloop
+
RepeatDiff
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
iN
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
WmmaInnerloop
+
RepeatDiff
,
iN
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
// Read Consumed Next inner loop A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
iWmmaK
/
A_K1
>
{},
Number
<
WmmaInnerloop
+
RepeatDiff
>
{},
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
Number
<
WmmaInnerloop
+
RepeatDiff
>
{},
I0
,
I0
,
I0
),
a_thread_buf
);
// Col Repeatation
static_for
<
WmmaInnerloop
+
1
+
RepeatDiff
,
MRepeat
,
1
>
{}([
&
](
auto
iM
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
iM
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
WmmaInnerloop
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
iM
,
WmmaInnerloop
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
// Read Consumed Next inner loop B
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
iWmmaK
/
B_K1
>
{},
Number
<
WmmaInnerloop
>
{},
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
Number
<
WmmaInnerloop
>
{},
I0
,
I0
,
I0
),
b_thread_buf
);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for
<
0
,
RepeatDiff
,
1
>
{}([
&
](
auto
iCut
)
{
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
iN
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
iCut
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
iN
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
iCut
,
iN
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
if
constexpr
(
KPerBlock
>
WmmaK
)
{
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
(
iWmmaK
+
WmmaK
)
/
A_K1
>
{},
Number
<
iCut
>
{},
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
Number
<
iCut
>
{},
I0
,
I0
,
I0
),
a_thread_buf
);
}
});
});
// Stage 2: Run FIFO fashion loopover in Square
static_for
<
0
,
NRepeat
,
1
>
{}([
&
](
auto
WmmaInnerloop
)
{
// Row Repeatation
static_for
<
WmmaInnerloop
,
NRepeat
,
1
>
{}([
&
](
auto
iN
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
WmmaInnerloop
+
RepeatDiff
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
iN
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
WmmaInnerloop
+
RepeatDiff
,
iN
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
// Col Repeatation
static_for
<
WmmaInnerloop
+
1
+
RepeatDiff
,
MRepeat
,
1
>
{}([
&
](
auto
iM
)
{
vector_type
<
FloatA
,
WmmaK
>
a_thread_vec
;
vector_type
<
FloatB
,
WmmaK
>
b_thread_vec
;
static_for
<
0
,
WmmaK
,
1
>
{}([
&
](
auto
iK
)
{
a_thread_vec
.
template
AsType
<
FloatA
>()(
iK
)
=
a_thread_buf
[
Number
<
a_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
A_K1
,
iM
,
0
,
0
,
iK
%
A_K1
))
>
{}];
b_thread_vec
.
template
AsType
<
FloatB
>()(
iK
)
=
b_thread_buf
[
Number
<
b_thread_desc_
.
CalculateOffset
(
make_tuple
(
iK
/
B_K1
,
WmmaInnerloop
,
0
,
0
,
iK
%
B_K1
))
>
{}];
});
using
wmma_input_type_a
=
typename
vector_type
<
FloatA
,
WmmaK
>::
type
;
using
wmma_input_type_b
=
typename
vector_type
<
FloatB
,
WmmaK
>::
type
;
constexpr
index_t
c_offset
=
c_thread_desc_
.
CalculateOffset
(
make_tuple
(
iM
,
WmmaInnerloop
,
0
));
// s_nop();
wmma_gemm
.
template
Run
(
a_thread_vec
.
template
AsType
<
wmma_input_type_a
>()(
Number
<
0
>{}),
b_thread_vec
.
template
AsType
<
wmma_input_type_b
>()(
Number
<
0
>
{}),
c_thread_buf
.
GetVectorTypeReference
(
Number
<
c_offset
>
{}));
// s_nop();
});
});
}
protected:
// A[M0, M1, M2, K0 = WmmaK]
static
constexpr
auto
a_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
WmmaK
/
A_K1
>
{},
Number
<
MRepeat
>
{},
I1
,
I1
,
Number
<
A_K1
>
{}));
// B[N0, N1, N2, K0 = WmmaK]
static
constexpr
auto
b_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
WmmaK
/
B_K1
>
{},
Number
<
NRepeat
>
{},
I1
,
I1
,
Number
<
B_K1
>
{}));
// C[M, N, NumRegWMMA]
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
wmma_gemm
.
GetRegSizePerWmma
()));
using
AThreadCopy
=
ThreadwiseTensorSliceTransfer_v4
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
Sequence
<
WmmaK
/
A_K1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
>
,
4
,
A_K1
,
A_K1
>
;
using
BThreadCopy
=
ThreadwiseTensorSliceTransfer_v4
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
Sequence
<
WmmaK
/
B_K1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
>
,
4
,
B_K1
,
B_K1
>
;
AThreadCopy
a_thread_copy_
{
CalculateAThreadOriginDataIndex
()};
BThreadCopy
b_thread_copy_
{
CalculateBThreadOriginDataIndex
()};
using
type
=
ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
KPack
/
B_K1
/
B_KRow
,
1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
B_K1
,
0x76543210
,
0xfedcba98
,
TransposeC
?
true
:
false
>
;
};
typename
AThreadCopySelector
<
AEnableLds
>::
type
a_thread_copy_
;
typename
BThreadCopySelector
<
BEnableLds
>::
type
b_thread_copy_
;
};
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment