Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
630042d8
Unverified
Commit
630042d8
authored
Nov 07, 2024
by
Rostyslav Geyyer
Committed by
GitHub
Nov 07, 2024
Browse files
Merge branch 'gfx950' into lwpck-2390
parents
5f1a24a8
261d76c4
Changes
427
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1163 additions
and
5 deletions
+1163
-5
test/data_type/CMakeLists.txt
test/data_type/CMakeLists.txt
+5
-0
test/data_type/test_custom_type.cpp
test/data_type/test_custom_type.cpp
+874
-0
test/gemm_universal/test_gemm_universal_xdl.cpp
test/gemm_universal/test_gemm_universal_xdl.cpp
+2
-2
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
+2
-2
test/grouped_convnd_fwd/test_grouped_convnd_fwd_large_cases_xdl.cpp
...ed_convnd_fwd/test_grouped_convnd_fwd_large_cases_xdl.cpp
+2
-1
test/scatter_gather/CMakeLists.txt
test/scatter_gather/CMakeLists.txt
+2
-0
test/scatter_gather/scatter_gather.cpp
test/scatter_gather/scatter_gather.cpp
+276
-0
No files found.
test/data_type/CMakeLists.txt
View file @
630042d8
...
...
@@ -22,4 +22,9 @@ if(result EQUAL 0)
target_link_libraries
(
test_fp4 PRIVATE utility
)
endif
()
add_gtest_executable
(
test_custom_type test_custom_type.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_custom_type PRIVATE utility
)
endif
()
add_gtest_executable
(
test_type_convert_const type_convert_const.cpp
)
test/data_type/test_custom_type.cpp
0 → 100644
View file @
630042d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using
ck
::
bf8_t
;
using
ck
::
bhalf_t
;
using
ck
::
f8_t
;
using
ck
::
half_t
;
using
ck
::
Number
;
using
ck
::
type_convert
;
using
ck
::
vector_type
;
TEST
(
Custom_bool
,
TestSize
)
{
struct
custom_bool_t
{
bool
data
;
};
ASSERT_EQ
(
sizeof
(
custom_bool_t
),
sizeof
(
bool
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
2
>
),
sizeof
(
vector_type
<
bool
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
4
>
),
sizeof
(
vector_type
<
bool
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
8
>
),
sizeof
(
vector_type
<
bool
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
16
>
),
sizeof
(
vector_type
<
bool
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
32
>
),
sizeof
(
vector_type
<
bool
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bool_t
,
64
>
),
sizeof
(
vector_type
<
bool
,
64
>
));
}
TEST
(
Custom_bool
,
TestAsType
)
{
struct
custom_bool_t
{
using
type
=
bool
;
type
data
;
custom_bool_t
()
:
data
{
type
{}}
{}
custom_bool_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
bool
>
test_vec
=
{
false
,
true
,
false
,
true
};
// reference vector
vector_type
<
custom_bool_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{}).
data
,
false
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{})
=
custom_bool_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_bool_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_bool
,
TestAsTypeReshape
)
{
struct
custom_bool_t
{
using
type
=
bool
;
type
data
;
custom_bool_t
()
:
data
{
type
{}}
{}
custom_bool_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
bool
>
test_vec
=
{
false
,
true
,
false
,
true
};
// reference vector
vector_type
<
custom_bool_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{}).
data
,
false
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{})
=
custom_bool_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_bool_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_bool_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bool_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_int8
,
TestSize
)
{
struct
custom_int8_t
{
int8_t
data
;
};
ASSERT_EQ
(
sizeof
(
custom_int8_t
),
sizeof
(
int8_t
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
2
>
),
sizeof
(
vector_type
<
int8_t
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
4
>
),
sizeof
(
vector_type
<
int8_t
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
8
>
),
sizeof
(
vector_type
<
int8_t
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
16
>
),
sizeof
(
vector_type
<
int8_t
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
32
>
),
sizeof
(
vector_type
<
int8_t
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_int8_t
,
64
>
),
sizeof
(
vector_type
<
int8_t
,
64
>
));
}
TEST
(
Custom_int8
,
TestAsType
)
{
struct
custom_int8_t
{
using
type
=
int8_t
;
type
data
;
custom_int8_t
()
:
data
{
type
{}}
{}
custom_int8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
int8_t
>
test_vec
=
{
3
,
-
6
,
8
,
-
2
};
// reference vector
vector_type
<
custom_int8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{})
=
custom_int8_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_int8_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_int8
,
TestAsTypeReshape
)
{
struct
custom_int8_t
{
using
type
=
int8_t
;
type
data
;
custom_int8_t
()
:
data
{
type
{}}
{}
custom_int8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
int8_t
>
test_vec
=
{
3
,
-
6
,
8
,
-
2
};
// reference vector
vector_type
<
custom_int8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{})
=
custom_int8_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_int8_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_int8_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_int8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_uint8
,
TestSize
)
{
struct
custom_uint8_t
{
uint8_t
data
;
};
ASSERT_EQ
(
sizeof
(
custom_uint8_t
),
sizeof
(
uint8_t
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
2
>
),
sizeof
(
vector_type
<
uint8_t
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
4
>
),
sizeof
(
vector_type
<
uint8_t
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
8
>
),
sizeof
(
vector_type
<
uint8_t
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
16
>
),
sizeof
(
vector_type
<
uint8_t
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
32
>
),
sizeof
(
vector_type
<
uint8_t
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_uint8_t
,
64
>
),
sizeof
(
vector_type
<
uint8_t
,
64
>
));
}
TEST
(
Custom_uint8
,
TestAsType
)
{
struct
custom_uint8_t
{
using
type
=
uint8_t
;
type
data
;
custom_uint8_t
()
:
data
{
type
{}}
{}
custom_uint8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
uint8_t
>
test_vec
=
{
3
,
6
,
8
,
2
};
// reference vector
vector_type
<
custom_uint8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{})
=
custom_uint8_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_uint8_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_uint8
,
TestAsTypeReshape
)
{
struct
custom_uint8_t
{
using
type
=
uint8_t
;
type
data
;
custom_uint8_t
()
:
data
{
type
{}}
{}
custom_uint8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
uint8_t
>
test_vec
=
{
3
,
6
,
8
,
2
};
// reference vector
vector_type
<
custom_uint8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{})
=
custom_uint8_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_uint8_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_uint8_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_uint8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_f8
,
TestSize
)
{
struct
custom_f8_t
{
_BitInt
(
8
)
data
;
};
ASSERT_EQ
(
sizeof
(
custom_f8_t
),
sizeof
(
_BitInt
(
8
)));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
2
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
4
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
8
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
16
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
32
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_f8_t
,
64
>
),
sizeof
(
vector_type
<
_BitInt
(
8
),
64
>
));
}
TEST
(
Custom_f8
,
TestAsType
)
{
struct
custom_f8_t
{
using
type
=
_BitInt
(
8
);
type
data
;
custom_f8_t
()
:
data
{
type
{}}
{}
custom_f8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
_BitInt
(
8
)
>
test_vec
=
{
type_convert
<
_BitInt
(
8
)
>
(
0.3
f
),
type_convert
<
_BitInt
(
8
)
>
(
-
0.6
f
),
type_convert
<
_BitInt
(
8
)
>
(
0.8
f
),
type_convert
<
_BitInt
(
8
)
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_f8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}(
[
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{})
=
custom_f8_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_f8_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_f8
,
TestAsTypeReshape
)
{
struct
custom_f8_t
{
using
type
=
_BitInt
(
8
);
type
data
;
custom_f8_t
()
:
data
{
type
{}}
{}
custom_f8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
_BitInt
(
8
)
>
test_vec
=
{
type_convert
<
_BitInt
(
8
)
>
(
0.3
f
),
type_convert
<
_BitInt
(
8
)
>
(
-
0.6
f
),
type_convert
<
_BitInt
(
8
)
>
(
0.8
f
),
type_convert
<
_BitInt
(
8
)
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_f8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}(
[
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{})
=
custom_f8_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_f8_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_f8_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_f8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_bf8
,
TestSize
)
{
struct
custom_bf8_t
{
unsigned
_BitInt
(
8
)
data
;
};
ASSERT_EQ
(
sizeof
(
custom_bf8_t
),
sizeof
(
unsigned
_BitInt
(
8
)));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
2
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
4
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
8
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
16
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
32
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bf8_t
,
64
>
),
sizeof
(
vector_type
<
unsigned
_BitInt
(
8
),
64
>
));
}
TEST
(
Custom_bf8
,
TestAsType
)
{
struct
custom_bf8_t
{
using
type
=
unsigned
_BitInt
(
8
);
type
data
;
custom_bf8_t
()
:
data
{
type
{}}
{}
custom_bf8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
unsigned
_BitInt
(
8
)
>
test_vec
=
{
type_convert
<
unsigned
_BitInt
(
8
)
>
(
0.3
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
-
0.6
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
0.8
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_bf8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}(
[
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{})
=
custom_bf8_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_bf8_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_bf8
,
TestAsTypeReshape
)
{
struct
custom_bf8_t
{
using
type
=
unsigned
_BitInt
(
8
);
type
data
;
custom_bf8_t
()
:
data
{
type
{}}
{}
custom_bf8_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
unsigned
_BitInt
(
8
)
>
test_vec
=
{
type_convert
<
unsigned
_BitInt
(
8
)
>
(
0.3
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
-
0.6
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
0.8
f
),
type_convert
<
unsigned
_BitInt
(
8
)
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_bf8_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}(
[
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{}).
data
,
0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{})
=
custom_bf8_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_bf8_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_bf8_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bf8_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_half
,
TestSize
)
{
struct
custom_half_t
{
half_t
data
;
};
ASSERT_EQ
(
sizeof
(
custom_half_t
),
sizeof
(
half_t
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
2
>
),
sizeof
(
vector_type
<
half_t
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
4
>
),
sizeof
(
vector_type
<
half_t
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
8
>
),
sizeof
(
vector_type
<
half_t
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
16
>
),
sizeof
(
vector_type
<
half_t
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
32
>
),
sizeof
(
vector_type
<
half_t
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_half_t
,
64
>
),
sizeof
(
vector_type
<
half_t
,
64
>
));
}
TEST
(
Custom_half
,
TestAsType
)
{
struct
custom_half_t
{
using
type
=
half_t
;
type
data
;
custom_half_t
()
:
data
{
type
{}}
{}
custom_half_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
half_t
>
test_vec
=
{
half_t
{
0.3
f
},
half_t
{
-
0.6
f
},
half_t
{
0.8
f
},
half_t
{
-
0.2
f
}};
// reference vector
vector_type
<
custom_half_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{}).
data
,
type_convert
<
half_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{})
=
custom_half_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_half_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_half
,
TestAsTypeReshape
)
{
struct
custom_half_t
{
using
type
=
half_t
;
type
data
;
custom_half_t
()
:
data
{
type
{}}
{}
custom_half_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
half_t
>
test_vec
=
{
half_t
{
0.3
f
},
half_t
{
-
0.6
f
},
half_t
{
0.8
f
},
half_t
{
-
0.2
f
}};
// reference vector
vector_type
<
custom_half_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{}).
data
,
type_convert
<
half_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{})
=
custom_half_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_half_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_half_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_half_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_bhalf
,
TestSize
)
{
struct
custom_bhalf_t
{
bhalf_t
data
;
};
ASSERT_EQ
(
sizeof
(
custom_bhalf_t
),
sizeof
(
bhalf_t
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
2
>
),
sizeof
(
vector_type
<
bhalf_t
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
4
>
),
sizeof
(
vector_type
<
bhalf_t
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
8
>
),
sizeof
(
vector_type
<
bhalf_t
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
16
>
),
sizeof
(
vector_type
<
bhalf_t
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
32
>
),
sizeof
(
vector_type
<
bhalf_t
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_bhalf_t
,
64
>
),
sizeof
(
vector_type
<
bhalf_t
,
64
>
));
}
TEST
(
Custom_bhalf
,
TestAsType
)
{
struct
custom_bhalf_t
{
using
type
=
bhalf_t
;
type
data
;
custom_bhalf_t
()
:
data
{
type
{}}
{}
custom_bhalf_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
bhalf_t
>
test_vec
=
{
type_convert
<
bhalf_t
>
(
0.3
f
),
type_convert
<
bhalf_t
>
(
-
0.6
f
),
type_convert
<
bhalf_t
>
(
0.8
f
),
type_convert
<
bhalf_t
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_bhalf_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{}).
data
,
type_convert
<
bhalf_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{})
=
custom_bhalf_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_bhalf_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_bhalf
,
TestAsTypeReshape
)
{
struct
custom_bhalf_t
{
using
type
=
bhalf_t
;
type
data
;
custom_bhalf_t
()
:
data
{
type
{}}
{}
custom_bhalf_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
bhalf_t
>
test_vec
=
{
type_convert
<
bhalf_t
>
(
0.3
f
),
type_convert
<
bhalf_t
>
(
-
0.6
f
),
type_convert
<
bhalf_t
>
(
0.8
f
),
type_convert
<
bhalf_t
>
(
-
0.2
f
)};
// reference vector
vector_type
<
custom_bhalf_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{}).
data
,
type_convert
<
bhalf_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{})
=
custom_bhalf_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_bhalf_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_bhalf_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_bhalf_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_float
,
TestSize
)
{
struct
custom_float_t
{
float
data
;
};
ASSERT_EQ
(
sizeof
(
custom_float_t
),
sizeof
(
float
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
2
>
),
sizeof
(
vector_type
<
float
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
4
>
),
sizeof
(
vector_type
<
float
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
8
>
),
sizeof
(
vector_type
<
float
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
16
>
),
sizeof
(
vector_type
<
float
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
32
>
),
sizeof
(
vector_type
<
float
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_float_t
,
64
>
),
sizeof
(
vector_type
<
float
,
64
>
));
}
TEST
(
Custom_float
,
TestAsType
)
{
struct
custom_float_t
{
using
type
=
float
;
type
data
;
custom_float_t
()
:
data
{
type
{}}
{}
custom_float_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
float
>
test_vec
=
{
0.3
f
,
-
0.6
f
,
0.8
f
,
-
0.2
f
};
// reference vector
vector_type
<
custom_float_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{}).
data
,
0.0
f
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{})
=
custom_float_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_float_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_float
,
TestAsTypeReshape
)
{
struct
custom_float_t
{
using
type
=
float
;
type
data
;
custom_float_t
()
:
data
{
type
{}}
{}
custom_float_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
float
>
test_vec
=
{
0.3
f
,
-
0.6
f
,
0.8
f
,
-
0.2
f
};
// reference vector
vector_type
<
custom_float_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{}).
data
,
0.0
f
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{})
=
custom_float_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_float_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_float_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_float_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_double
,
TestSize
)
{
struct
custom_double_t
{
double
data
;
};
ASSERT_EQ
(
sizeof
(
custom_double_t
),
sizeof
(
double
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
2
>
),
sizeof
(
vector_type
<
double
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
4
>
),
sizeof
(
vector_type
<
double
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
8
>
),
sizeof
(
vector_type
<
double
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
16
>
),
sizeof
(
vector_type
<
double
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
32
>
),
sizeof
(
vector_type
<
double
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
custom_double_t
,
64
>
),
sizeof
(
vector_type
<
double
,
64
>
));
}
TEST
(
Custom_double
,
TestAsType
)
{
struct
custom_double_t
{
using
type
=
double
;
type
data
;
custom_double_t
()
:
data
{
type
{}}
{}
custom_double_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
double
>
test_vec
=
{
0.3
,
0.6
,
0.8
,
0.2
};
// reference vector
vector_type
<
custom_double_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{}).
data
,
0.0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{})
=
custom_double_t
{
test_vec
.
at
(
i
)};
});
// copy the vector
vector_type
<
custom_double_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Custom_double
,
TestAsTypeReshape
)
{
struct
custom_double_t
{
using
type
=
double
;
type
data
;
custom_double_t
()
:
data
{
type
{}}
{}
custom_double_t
(
type
init
)
:
data
{
init
}
{}
};
// test size
const
int
size
=
4
;
std
::
vector
<
double
>
test_vec
=
{
0.3
,
0.6
,
0.8
,
0.2
};
// reference vector
vector_type
<
custom_double_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{}).
data
,
0.0
);
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{})
=
custom_double_t
{
test_vec
.
at
(
i
)};
});
// copy the first half of a vector
vector_type
<
custom_double_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
custom_double_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
custom_double_t
>()(
Number
<
i
>
{}).
data
,
test_vec
.
at
(
i
));
});
}
TEST
(
Complex_half
,
TestSize
)
{
struct
complex_half_t
{
half_t
real
;
half_t
img
;
};
ASSERT_EQ
(
sizeof
(
complex_half_t
),
sizeof
(
half_t
)
+
sizeof
(
half_t
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
2
>
),
sizeof
(
vector_type
<
half_t
,
2
>
)
+
sizeof
(
vector_type
<
half_t
,
2
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
4
>
),
sizeof
(
vector_type
<
half_t
,
4
>
)
+
sizeof
(
vector_type
<
half_t
,
4
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
8
>
),
sizeof
(
vector_type
<
half_t
,
8
>
)
+
sizeof
(
vector_type
<
half_t
,
8
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
16
>
),
sizeof
(
vector_type
<
half_t
,
16
>
)
+
sizeof
(
vector_type
<
half_t
,
16
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
32
>
),
sizeof
(
vector_type
<
half_t
,
32
>
)
+
sizeof
(
vector_type
<
half_t
,
32
>
));
ASSERT_EQ
(
sizeof
(
vector_type
<
complex_half_t
,
64
>
),
sizeof
(
vector_type
<
half_t
,
64
>
)
+
sizeof
(
vector_type
<
half_t
,
64
>
));
}
TEST
(
Complex_half
,
TestAlignment
)
{
struct
complex_half_t
{
half_t
real
;
half_t
img
;
};
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
2
>
),
alignof
(
vector_type
<
half_t
,
2
>
)
+
alignof
(
vector_type
<
half_t
,
2
>
));
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
4
>
),
alignof
(
vector_type
<
half_t
,
4
>
)
+
alignof
(
vector_type
<
half_t
,
4
>
));
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
8
>
),
alignof
(
vector_type
<
half_t
,
8
>
)
+
alignof
(
vector_type
<
half_t
,
8
>
));
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
16
>
),
alignof
(
vector_type
<
half_t
,
16
>
)
+
alignof
(
vector_type
<
half_t
,
16
>
));
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
32
>
),
alignof
(
vector_type
<
half_t
,
32
>
)
+
alignof
(
vector_type
<
half_t
,
32
>
));
ASSERT_EQ
(
alignof
(
vector_type
<
complex_half_t
,
64
>
),
alignof
(
vector_type
<
half_t
,
64
>
)
+
alignof
(
vector_type
<
half_t
,
64
>
));
}
TEST
(
Complex_half
,
TestAsType
)
{
struct
complex_half_t
{
using
type
=
half_t
;
type
real
;
type
img
;
complex_half_t
()
:
real
{
type
{}},
img
{
type
{}}
{}
complex_half_t
(
type
real_init
,
type
img_init
)
:
real
{
real_init
},
img
{
img_init
}
{}
};
// test size
const
int
size
=
4
;
// custom type number of elements
const
int
num_elem
=
sizeof
(
complex_half_t
)
/
sizeof
(
complex_half_t
::
type
);
std
::
vector
<
half_t
>
test_vec
=
{
half_t
{
0.3
f
},
half_t
{
-
0.6
f
},
half_t
{
0.8
f
},
half_t
{
-
0.2
f
},
half_t
{
0.5
f
},
half_t
{
-
0.7
f
},
half_t
{
0.9
f
},
half_t
{
-
0.3
f
}};
// reference vector
vector_type
<
complex_half_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
real
,
type_convert
<
half_t
>
(
0.0
f
));
ASSERT_EQ
(
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
img
,
type_convert
<
half_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{})
=
complex_half_t
{
test_vec
.
at
(
num_elem
*
i
),
test_vec
.
at
(
num_elem
*
i
+
1
)};
});
// copy the vector
vector_type
<
complex_half_t
,
size
>
left_vec
{
right_vec
};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
real
,
test_vec
.
at
(
num_elem
*
i
));
ASSERT_EQ
(
left_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
img
,
test_vec
.
at
(
num_elem
*
i
+
1
));
});
}
TEST
(
Complex_half
,
TestAsTypeReshape
)
{
struct
complex_half_t
{
using
type
=
half_t
;
type
real
;
type
img
;
complex_half_t
()
:
real
{
type
{}},
img
{
type
{}}
{}
complex_half_t
(
type
real_init
,
type
img_init
)
:
real
{
real_init
},
img
{
img_init
}
{}
};
// test size
const
int
size
=
4
;
// custom type number of elements
const
int
num_elem
=
sizeof
(
complex_half_t
)
/
sizeof
(
complex_half_t
::
type
);
std
::
vector
<
half_t
>
test_vec
=
{
half_t
{
0.3
f
},
half_t
{
-
0.6
f
},
half_t
{
0.8
f
},
half_t
{
-
0.2
f
},
half_t
{
0.5
f
},
half_t
{
-
0.7
f
},
half_t
{
0.9
f
},
half_t
{
-
0.3
f
}};
// reference vector
vector_type
<
complex_half_t
,
size
>
right_vec
;
// check default CTOR
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
real
,
type_convert
<
half_t
>
(
0.0
f
));
ASSERT_EQ
(
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
img
,
type_convert
<
half_t
>
(
0.0
f
));
});
// assign test values to the vector
ck
::
static_for
<
0
,
size
,
1
>
{}([
&
](
auto
i
)
{
right_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{})
=
complex_half_t
{
test_vec
.
at
(
num_elem
*
i
),
test_vec
.
at
(
num_elem
*
i
+
1
)};
});
// copy the first half of a vector
vector_type
<
complex_half_t
,
size
/
2
>
left_vec
{
right_vec
.
template
AsType
<
vector_type
<
complex_half_t
,
size
/
2
>
::
type
>
()(
Number
<
0
>
{})};
// check if values were copied correctly
ck
::
static_for
<
0
,
size
/
2
,
1
>
{}([
&
](
auto
i
)
{
ASSERT_EQ
(
left_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
real
,
test_vec
.
at
(
num_elem
*
i
));
ASSERT_EQ
(
left_vec
.
template
AsType
<
complex_half_t
>()(
Number
<
i
>
{}).
img
,
test_vec
.
at
(
num_elem
*
i
+
1
));
});
}
test/gemm_universal/test_gemm_universal_xdl.cpp
View file @
630042d8
...
...
@@ -56,7 +56,7 @@ class TestGemmUniversal_KM_NK
using
KernelTypes_MK_KN
=
::
testing
::
Types
<
// ADataType, BDataType, ComputeDataType, CDataType
std
::
tuple
<
F16
,
F16
,
F16
,
F16
>
,
#if
(
defined
CK_ENABLE_FP8)
#if defined
(
CK_ENABLE_FP8)
&& defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
std
::
tuple
<
F16
,
F8
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F8
,
F8
,
BF16
>
,
...
...
@@ -66,7 +66,7 @@ using KernelTypes_MK_KN = ::testing::Types<
using
KernelTypes_MK_NK
=
::
testing
::
Types
<
// ADataType, BDataType, ComputeDataType, CDataType
std
::
tuple
<
F16
,
F16
,
F16
,
F16
>
,
#if
(
defined
CK_ENABLE_FP8)
#if defined
(
CK_ENABLE_FP8)
&& defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
std
::
tuple
<
F16
,
F8
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F16
,
F16
,
F16
>
,
std
::
tuple
<
F8
,
F8
,
F8
,
BF16
>
,
...
...
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
View file @
630042d8
...
...
@@ -58,13 +58,13 @@ using KernelTypes1d = ::testing::Types<std::tuple<float, GNWC, GKXC, GNWK>,
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
ck
::
half_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
int8_t
,
GNHWC
,
GKYXC
,
GNHWK
>
,
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
int8_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
float
,
NGCHW
,
GKYXC
,
NGKHW
>
,
std
::
tuple
<
ck
::
half_t
,
NGCHW
,
GKYXC
,
NGKHW
>>
;
std
::
tuple
<
ck
::
half_t
,
NGCHW
,
GKYXC
,
NGKHW
>
,
std
::
tuple
<
int8_t
,
NGCHW
,
GKYXC
,
NGKHW
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
std
::
tuple
<
ck
::
half_t
,
GNDHWC
,
GKZYXC
,
GNDHWK
>
,
...
...
test/grouped_convnd_fwd/test_grouped_convnd_fwd_large_cases_xdl.cpp
View file @
630042d8
...
...
@@ -52,7 +52,8 @@ using namespace ck::tensor_layout::convolution;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGC
,
GKYXC
,
NHWGK
>>
;
std
::
tuple
<
ck
::
bhalf_t
,
NHWGC
,
GKYXC
,
NHWGK
>
,
std
::
tuple
<
int8_t
,
NHWGC
,
GKYXC
,
NHWGK
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
ck
::
half_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
...
...
test/scatter_gather/CMakeLists.txt
0 → 100644
View file @
630042d8
add_test_executable
(
test_scatter_gather scatter_gather.cpp
)
# target_compile_options(test_scatter_gather PRIVATE -v --save-temps -Wno-gnu-line-marker)
test/scatter_gather/scatter_gather.cpp
0 → 100644
View file @
630042d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>
#include "ck_tile/core.hpp"
#ifndef TEST_SCATTER_GATHER_VERBOSE
#define TEST_SCATTER_GATHER_VERBOSE 1
#endif
#define HIP_CALL(call) \
do \
{ \
hipError_t err = call; \
if(err != hipSuccess) \
{ \
printf("[hiperror](%d) fail to call %s", static_cast<int>(err), #call); \
exit(0); \
} \
} while(0)
/*
TODO:
This is a simple design of scatter/gather through indexing transform, with limitations
We may design a scatter/gather adaptor layer directly inside tile window
*/
template
<
ck_tile
::
index_t
ROW_TILE_SIZE
=
8
,
ck_tile
::
index_t
COL_TILE_SIZE
=
32
*
8
,
ck_tile
::
index_t
BLOCK_SIZE
=
256
,
ck_tile
::
index_t
ALIGNMENT
=
8
,
typename
INDEX_BUF_TYPE
=
ck_tile
::
index_t
,
typename
DATA_TYPE
=
ck_tile
::
fp16_t
>
__global__
void
row_scatter_gather
(
const
INDEX_BUF_TYPE
*
src_row_idx_ptr
,
const
INDEX_BUF_TYPE
*
dst_row_idx_ptr
,
const
DATA_TYPE
*
src_ptr
,
DATA_TYPE
*
dst_ptr
,
ck_tile
::
index_t
n_row_total
,
ck_tile
::
index_t
/*n_row_select*/
,
ck_tile
::
index_t
n_cols
)
{
using
namespace
ck_tile
;
// some constexpr vars
constexpr
index_t
vec
=
ALIGNMENT
;
static_assert
(
COL_TILE_SIZE
%
vec
==
0
);
constexpr
index_t
col_lanes
=
COL_TILE_SIZE
/
vec
;
constexpr
index_t
warp_size
=
ck_tile
::
get_warp_size
();
static_assert
(
warp_size
%
col_lanes
==
0
);
constexpr
index_t
row_lanes
=
warp_size
/
col_lanes
;
constexpr
index_t
num_warps
=
BLOCK_SIZE
/
warp_size
;
static_assert
(
ROW_TILE_SIZE
%
(
num_warps
*
row_lanes
)
==
0
);
constexpr
index_t
row_repeat
=
ROW_TILE_SIZE
/
(
num_warps
*
row_lanes
);
static_assert
(
row_repeat
==
1
,
"currently indexing not support(and would be not performant) if row_repeat has more"
);
// tile partitioner
index_t
tile_col_idx
=
0
;
index_t
tile_row_idx
=
blockIdx
.
x
*
ROW_TILE_SIZE
;
// create our tild distribution, which tell us the location of different threads
constexpr
auto
src_dist
=
make_static_tile_distribution
(
tile_distribution_encoding
<
sequence
<
1
>
,
tuple
<
sequence
<
row_repeat
,
num_warps
,
row_lanes
>
,
sequence
<
col_lanes
,
vec
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
1
,
2
>>
,
tuple
<
sequence
<
1
>
,
sequence
<
2
,
0
>>
,
sequence
<
1
,
2
>
,
sequence
<
0
,
1
>>
{});
const
auto
coord
=
src_dist
.
calculate_index
();
const
auto
row_coord
=
coord
[
number
<
0
>
{}]
+
tile_row_idx
;
// load the current row index from the indexing buffer. we do not use ck_tile utility here
INDEX_BUF_TYPE
src_row_id
=
src_row_idx_ptr
[
row_coord
];
INDEX_BUF_TYPE
dst_row_id
=
dst_row_idx_ptr
[
row_coord
];
// printf("-- tid:%d, src_row_id:%d, dst_row_id:%d\n", static_cast<int>(threadIdx.x),
// static_cast<int>(src_row_id), static_cast<int>(dst_row_id));
const
auto
src_view
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
src_ptr
,
make_tuple
(
n_row_total
,
n_cols
),
make_tuple
(
n_cols
,
1
),
number
<
vec
>
{},
// alignement
number
<
1
>
{});
const
auto
src_gather_view
=
transform_tensor_view
(
src_view
,
make_tuple
(
make_indexing_transform
(
n_row_total
,
src_row_id
),
// here we replace row_idx which is loaded from another buffer
make_pass_through_transform
(
n_cols
)),
make_tuple
(
sequence
<
0
>
{},
sequence
<
1
>
{}),
make_tuple
(
sequence
<
0
>
{},
sequence
<
1
>
{}));
auto
src_tile
=
make_tile_window
(
src_gather_view
,
make_tuple
(
number
<
ROW_TILE_SIZE
>
{},
number
<
COL_TILE_SIZE
>
{}),
{
tile_row_idx
,
tile_col_idx
},
src_dist
);
const
auto
dst_view
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
dst_ptr
,
make_tuple
(
n_row_total
,
n_cols
),
make_tuple
(
n_cols
,
1
),
number
<
vec
>
{},
number
<
1
>
{});
const
auto
dst_scatter_view
=
transform_tensor_view
(
dst_view
,
make_tuple
(
make_indexing_transform
(
n_row_total
,
dst_row_id
),
// here we replace row_idx which is loaded from another buffer
make_pass_through_transform
(
n_cols
)),
make_tuple
(
sequence
<
0
>
{},
sequence
<
1
>
{}),
make_tuple
(
sequence
<
0
>
{},
sequence
<
1
>
{}));
auto
dst_tile
=
make_tile_window
(
dst_scatter_view
,
make_tuple
(
number
<
ROW_TILE_SIZE
>
{},
number
<
COL_TILE_SIZE
>
{}),
{
tile_row_idx
,
tile_col_idx
},
src_dist
/*reuse distribution*/
);
// we finished descriptor construction and index calculation, now start load/store
for
(
auto
i
=
0
;
i
<
n_cols
;
i
+=
COL_TILE_SIZE
)
{
// note that scatter/gather are just the same API when doing load store as normal memory
// operation
auto
data
=
load_tile
(
src_tile
);
store_tile
(
dst_tile
,
data
);
move_tile_window
(
src_tile
,
{
number
<
0
>
{},
number
<
COL_TILE_SIZE
>
{}});
move_tile_window
(
dst_tile
,
{
number
<
0
>
{},
number
<
COL_TILE_SIZE
>
{}});
}
}
union
pixel
{
struct
__attribute__
((
packed
))
{
unsigned
int
r
:
6
;
unsigned
int
c
:
10
;
};
ushort
data
;
};
struct
unique_linear_rand
{
unique_linear_rand
(
int
capacity_
)
:
capacity
(
capacity_
)
{}
std
::
unordered_set
<
int
>
set
;
int
gen
()
{
if
(
static_cast
<
int
>
(
set
.
size
())
>=
capacity
)
{
printf
(
"overflow, but will give you an number as well
\n
"
);
return
std
::
rand
()
%
capacity
;
}
while
(
1
)
{
int
r
=
std
::
rand
()
%
capacity
;
if
(
set
.
count
(
r
)
==
1
)
{
continue
;
}
set
.
insert
(
r
);
return
r
;
}
}
int
capacity
;
};
int
main
()
{
int
row_total
=
64
;
int
row_select
=
8
*
2
;
int
col
=
256
*
2
;
using
fp16_t
=
ck_tile
::
fp16_t
;
constexpr
int
row_tile
=
8
;
constexpr
int
col_tile
=
256
;
fp16_t
*
src
=
reinterpret_cast
<
fp16_t
*>
(
malloc
(
row_total
*
col
*
sizeof
(
fp16_t
)));
for
(
int
i_r
=
0
;
i_r
<
row_total
;
i_r
++
)
{
for
(
int
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
int
i
=
i_r
*
col
+
i_c
;
pixel
p
;
p
.
r
=
i_r
;
p
.
c
=
i_c
;
ushort
d
=
p
.
data
;
src
[
i
]
=
ck_tile
::
bit_cast
<
fp16_t
>
(
d
);
// for simplicity, just cast
}
}
fp16_t
*
dst
=
reinterpret_cast
<
fp16_t
*>
(
malloc
(
row_total
*
col
*
sizeof
(
fp16_t
)));
int
*
src_idx
=
reinterpret_cast
<
int
*>
(
malloc
(
row_select
*
sizeof
(
int
)));
int
*
dst_idx
=
reinterpret_cast
<
int
*>
(
malloc
(
row_select
*
sizeof
(
int
)));
// std::srand(std::time(std::nullptr));
// std::srand(11935);
std
::
srand
(
std
::
time
(
nullptr
));
auto
src_gen
=
unique_linear_rand
(
row_total
);
auto
dst_gen
=
unique_linear_rand
(
row_total
);
// dst index must be unique. src is fine
for
(
int
i_r
=
0
;
i_r
<
row_select
;
i_r
++
)
{
src_idx
[
i_r
]
=
src_gen
.
gen
();
dst_idx
[
i_r
]
=
dst_gen
.
gen
();
}
void
*
dev_src
;
void
*
dev_dst
;
void
*
dev_src_idx
;
void
*
dev_dst_idx
;
HIP_CALL
(
hipMalloc
(
&
dev_src
,
row_total
*
col
*
sizeof
(
fp16_t
)));
HIP_CALL
(
hipMalloc
(
&
dev_dst
,
row_total
*
col
*
sizeof
(
fp16_t
)));
HIP_CALL
(
hipMalloc
(
&
dev_src_idx
,
row_select
*
sizeof
(
int
)));
HIP_CALL
(
hipMalloc
(
&
dev_dst_idx
,
row_select
*
sizeof
(
int
)));
HIP_CALL
(
hipMemcpy
(
dev_src
,
src
,
row_total
*
col
*
sizeof
(
fp16_t
),
hipMemcpyHostToDevice
));
HIP_CALL
(
hipMemcpy
(
dev_src_idx
,
src_idx
,
row_select
*
sizeof
(
int
),
hipMemcpyHostToDevice
));
HIP_CALL
(
hipMemcpy
(
dev_dst_idx
,
dst_idx
,
row_select
*
sizeof
(
int
),
hipMemcpyHostToDevice
));
constexpr
int
bdim
=
256
;
int
gdim
=
(
row_select
+
row_tile
-
1
)
/
row_tile
;
row_scatter_gather
<
row_tile
,
col_tile
><<<
gdim
,
bdim
>>>
(
reinterpret_cast
<
int
*>
(
dev_src_idx
),
reinterpret_cast
<
int
*>
(
dev_dst_idx
),
reinterpret_cast
<
fp16_t
*>
(
dev_src
),
reinterpret_cast
<
fp16_t
*>
(
dev_dst
),
row_total
,
row_select
,
col
);
HIP_CALL
(
hipMemcpy
(
dst
,
dev_dst
,
row_total
*
col
*
sizeof
(
fp16_t
),
hipMemcpyDeviceToHost
));
#if TEST_SCATTER_GATHER_VERBOSE
printf
(
"select row:"
);
for
(
int
i_r
=
0
;
i_r
<
row_select
;
i_r
++
)
{
printf
(
"%d->%d->%d "
,
i_r
,
src_idx
[
i_r
],
dst_idx
[
i_r
]);
}
printf
(
"
\n
"
);
#endif
int
err_cnt
=
0
;
for
(
int
i_r
=
0
;
i_r
<
row_select
;
i_r
++
)
{
for
(
int
i_c
=
0
;
i_c
<
col
;
i_c
++
)
{
int
i
=
dst_idx
[
i_r
]
*
col
+
i_c
;
pixel
p
=
ck_tile
::
bit_cast
<
pixel
>
(
dst
[
i
]);
bool
is_ok
=
p
.
r
==
src_idx
[
i_r
]
&&
p
.
c
==
i_c
;
if
(
!
is_ok
)
{
if
(
i_c
==
0
)
printf
(
"(%d)pixel: %dx%d -> %d
\n
"
,
i_r
,
p
.
r
,
p
.
c
,
dst_idx
[
i_r
]);
err_cnt
++
;
}
}
}
#if TEST_SCATTER_GATHER_VERBOSE
printf
(
"err:%d
\n
"
,
err_cnt
);
#endif
free
(
src
);
free
(
dst
);
free
(
src_idx
);
free
(
dst_idx
);
return
err_cnt
==
0
?
0
:
-
1
;
}
Prev
1
…
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment