Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
66cff910
"util/read.cpp" did not exist on "65d80ebc116db557c83dd5428cbb546dd8a08be1"
Commit
66cff910
authored
Feb 10, 2025
by
coderfeli
Browse files
merge gemm1 and gemm2
parents
aa15c49a
2e53f972
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
1293 additions
and
14 deletions
+1293
-14
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+2
-1
example/65_gemm_multiply_multiply/moe_gemm1.cpp
example/65_gemm_multiply_multiply/moe_gemm1.cpp
+0
-0
example/65_gemm_multiply_multiply/moe_gemm2.cpp
example/65_gemm_multiply_multiply/moe_gemm2.cpp
+404
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp
...ion/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp
+15
-10
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp
...l/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
.../thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
+696
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
...ry/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
+173
-0
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+1
-1
No files found.
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
66cff910
...
@@ -5,4 +5,5 @@ add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_m
...
@@ -5,4 +5,5 @@ add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_m
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -save-temps=$PWD -Wno-gnu-line-marker)
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
add_example_executable
(
example_moe_gemm_fp16 moe_gemm_fp16.cpp
)
add_example_executable
(
example_moe_gemm1 moe_gemm1.cpp
)
add_example_executable
(
example_moe_gemm2 moe_gemm2.cpp
)
example/65_gemm_multiply_multiply/moe_gemm
_fp16
.cpp
→
example/65_gemm_multiply_multiply/moe_gemm
1
.cpp
View file @
66cff910
File moved
example/65_gemm_multiply_multiply/moe_gemm2.cpp
0 → 100644
View file @
66cff910
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
// using BF16 = ck::bhalf_t;
using
F8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
F8
;
using
B0DataType
=
F8
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
struct
MultiplyMultiply
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
// const float x0_f = c * d0 * d1;
const
float
x0_f
=
c
;
// printf("epi %f\n", c);
e
=
ck
::
type_convert
<
EDataType
>
(
x0_f
);
}
// template <>
// __host__ __device__ constexpr void operator()<BF16, float, float, float>(BF16& e,
// const float& c,
// const float& d0,
// const float& d1) const
// {
// const float x0_f = c;
// // const float x0_f = c * d0 * d1;
// e = ck::type_convert<BF16>(x0_f);
// }
};
void
preShuffleBuffer
(
const
B0DataType
*
src
,
B0DataType
*
dst
,
int
N
,
int
K
,
int
NXdl
)
{
int
KPack
=
16
/
sizeof
(
B0DataType
);
int
NLane
=
NXdl
;
int
KLane
=
64
/
NLane
;
int
K0
=
K
/
(
KLane
*
KPack
);
// K -> K0 KLane KPack
// N -> N0 NLane
// N, K -> N0 K0 KLane NLane KPack
int
tempk
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
int
n0
=
n
/
NLane
;
int
n1
=
n
%
NLane
;
int
k0
=
k
/
(
KLane
*
KPack
);
tempk
=
k
%
(
KLane
*
KPack
);
int
k1
=
tempk
/
KPack
;
int
k2
=
tempk
%
KPack
;
int
outputIndex
=
n0
*
KPack
*
NLane
*
KLane
*
K0
+
k0
*
KPack
*
NLane
*
KLane
+
k1
*
KPack
*
NLane
+
n1
*
KPack
+
k2
;
dst
[
outputIndex
]
=
src
[
n
*
K
+
k
];
}
}
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
32
;
static
constexpr
ck
::
index_t
MNPerXDL
=
32
;
static
constexpr
ck
::
index_t
KPerBlock
=
256
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
MXDLPerWave
=
MPerBlock
/
32
;
//todo fix this constraint
static
constexpr
ck
::
index_t
CShuffleMXDLPerWave
=
MPerBlock
/
32
;
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
16
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RCR
// kernel 1: 256->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 128, 16, 16, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, EDataType>;
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
//threadnum, mblock, nblock, kblock
256
,
MPerBlock
,
128
,
KPerBlock
,
// ak1, bk1
AK1
,
BK1
,
// mn_perxdl
MNPerXDL
,
MNPerXDL
,
// mn_xdlperwave
MXDLPerWave
,
1
,
// a,b: loadtranfer cluster, cluster order, srcorder,VECDIM, srcpervec, dstpervec, lds_extra
// S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
// S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
CShuffleMXDLPerWave
,
1
,
S
<
1
,
16
,
1
,
16
>
,
S
<
EVec
,
EVec
,
1
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
A0DataType
>
;
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// tokens = 1
// topk = 1
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
MPerBlock
;
ck
::
index_t
SORTED_SIZE
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
32
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 5: N, K
\n
"
);
exit
(
0
);
}
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
KBatch
=
1
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
// const ck::index_t experts = 8;
Tensor
<
ck
::
index_t
>
expert_ids
(
HostTensorDescriptor
({
experts
},
{
1
}));
Tensor
<
ck
::
index_t
>
sorted_token_ids
(
HostTensorDescriptor
({
SORTED_SIZE
},
{
1
}));
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorted_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
SORTED_SIZE
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
else
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
Tensor
<
A0DataType
>
a0_m_k
(
HostTensorDescriptor
({
SORTED_SIZE
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
// Tensor<B0DataType> b0_e_n_k(f_host_tensor_descriptor(K, N * experts, StrideB, B0Layout{}));
// Tensor<B0DataType> b0_preshuffled(
// f_host_tensor_descriptor(K, N, StrideB, B0Layout{})); // use laout only for size
Tensor
<
D0DataType
>
d0_t_n
(
f_host_tensor_descriptor
(
tokens
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_t_n
(
f_host_tensor_descriptor
(
tokens
,
N
,
StrideD
,
D1Layout
{}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
e_t_n_device_result
.
SetZero
();
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_t_n: "
<<
d1_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_t_n: "
<<
e_t_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_t_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_m_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_t_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
int
NPerXdl
=
device_op
.
GetPreShuffleParameters
();
preShuffleBuffer
(
b0_e_n_k
.
mData
.
data
(),
b0_preshuffled
.
mData
.
data
(),
N
*
experts
,
K
,
NPerXdl
);
b0_device_buf
.
ToDevice
(
b0_preshuffled
.
mData
.
data
());
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
sorted_token_ids_dev
.
GetDeviceBuffer
(),
expert_ids_dev
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
SORTED_SIZE
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
I0
,
I0
},
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
if
(
time_kernel
)
{
// not result correct here because output buf not setzero
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
SORTED_SIZE
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
SORTED_SIZE
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
SORTED_SIZE
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
//gemm2 use atomic, so need to reinit outputs
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
,
0
,
1
});
Tensor
<
CShuffleDataType
>
c_t_n
({
tokens
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm2
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_m_k
,
b0_e_n_k
,
c_t_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
t
=
0
;
t
<
tokens
;
++
t
)
{
// const int t = sorted_token_ids(m);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_t_n_host_result
(
t
,
n
),
c_t_n
(
t
,
n
),
d0_t_n
(
t
,
n
),
d1_t_n
(
t
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_t_n_device_result
.
mData
.
data
());
e_t_n_device_result
.
savetxt
(
"out.txt"
);
e_t_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_t_n_device_result
,
e_t_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp
View file @
66cff910
...
@@ -7,7 +7,7 @@
...
@@ -7,7 +7,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3
_scatter
.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -42,30 +42,35 @@ template <typename ThreadGroup,
...
@@ -42,30 +42,35 @@ template <typename ThreadGroup,
index_t
DstScalarPerVector
,
index_t
DstScalarPerVector
,
typename
ThreadTransferSrcResetCoordinateAfterRunFlags
,
typename
ThreadTransferSrcResetCoordinateAfterRunFlags
,
typename
ThreadTransferDstResetCoordinateAfterRunFlags
,
typename
ThreadTransferDstResetCoordinateAfterRunFlags
,
index_t
ScatterDim
=
1
,
index_t
NumThreadScratch
=
1
>
index_t
NumThreadScratch
=
1
>
struct
ThreadGroupTensorSliceTransfer_v7r3
struct
ThreadGroupTensorSliceTransfer_v7r3
{
{
static
constexpr
index_t
nDim
=
static
constexpr
index_t
nDim
=
remove_cvref_t
<
tuple_element_t
<
0
,
SrcDescs
>>::
GetNumOfDimension
();
remove_cvref_t
<
tuple_element_t
<
0
,
SrcDescs
>>::
GetNumOfDimension
();
static
constexpr
index_t
mod_num
=
ThreadClusterLengths
{}.
At
(
Number
<
3
>
{});
// Dirty HACK FELIX, TODO fix
static
constexpr
index_t
nSrc
=
remove_cvref_t
<
SrcDescs
>::
Size
();
static
constexpr
index_t
nSrc
=
remove_cvref_t
<
SrcDescs
>::
Size
();
static
constexpr
index_t
nDst
=
remove_cvref_t
<
DstDescs
>::
Size
();
static
constexpr
index_t
nDst
=
remove_cvref_t
<
DstDescs
>::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
static
constexpr
auto
thread_slice_lengths
=
SliceLengths
{}
/
ThreadClusterLengths
{};
static
constexpr
index_t
scatter_num
=
thread_slice_lengths
.
At
(
Number
<
ScatterDim
>
{});
__device__
constexpr
ThreadGroupTensorSliceTransfer_v7r3
(
__device__
constexpr
ThreadGroupTensorSliceTransfer_v7r3
(
const
SrcDescs
&
src_descs
,
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_block_slice_origins
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_block_slice_origins
,
const
DstDescs
&
dst_descs
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_block_slice_origins
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_block_slice_origins
,
const
ElementwiseOperation
&
element_op
)
const
ElementwiseOperation
&
element_op
,
const
StaticallyIndexedArray
<
index_t
,
scatter_num
>
&
scatter_offsets
)
:
threadwise_transfer_
(
src_descs
,
:
threadwise_transfer_
(
src_descs
,
StaticallyIndexedArray
<
Index
,
nSrc
>
{},
StaticallyIndexedArray
<
Index
,
nSrc
>
{},
dst_descs
,
dst_descs
,
StaticallyIndexedArray
<
Index
,
nDst
>
{},
StaticallyIndexedArray
<
Index
,
nDst
>
{},
element_op
)
element_op
,
scatter_offsets
)
{
{
static_assert
(
nSrc
==
SrcDatas
::
Size
()
&&
nSrc
==
SrcDescs
::
Size
()
&&
static_assert
(
nSrc
==
SrcDatas
::
Size
()
&&
nSrc
==
SrcDescs
::
Size
()
&&
nSrc
==
ThreadTransferSrcResetCoordinateAfterRunFlags
::
Size
()
&&
nSrc
==
ThreadTransferSrcResetCoordinateAfterRunFlags
::
Size
()
&&
...
@@ -100,17 +105,16 @@ struct ThreadGroupTensorSliceTransfer_v7r3
...
@@ -100,17 +105,16 @@ struct ThreadGroupTensorSliceTransfer_v7r3
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
if
(
ThreadGroup
::
GetNumOfThread
()
==
thread_cluster_desc_
.
GetElementSize
()
or
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
ThreadGroup
::
GetThreadId
()
<
thread_cluster_desc_
.
GetElementSize
())
{
{
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
const
auto
src_
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_slice_lengths
;
const
auto
src_thread_slice_origins
=
generate_tuple
(
const
auto
src_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
src_block_slice_origins
[
i
]
+
thread_
data_idx_begin
;
},
[
&
](
auto
i
)
{
return
src_block_slice_origins
[
i
]
+
src_
thread_
cluster_idx
*
thread_slice_lengths
;
},
Number
<
nSrc
>
{});
Number
<
nSrc
>
{});
const
auto
dst_thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()
%
mod_num
));
const
auto
dst_thread_slice_origins
=
generate_tuple
(
const
auto
dst_thread_slice_origins
=
generate_tuple
(
[
&
](
auto
i
)
{
return
dst_block_slice_origins
[
i
]
+
thread_
data_idx_begin
;
},
[
&
](
auto
i
)
{
return
dst_block_slice_origins
[
i
]
+
dst_
thread_
cluster_idx
*
thread_slice_lengths
;
},
Number
<
nDst
>
{});
Number
<
nDst
>
{});
threadwise_transfer_
.
SetSrcSliceOrigins
(
src_descs
,
src_thread_slice_origins
);
threadwise_transfer_
.
SetSrcSliceOrigins
(
src_descs
,
src_thread_slice_origins
);
...
@@ -197,7 +201,7 @@ struct ThreadGroupTensorSliceTransfer_v7r3
...
@@ -197,7 +201,7 @@ struct ThreadGroupTensorSliceTransfer_v7r3
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
make_cluster_descriptor
(
ThreadClusterLengths
{},
ThreadClusterArrangeOrder
{});
using
ThreadwiseTransfer
=
using
ThreadwiseTransfer
=
ThreadwiseTensorSliceTransfer_v7r3
<
SrcDatas
,
ThreadwiseTensorSliceTransfer_v7r3
_scatter
<
SrcDatas
,
DstDatas
,
DstDatas
,
SrcDescs
,
SrcDescs
,
DstDescs
,
DstDescs
,
...
@@ -212,6 +216,7 @@ struct ThreadGroupTensorSliceTransfer_v7r3
...
@@ -212,6 +216,7 @@ struct ThreadGroupTensorSliceTransfer_v7r3
DstScalarPerVector
,
DstScalarPerVector
,
ThreadTransferSrcResetCoordinateAfterRunFlags
,
ThreadTransferSrcResetCoordinateAfterRunFlags
,
ThreadTransferDstResetCoordinateAfterRunFlags
,
ThreadTransferDstResetCoordinateAfterRunFlags
,
ScatterDim
,
NumThreadScratch
>
;
NumThreadScratch
>
;
ThreadwiseTransfer
threadwise_transfer_
;
ThreadwiseTransfer
threadwise_transfer_
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp
View file @
66cff910
...
@@ -279,7 +279,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
...
@@ -279,7 +279,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle
<
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle
<
GridwiseGemm
,
GridwiseGemm
,
true
,
true
,
InMemoryDataOperationEnum
::
Set
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
TailNumber
::
Odd
>
;
Run
(
kernel
);
Run
(
kernel
);
...
@@ -289,7 +289,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
...
@@ -289,7 +289,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle
<
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle
<
GridwiseGemm
,
GridwiseGemm
,
true
,
true
,
InMemoryDataOperationEnum
::
Set
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
minimum_occupancy
,
TailNumber
::
Even
>
;
TailNumber
::
Even
>
;
Run
(
kernel
);
Run
(
kernel
);
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
0 → 100644
View file @
66cff910
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace
ck
{
// Thread-level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
// 6. Does not need to know src_descs and dst_descs at compile-time
// 7. Does not need to know src_slice_origins and dst_slice_origins at compile-time,
//
// Does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray or vector_type instead of C array for thread buffer
// 2. Pass tensor descritpors by reference (or tuple of references)
// 3. Does not keep reference to tensor descriptor
// 4. Does not construct new tensor coordinate when call Run()
template
<
typename
SrcDatas
,
typename
DstDatas
,
typename
SrcDescs
,
typename
DstDescs
,
typename
ElementwiseOperation
,
typename
DstInMemOps
,
// Sequence<InMemoryDataOperationEnum ...>
typename
SliceLengths
,
typename
SrcDimAccessOrder
,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
typename
SrcScalarPerVectors
,
index_t
DstScalarPerVector
,
typename
SrcResetCoordinateAfterRunFlags
,
// Sequence<bool ...>
typename
DstResetCoordinateAfterRunFlags
,
// Sequence<bool ...>
index_t
ScatterDim
=
1
,
index_t
NumThreadScratch
=
1
>
struct
ThreadwiseTensorSliceTransfer_v7r3_scatter
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
SrcScalarPerVector
=
SrcScalarPerVectors
{}[
I0
];
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
static
constexpr
index_t
nSrc
=
SrcDescs
::
Size
();
static
constexpr
index_t
nDst
=
DstDescs
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
static
constexpr
index_t
scatter_num
=
SliceLengths
{}.
At
(
Number
<
ScatterDim
>
{});
// return a tuple of coordiantes for a tuple of tensor
template
<
typename
Descs
,
typename
Indices
,
enable_if_t
<
Descs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
static
constexpr
auto
MakeCoordinates
(
const
Descs
&
descs
,
const
Indices
&
indices
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
make_tensor_coordinate
(
descs
[
i
],
indices
[
i
]);
},
Number
<
Descs
::
Size
()
>
{});
}
using
SrcCoords
=
decltype
(
MakeCoordinates
(
SrcDescs
{},
StaticallyIndexedArray
<
Index
,
nSrc
>
{}));
using
DstCoords
=
decltype
(
MakeCoordinates
(
DstDescs
{},
StaticallyIndexedArray
<
Index
,
nDst
>
{}));
// scalar per access on each dim
// FIXME: don't use lambda_scalar_per_access
static
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
static
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SrcSpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
SrcDimAccessOrder
,
remove_cv_t
<
decltype
(
src_scalar_per_access
)
>
,
false
>
;
using
DstSpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DstDimAccessOrder
,
remove_cv_t
<
decltype
(
dst_scalar_per_access
)
>
,
false
>
;
__device__
constexpr
ThreadwiseTensorSliceTransfer_v7r3_scatter
(
const
SrcDescs
&
src_descs
,
const
StaticallyIndexedArray
<
Index
,
nSrc
>&
src_slice_origins
,
const
DstDescs
&
dst_descs
,
const
StaticallyIndexedArray
<
Index
,
nDst
>&
dst_slice_origins
,
const
ElementwiseOperation
&
element_op
,
const
StaticallyIndexedArray
<
index_t
,
scatter_num
>
&
scatter_offsets
)
:
src_coords_
(
MakeCoordinates
(
src_descs
,
src_slice_origins
)),
dst_coords_
(
MakeCoordinates
(
dst_descs
,
dst_slice_origins
)),
element_op_
(
element_op
),
scatter_offsets_
(
scatter_offsets
)
{
static_assert
(
SliceLengths
::
At
(
Number
<
SrcVectorDim
>
{})
%
SrcScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
static_assert
(
SliceLengths
::
At
(
Number
<
DstVectorDim
>
{})
%
DstScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
}
template
<
typename
Indices
,
enable_if_t
<
SrcDescs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
__device__
void
SetSrcSliceOrigins
(
const
SrcDescs
&
src_descs
,
const
Indices
&
src_slice_origin_idxs
)
{
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
src_coords_
(
i
)
=
make_tensor_coordinate
(
src_descs
[
i
],
src_slice_origin_idxs
[
i
]);
});
}
template
<
typename
Indices
,
enable_if_t
<
DstDescs
::
Size
()
==
Indices
::
Size
(),
bool
>
=
false
>
__device__
void
SetDstSliceOrigins
(
const
DstDescs
&
dst_descs
,
const
Indices
&
dst_slice_origin_idxs
)
{
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
dst_coords_
(
i
)
=
make_tensor_coordinate
(
dst_descs
[
i
],
dst_slice_origin_idxs
[
i
]);
// printf("tid %d origin %d %d %d %d off %d\n", threadIdx.x, dst_slice_origin_idxs[i][I0], dst_slice_origin_idxs[i][I1], dst_slice_origin_idxs[i][I2], dst_slice_origin_idxs[i][I3], dst_coords_(i).GetOffset());
});
}
template
<
typename
DataTypes
,
index_t
ScalarPerVector
>
__device__
static
auto
generate_vectors
()
{
auto
data_types
=
DataTypes
{};
constexpr
index_t
num
=
data_types
.
Size
();
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
data_types
[
i
])
>
;
return
vector_type_maker_t
<
DataType
,
ScalarPerVector
>
{};
},
Number
<
num
>
{});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
template
<
typename
SrcBuffers
,
index_t
ThreadScratchId
=
0
,
enable_if_t
<
SrcDescs
::
Size
()
==
SrcBuffers
::
Size
(),
bool
>
=
false
>
__device__
void
RunRead
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// loop over space-filling curve
static_for
<
0
,
src_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
src_vectors
=
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
();
auto
elm_vectors
=
generate_vectors
<
DstDatas
,
SrcScalarPerVector
>
();
bool
oob_val
=
true
;
// copy data from src_bufs into src_vectors
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
using
src_vector_t
=
typename
remove_cvref_t
<
decltype
(
src_vectors
[
i
])
>::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_descs
[
i
],
src_coords_
[
i
]);
oob_val
=
oob_val
&
is_src_valid
;
if
constexpr
(
SrcScalarPerVectors
{}[
i
]
==
1
)
{
auto
data_types
=
SrcDatas
{};
using
DataType
=
remove_cvref_t
<
decltype
(
data_types
[
i
])
>
;
const
auto
tmp
=
src_bufs
[
i
].
template
Get
<
DataType
>(
src_coords_
[
i
].
GetOffset
(),
true
);
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}(
[
&
](
auto
j
)
{
src_vectors
(
i
).
template
AsType
<
DataType
>()(
j
)
=
tmp
;
});
}
else
{
src_vectors
(
i
).
template
AsType
<
src_vector_t
>()(
I0
)
=
src_bufs
[
i
].
template
Get
<
src_vector_t
>(
src_coords_
[
i
].
GetOffset
(),
true
);
}
});
constexpr
auto
get_elem_op_vec_len
=
[]()
{
if
constexpr
(
is_detected
<
is_pack8_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
// apply pointwise function
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
using
SrcData
=
remove_cvref_t
<
tuple_element_t
<
iSrc
.
value
,
SrcDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
return
src_vectors
[
iSrc
].
template
AsType
<
elem_op_vec_t
>()[
i
];
},
Number
<
nSrc
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iDst
)
->
auto
&
{
using
DstData
=
remove_cvref_t
<
tuple_element_t
<
iDst
.
value
,
DstDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
return
elm_vectors
(
iDst
).
template
AsType
<
elem_op_vec_t
>()(
i
);
},
Number
<
nDst
>
{});
// apply pointwise function
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2
(
element_op_
,
dst_data_refs
,
src_data_refs
);
});
elm_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
elm_vectors
;
oob_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
oob_val
;
// move coordinate
if
constexpr
(
iAccess
.
value
!=
src_num_access
-
1
)
{
constexpr
auto
forward_step
=
SrcSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
move_tensor_coordinate
(
src_descs
[
i
],
src_coords_
(
i
),
make_tensor_coordinate_step
(
src_descs
[
i
],
forward_step
));
});
}
});
// move coordinate back to slice origin (or not)
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
SrcResetCoordinateAfterRunFlags
::
At
(
i
))
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_descs
[
i
],
GetSrcCoordinateResetStep
());
move_tensor_coordinate
(
src_descs
[
i
],
src_coords_
(
i
),
src_reset_step
);
}
});
}
#if 1
template
<
index_t
ThreadScratchId
=
0
>
__device__
void
OOBCheck
(
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
// loop over space-filling curve
static_for
<
0
,
src_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
elm_vectors
=
elm_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
auto
oob_val
=
oob_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
using
elm_vector_t
=
typename
remove_cvref_t
<
decltype
(
elm_vectors
[
i
])
>::
type
;
elm_vectors
(
i
).
template
AsType
<
elm_vector_t
>()(
I0
)
=
oob_val
?
elm_vectors
(
i
).
template
AsType
<
elm_vector_t
>()[
I0
]
:
elm_vector_t
{
0
};
});
elm_vectors_tuple_
(
thread_scratch_id
)(
iAccess
)
=
elm_vectors
;
});
}
#endif
template
<
index_t
ThreadScratchId
=
0
>
__device__
void
TransposeFromElmToDst
(
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
using
DstData
=
remove_cvref_t
<
decltype
(
DstDatas
{}[
I0
])
>
;
using
ElmThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
SrcScalarPerVector
,
decltype
(
GetSrcThreadScratchDescriptor
()),
true
>
;
using
DstThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
DstScalarPerVector
,
decltype
(
GetDstThreadScratchDescriptor
()),
true
>
;
ElmThreadScratch
elm_thread_scratch_
;
DstThreadScratch
dst_thread_scratch_
;
elm_thread_scratch_
.
data_
=
bit_cast
<
decltype
(
elm_thread_scratch_
.
data_
)
>
(
elm_vectors_tuple_
[
thread_scratch_id
]);
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
((
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
||
(
is_same
<
f8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)
||
(
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr
index_t
num_src_vector
=
Number
<
DstScalarPerVector
>
{};
constexpr
index_t
num_dst_vector
=
Number
<
SrcScalarPerVector
>
{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access_for_src_and_dst
<
SrcVectorDim
,
SrcScalarPerVector
,
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
scalar_per_access
;
static_ford
<
decltype
(
access_lengths
)
>
{}([
&
](
auto
access_idx
)
{
constexpr
auto
data_idx
=
access_idx
*
scalar_per_access
;
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
using
src_vector_t
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const
auto
src_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
const
src_vector_t
&
{
// i increment corresponds to movement in DstVectorDim
return
elm_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
dst_scalar_step_in_vector
);
},
Number
<
num_src_vector
>
{});
// get SrcScalarPerVector # of references to dst vectors from
// dst_thread_scratch_
auto
dst_vector_refs
=
generate_tie
(
[
&
](
auto
i
)
->
dst_vector_t
&
{
// i increment corresponds to movement in SrcVectorDim
return
dst_thread_scratch_
.
GetVectorTypeReference
(
data_idx_seq
+
i
*
src_scalar_step_in_vector
);
},
Number
<
num_dst_vector
>
{});
// do data transpose
transpose_vectors
<
DstData
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
else
{
static_ford
<
SliceLengths
>
{}(
[
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
elm_thread_scratch_
[
idx
];
});
}
dst_vectors_tuple_
(
thread_scratch_id
)
=
bit_cast
<
DstVectorTuple
>
(
dst_thread_scratch_
.
data_
);
}
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template
<
typename
DstBuffers
,
index_t
ThreadScratchId
=
0
,
enable_if_t
<
DstDescs
::
Size
()
==
1
&&
DstBuffers
::
Size
()
==
1
,
bool
>
=
false
>
__device__
void
RunWrite
(
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
,
Number
<
ThreadScratchId
>
thread_scratch_id
=
Number
<
ThreadScratchId
>
{})
{
OOBCheck
(
thread_scratch_id
);
TransposeFromElmToDst
(
thread_scratch_id
);
// loop over space-filling curve
static_for
<
0
,
dst_num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
dst_vectors
=
dst_vectors_tuple_
[
thread_scratch_id
][
iAccess
];
constexpr
auto
iScatter
=
DstSpaceFillingCurve
::
GetIndex
(
iAccess
)(
Number
<
ScatterDim
>
{});
const
auto
scatter_offset
=
scatter_offsets_
(
Number
<
iScatter
>
{});
// copy data from buf_vectors into dst_bufs
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
using
dst_vector_t
=
typename
remove_cvref_t
<
decltype
(
dst_vectors
[
i
])
>::
type
;
auto
dst_offset
=
scatter_offset
+
dst_coords_
[
i
].
GetOffset
();
const
bool
is_dst_valid
=
dst_offset
<
dst_descs
[
i
].
GetElementSpaceSize
();
//hack felix, todo use coord
// coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_descs[i],
// dst_coords_[i]);
constexpr
InMemoryDataOperationEnum
DstInMemOp
=
static_cast
<
InMemoryDataOperationEnum
>
(
DstInMemOps
::
At
(
i
.
value
));
// if(threadIdx.x==0)
// printf("use tid %d off %d %d\n", threadIdx.x, dst_coords_[i].GetOffset(), scatter_offset );
dst_bufs
(
i
).
template
Update
<
DstInMemOp
,
dst_vector_t
>(
dst_offset
,
is_dst_valid
,
dst_vectors
[
i
].
template
AsType
<
dst_vector_t
>()[
I0
]);
// if(1) {
// static_for<0, DstScalarPerVector, 1>{}([&](auto idx) {
// using DstData = remove_cvref_t<tuple_element_t<0, DstDatas>>;
// using print_vec_t = typename vector_type<DstData, 1>::type;
// printf("tid %d off %d valid %d %f\n",threadIdx.x, dst_coords_[i].GetOffset(), is_dst_valid,
// type_convert<float>(dst_vectors[i].template AsType<print_vec_t>()[idx]));
// });
// }
});
// move coordinate
if
constexpr
(
iAccess
.
value
!=
dst_num_access
-
1
)
{
constexpr
auto
forward_step
=
DstSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
auto
forward_step_scatter
=
[
&
]()
constexpr
{
Index
step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
step_
(
i
)
=
i
.
value
!=
ScatterDim
?
forward_step
[
i
]
:
0
;
// if(threadIdx.x==0)
// printf("i %d %d ordered_gather_dim %d\n", i.value, step_(i), ordered_gather_dim);
});
return
step_
;
}
();
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
move_tensor_coordinate
(
dst_descs
[
i
],
dst_coords_
(
i
),
make_tensor_coordinate_step
(
dst_descs
[
i
],
forward_step_scatter
));
});
}
});
static_for
<
0
,
nDst
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
DstResetCoordinateAfterRunFlags
::
At
(
i
))
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_descs
[
i
],
GetDstCoordinateResetStep
());
move_tensor_coordinate
(
dst_descs
[
i
],
dst_coords_
(
i
),
dst_reset_step
);
}
});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template
<
typename
SrcBuffers
,
typename
DstBuffers
,
enable_if_t
<
SrcDescs
::
Size
()
==
SrcBuffers
::
Size
()
&&
DstDescs
::
Size
()
==
DstBuffers
::
Size
(),
bool
>
=
false
>
__device__
void
Run
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
,
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
RunRead
(
src_descs
,
src_bufs
);
RunWrite
(
dst_descs
,
dst_bufs
);
}
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
if
constexpr
(
src_num_access
==
0
)
{
return
typename
SrcSpaceFillingCurve
::
Index
{};
}
else
{
return
SrcSpaceFillingCurve
::
GetStepBetween
(
Number
<
src_num_access
-
1
>
{},
Number
<
0
>
{});
}
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
if
constexpr
(
dst_num_access
==
0
)
{
return
typename
DstSpaceFillingCurve
::
Index
{};
}
else
{
constexpr
auto
reset_step
=
DstSpaceFillingCurve
::
GetStepBetween
(
Number
<
dst_num_access
-
1
>
{},
Number
<
0
>
{});
auto
reset_step_scatter
=
[
&
]()
constexpr
{
Index
step_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
step_
(
i
)
=
i
.
value
!=
ScatterDim
?
reset_step
[
Number
<
i
>
{}]
:
0
;
// if(threadIdx.x==0)
// printf("i %d %d ordered_gather_dim %d\n", i.value, step_(i), ordered_gather_dim);
});
return
step_
;
}
();
return
reset_step_scatter
;
}
}
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
// constexpr auto src_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{},
// Number<nDim>{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
src_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
src_access_lengths
),
Number
<
SrcScalarPerVector
>
{});
// 1st stage of transforms
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
src_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
src_access_lengths_and_vector_length
[
i
],
src_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
src_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
__device__
static
constexpr
auto
GetDstThreadScratchDescriptor
()
{
// 1st stage of transforms
// constexpr auto dst_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{},
// Number<nDim>{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
constexpr
auto
dst_access_lengths_and_vector_length
=
container_push_back
(
sequence_to_tuple_of_number
(
dst_access_lengths
),
Number
<
DstScalarPerVector
>
{});
constexpr
auto
desc0
=
make_naive_tensor_descriptor_packed
(
dst_access_lengths_and_vector_length
);
// 2nd stage of transforms
constexpr
auto
transforms
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
make_merge_transform_v3_division_mod
(
make_tuple
(
dst_access_lengths_and_vector_length
[
i
],
dst_access_lengths_and_vector_length
[
Number
<
nDim
>
{}]));
}
else
{
return
make_pass_through_transform
(
dst_access_lengths_and_vector_length
[
i
]);
}
},
Number
<
nDim
>
{});
constexpr
auto
low_dim_idss
=
generate_tuple
(
[
&
](
auto
i
)
{
if
constexpr
(
i
==
DstVectorDim
)
{
return
Sequence
<
i
.
value
,
nDim
>
{};
}
else
{
return
Sequence
<
i
.
value
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
up_dim_idss
=
generate_tuple
([
&
](
auto
i
)
{
return
Sequence
<
i
.
value
>
{};
},
Number
<
nDim
>
{});
return
transform_tensor_descriptor
(
desc0
,
transforms
,
low_dim_idss
,
up_dim_idss
);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template
<
index_t
ISrc
>
__device__
void
MoveSrcSliceWindow
(
const
SrcDescs
&
src_descs
,
Number
<
ISrc
>
iSrc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRunFlags
::
At
(
iSrc
)
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetSrcCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_descs
[
iSrc
],
adjusted_step_idx
);
move_tensor_coordinate
(
src_descs
[
iSrc
],
src_coords_
(
iSrc
),
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
template
<
index_t
IDst
>
__device__
void
MoveDstSliceWindow
(
const
DstDescs
&
dst_descs
,
Number
<
IDst
>
iDst
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by Run(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRunFlags
::
At
(
iDst
)
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetDstCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_descs
[
iDst
],
adjusted_step_idx
);
move_tensor_coordinate
(
dst_descs
[
iDst
],
dst_coords_
(
iDst
),
adjusted_step
);
}
private:
using
SrcVectorsType
=
decltype
(
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
());
using
ElmVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
SrcScalarPerVector
>
());
using
DstVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
DstScalarPerVector
>
());
static
constexpr
auto
src_num_access
=
SrcSpaceFillingCurve
::
GetNumOfAccess
();
static
constexpr
auto
dst_num_access
=
DstSpaceFillingCurve
::
GetNumOfAccess
();
using
ElmVectorTuple
=
StaticallyIndexedArray
<
ElmVectorsType
,
src_num_access
>
;
using
DstVectorTuple
=
StaticallyIndexedArray
<
DstVectorsType
,
dst_num_access
>
;
StaticallyIndexedArray
<
ElmVectorTuple
,
NumThreadScratch
>
elm_vectors_tuple_
;
StaticallyIndexedArray
<
DstVectorTuple
,
NumThreadScratch
>
dst_vectors_tuple_
;
using
OOBVectorTuple
=
StaticallyIndexedArray
<
bool
,
src_num_access
>
;
StaticallyIndexedArray
<
OOBVectorTuple
,
NumThreadScratch
>
oob_vectors_tuple_
;
StaticallyIndexedArray
<
index_t
,
scatter_num
>
scatter_offsets_
;
SrcCoords
src_coords_
;
DstCoords
dst_coords_
;
const
ElementwiseOperation
element_op_
;
};
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
0 → 100644
View file @
66cff910
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
ReferenceMoeGemm2
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids
,
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
Tensor
<
CDataType
>&
c_t_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
sorted_token_ids_
{
sorted_token_ids
},
expert_ids_
{
expert_ids
},
sorted_tile_size_
{
sorted_tile_size
},
a_m_k_
{
a_m_k
},
b_e_n_k_
{
b_e_n_k
},
c_t_n_
{
c_t_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ck
::
index_t
>&
expert_ids_
;
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids_
;
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_e_n_k_
;
Tensor
<
CDataType
>&
c_t_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
sorted_tile_size_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceMoeGemm2
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
arg
.
c_t_n_
.
SetZero
();
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v_acc
{
0
};
ComputeTypeA
v_a
{
0
};
ComputeTypeB
v_b
{
0
};
const
int
t
=
arg
.
sorted_token_ids_
(
m
);
const
int
e
=
arg
.
expert_ids_
(
m
/
arg
.
sorted_tile_size_
);
const
int
token_cnt
=
arg
.
c_t_n_
.
mDesc
.
GetLengths
()[
0
];
if
(
t
<
token_cnt
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_m_k_
(
m
,
k
));
}
else
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_m_k_
(
m
,
k
));
}
// same for B matrix
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
}
else
{
arg
.
b_element_op_
(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
}
v_acc
+=
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
CDataType
v_c
{
0
};
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_t_n_
(
t
,
n
)
+=
v_c
;
}
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_t_n_
.
mDesc
.
GetLengths
()[
1
])(
1
);
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids
,
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
Tensor
<
CDataType
>&
c_t_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a_m_k
,
b_e_n_k
,
c_t_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceMoeGemm2"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
script/cmake-ck-dev.sh
View file @
66cff910
...
@@ -17,7 +17,7 @@ fi
...
@@ -17,7 +17,7 @@ fi
cmake
\
cmake
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_FLAGS
=
"-Xclang -mllvm -Xclang -enable-post-misched=0 -std=c++17 -O
3
--save-temps -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker"
\
-D
CMAKE_CXX_FLAGS
=
"-Xclang -mllvm -Xclang -enable-post-misched=0 -std=c++17 -O
1 -g
--save-temps -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
ON
\
-D
BUILD_DEV
=
ON
\
-D
GPU_TARGETS
=
$GPU_TARGETS
\
-D
GPU_TARGETS
=
$GPU_TARGETS
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment