Commit 5ec6a912 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents d39c3f5d 3bb0fe6c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -95,11 +95,33 @@ using get_carrier_t = typename get_carrier<SizeInBytes>::type;
} // namespace detail
__device__ inline uint32_t amd_wave_read_first_lane(uint32_t value)
{
return __builtin_amdgcn_readfirstlane(value);
}
__device__ inline int32_t amd_wave_read_first_lane(int32_t value)
{
return __builtin_amdgcn_readfirstlane(value);
}
__device__ inline int64_t amd_wave_read_first_lane(int64_t value)
{
constexpr unsigned object_size = sizeof(int64_t);
constexpr unsigned second_part_offset = object_size / 2;
auto* const from_obj = reinterpret_cast<const std::byte*>(&value);
alignas(int64_t) std::byte to_obj[object_size];
using Sgpr = uint32_t;
*reinterpret_cast<Sgpr*>(to_obj) =
amd_wave_read_first_lane(*reinterpret_cast<const Sgpr*>(from_obj));
*reinterpret_cast<Sgpr*>(to_obj + second_part_offset) =
amd_wave_read_first_lane(*reinterpret_cast<const Sgpr*>(from_obj + second_part_offset));
return *reinterpret_cast<int64_t*>(to_obj);
}
template <
typename Object,
typename = std::enable_if_t<std::is_class_v<Object> && std::is_trivially_copyable_v<Object>>>
......
......@@ -257,5 +257,87 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
}
};
// gfx12
/********************************WAVE32 MODE***********************************************/
#if defined(__gfx1200__) || defined(__gfx1201__)
#define __gfx12__
#endif
// src: fp16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_f16_w32_gfx12;
template <>
struct intrin_wmma_f32_16x16x16_f16_w32_gfx12<16, 16>
{
template <class FloatC>
__device__ static void Run(const half8_t& reg_a, const half8_t& reg_b, FloatC& reg_c)
{
// * Inline assembly need to elimate the duplicated data load, compiler won't help you
// delete them.
// amd_assembly_wmma_f32_16x16x16_f16_w32(
// reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
#if defined(__gfx12__)
reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
// src: bf16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_bf16_w32_gfx12;
template <>
struct intrin_wmma_f32_16x16x16_bf16_w32_gfx12<16, 16>
{
template <class FloatC>
__device__ static void Run(const bhalf8_t& reg_a, const bhalf8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx12__)
reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
// src: iu8, dst: i32
template <index_t MPerWave, index_t NPerWave, bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w32_gfx12;
template <bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w32_gfx12<16, 16, neg_a, neg_b, clamp>
{
template <class FloatC>
__device__ static void Run(const int8x8_t& reg_a, const int8x8_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx12__)
reg_c.template AsType<int32x8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
neg_a,
bit_cast<int32x2_t>(reg_a),
neg_b,
bit_cast<int32x2_t>(reg_b),
reg_c.template AsType<int32x8_t>()[Number<0>{}],
clamp);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
} // namespace ck
#endif
......@@ -36,6 +36,8 @@ struct Array
return *this;
}
__host__ __device__ constexpr const TData* begin() const { return &mData[0]; }
__host__ __device__ constexpr const TData* end() const { return &mData[NSize]; }
};
// empty Array
......
......@@ -203,7 +203,7 @@ struct vector_type<T, 1>
}
};
int static err = 0;
__device__ int static err = 0;
template <typename T>
struct vector_type<T, 2>
{
......
......@@ -10,12 +10,20 @@ namespace ck {
__device__ void block_sync_lds()
{
#if CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
#ifdef __gfx12__
asm volatile("\
s_wait_dscnt 0x0 \n \
s_barrier_signal -1 \n \
s_barrier_wait -1 \
" ::);
#else
// asm volatile("\
// s_waitcnt lgkmcnt(0) \n \
// s_barrier \
// " ::);
__builtin_amdgcn_s_waitcnt(0xc07f);
__builtin_amdgcn_s_barrier();
#endif
#else
__syncthreads();
#endif
......@@ -23,11 +31,20 @@ __device__ void block_sync_lds()
__device__ void block_sync_lds_direct_load()
{
#ifdef __gfx12__
asm volatile("\
s_wait_vmcnt 0x0 \n \
s_wait_dscnt 0x0 \n \
s_barrier_signal -1 \n \
s_barrier_wait -1 \
" ::);
#else
asm volatile("\
s_waitcnt vmcnt(0) \n \
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
#endif
}
__device__ void s_nop()
......
......@@ -27,6 +27,7 @@
#include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/numeric/null_type.hpp"
#include "ck_tile/core/numeric/numeric.hpp"
#include "ck_tile/core/numeric/type_convert.hpp"
#include "ck_tile/core/numeric/vector_type.hpp"
......
......@@ -26,7 +26,12 @@ struct __attribute__((packed)) buffer_resource
CK_TILE_DEVICE int32x4_t make_wave_buffer_resource(const void* ptr, uint32_t size = 0xffffffff)
{
buffer_resource res{ptr, size, CK_TILE_BUFFER_RESOURCE_3RD_DWORD};
return __builtin_bit_cast(int32x4_t, res);
int32x4_t r = __builtin_bit_cast(int32x4_t, res);
r.x = __builtin_amdgcn_readfirstlane(r.x);
r.y = __builtin_amdgcn_readfirstlane(r.y);
r.z = __builtin_amdgcn_readfirstlane(r.z);
r.w = __builtin_amdgcn_readfirstlane(r.w);
return r;
}
namespace impl {
......@@ -552,8 +557,9 @@ namespace impl{
template<index_t N>
CK_TILE_DEVICE void insert_dummy_dep_per_dword(array<float, N>& b)
{
static_for<0, b.size(), 1>{}([&](auto i){
asm volatile(" " : : "v"(b.get(i)) : "memory");
constexpr auto kSize = remove_cvref_t<decltype(b)>::size();
static_for<0, kSize, 1>{}([&](auto i){
asm volatile(" " : : "v"(b.get(number<i>{})) : "memory");
});
}
#if 1
......@@ -2103,7 +2109,8 @@ CK_TILE_DEVICE void amd_direct_load_global_to_lds(const T* global_base_ptr,
asm volatile("s_mov_b32 m0, %0; \n\t"
"buffer_load_dword %1, %2, 0 offen lds;\n\t" ::"s"(lds_ptr_sgpr),
"v"(global_offset_bytes),
"s"(src_resource));
"s"(src_resource)
: "memory");
#else
// LDS pointer must be attributed with the LDS address space.
__attribute__((address_space(3))) uint32_t* lds_ptr =
......
......@@ -61,10 +61,13 @@ CK_TILE_DEVICE index_t get_block_id() { return blockIdx.x; }
CK_TILE_DEVICE void block_sync_lds()
{
#if CK_TILE_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
asm volatile("\
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
// asm volatile("\
// s_waitcnt lgkmcnt(0) \n \
// s_barrier \
// " ::);
__builtin_amdgcn_s_waitcnt(0xc07f);
__builtin_amdgcn_s_barrier();
#else
__syncthreads();
#endif
......
......@@ -17,6 +17,9 @@
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#define __gfx11__
#endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#define __gfx12__
#endif
#ifndef CK_TILE_DONT_USE_HIP_RUNTIME_HEADERS
#include "hip/hip_runtime.h"
......@@ -155,7 +158,7 @@
#define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx103__) // for GPU code
#define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx11__) // for GPU code
#elif defined(__gfx11__) || defined(__gfx12__) // for GPU code
#define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#endif
......@@ -167,6 +170,10 @@
#define CK_TILE_USE_SUBDWORD_TILE_CAST 0
#endif
#ifndef CK_TILE_USE_PK_FP16_TILE_CAST
#define CK_TILE_USE_PK_FP16_TILE_CAST 0
#endif
// TODO: better solve this inside compiler
#ifndef CK_TILE_FMHA_FWD_FAST_EXP2
#define CK_TILE_FMHA_FWD_FAST_EXP2 0
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <stdint.h>
namespace ck_tile {
struct null_type
{
};
} // namespace ck_tile
......@@ -110,7 +110,7 @@ CK_TILE_DEVICE void clear_tile(DstrTensors& dstr_tensor)
namespace impl {
// TODO: this is ugly
template <typename OutDataType, typename InTensor>
CK_TILE_DEVICE auto cast_tile_pk_fp8x4(const InTensor& in_dstr_tensors)
CK_TILE_DEVICE auto cast_tile_pk_fp8_fp32(const InTensor& in_dstr_tensors)
{
#if defined(__gfx94__)
// This API is designed to use the _pk_ serious of function
......@@ -156,6 +156,37 @@ CK_TILE_DEVICE auto cast_tile_pk_fp8x4(const InTensor& in_dstr_tensors)
#endif
}
template <typename OutDataType, typename InTensor>
CK_TILE_DEVICE auto cast_tile_pk_fp16_fp32(const InTensor& in_dstr_tensors)
{
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx94__)
// This API is designed to use the _pk_ serious of function
constexpr auto in_tile_dstr = InTensor::get_tile_distribution();
constexpr index_t thread_buffer_size = InTensor::get_thread_buffer_size();
static_assert(thread_buffer_size % 2 == 0);
constexpr index_t thread_buffer_size_pk = thread_buffer_size / 2;
auto out_dstr_tensor = make_static_distributed_tensor<OutDataType>(in_tile_dstr);
// TODO: this is rtz cvt, need be very careful
for(index_t i = 0; i < thread_buffer_size_pk; i++)
{
auto o = __builtin_amdgcn_cvt_pkrtz(in_dstr_tensors.get_thread_buffer()[2 * i + 0],
in_dstr_tensors.get_thread_buffer()[2 * i + 1]);
out_dstr_tensor.get_thread_buffer().at(2 * i + 0) = o.x;
out_dstr_tensor.get_thread_buffer().at(2 * i + 1) = o.y;
}
return out_dstr_tensor;
#else
// fallback
return tile_elementwise_in(type_convert<OutDataType, typename InTensor::DataType>,
in_dstr_tensors);
#endif
}
#if CK_TILE_USE_SUBDWORD_TILE_CAST
// this function assume either src or dst (or both) date type is under 1 dword
// we pack subdword value into 1 dword to avoid compiler's default subdword behavior(which is buggy)
......@@ -229,8 +260,16 @@ CK_TILE_DEVICE auto cast_tile(const SrcTensor& src_tensor)
float> &&
(SrcTensor::get_thread_buffer_size() % 4 == 0))
{
return impl::cast_tile_pk_fp8x4<DstType, SrcTensor>(src_tensor);
return impl::cast_tile_pk_fp8_fp32<DstType, SrcTensor>(src_tensor);
}
#if CK_TILE_USE_PK_FP16_TILE_CAST
else if constexpr(std::is_same_v<DstType, fp16_t> &&
std::is_same_v<typename SrcTensor::DataType, float> &&
(SrcTensor::get_thread_buffer_size() % 2 == 0))
{
return impl::cast_tile_pk_fp16_fp32<DstType, SrcTensor>(src_tensor);
}
#endif
#if CK_TILE_USE_SUBDWORD_TILE_CAST
else if constexpr(sizeof(DstType) < 4 || sizeof(typename SrcTensor::DataType) < 4)
{
......
......@@ -18,6 +18,7 @@
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
#include "ck_tile/host/reference/reference_layernorm2d.hpp"
#include "ck_tile/host/reference/reference_reduce.hpp"
#include "ck_tile/host/reference/reference_softmax.hpp"
#include "ck_tile/host/stream_config.hpp"
......
......@@ -56,8 +56,9 @@ check_err(const Range& out,
}
const auto is_infinity_error = [=](auto o, auto r) {
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same = std::isinf(o) && std::isinf(r) && (o == r);
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same =
std::isinf(o) && std::isinf(r) && (bit_cast<uint64_t>(o) == bit_cast<uint64_t>(r));
return either_not_finite && !(allow_infinity_ref && both_infinite_and_same);
};
......@@ -114,8 +115,9 @@ check_err(const Range& out,
}
const auto is_infinity_error = [=](auto o, auto r) {
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same = std::isinf(o) && std::isinf(r) && (o == r);
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same =
std::isinf(o) && std::isinf(r) && (bit_cast<uint64_t>(o) == bit_cast<uint64_t>(r));
return either_not_finite && !(allow_infinity_ref && both_infinite_and_same);
};
......@@ -173,8 +175,9 @@ check_err(const Range& out,
}
const auto is_infinity_error = [=](auto o, auto r) {
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same = std::isinf(o) && std::isinf(r) && (o == r);
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same =
std::isinf(o) && std::isinf(r) && (bit_cast<uint64_t>(o) == bit_cast<uint64_t>(r));
return either_not_finite && !(allow_infinity_ref && both_infinite_and_same);
};
......@@ -285,8 +288,9 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
}
const auto is_infinity_error = [=](auto o, auto r) {
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same = std::isinf(o) && std::isinf(r) && (o == r);
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same =
std::isinf(o) && std::isinf(r) && (bit_cast<uint64_t>(o) == bit_cast<uint64_t>(r));
return either_not_finite && !(allow_infinity_ref && both_infinite_and_same);
};
......@@ -357,8 +361,9 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
}
const auto is_infinity_error = [=](auto o, auto r) {
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same = std::isinf(o) && std::isinf(r) && (o == r);
const bool either_not_finite = !std::isfinite(o) || !std::isfinite(r);
const bool both_infinite_and_same =
std::isinf(o) && std::isinf(r) && (bit_cast<uint64_t>(o) == bit_cast<uint64_t>(r));
return either_not_finite && !(allow_infinity_ref && both_infinite_and_same);
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
namespace ck_tile {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename ComputeDataType,
typename YDataType,
typename MeanDataType,
typename InvStdDataType>
void reference_layernorm2d_fwd(const HostTensor<XDataType>& x_m_n,
const HostTensor<GammaDataType>& gamma_n,
const HostTensor<BetaDataType>& beta_n,
HostTensor<YDataType>& y_m_n,
HostTensor<MeanDataType>& mean_m,
HostTensor<InvStdDataType>& invStd_m,
ComputeDataType epsilon)
{
auto layernorm2d_fwd_func = [&](auto m) {
const int N = x_m_n.mDesc.get_lengths()[1];
int count = 0;
ComputeDataType mean = 0;
ComputeDataType variance = 0;
ComputeDataType divisor = 0;
for(int n = 0; n < N; ++n)
{
++count;
ComputeDataType x = ck_tile::type_convert<ComputeDataType>(x_m_n(m, n));
ComputeDataType delta = x - mean;
mean += delta / count;
ComputeDataType delta2 = x - mean;
variance += delta * delta2;
}
// actual variance
variance = variance / count;
divisor = ck_tile::type_convert<ComputeDataType>(1) / ck_tile::sqrt(variance + epsilon);
if constexpr(!std::is_same_v<MeanDataType, ck_tile::null_type>)
mean_m(m) = ck_tile::type_convert<MeanDataType>(mean);
if constexpr(!std::is_same_v<InvStdDataType, ck_tile::null_type>)
invStd_m(m) = ck_tile::type_convert<InvStdDataType>(divisor);
for(int n = 0; n < N; ++n)
{
ComputeDataType x = ck_tile::type_convert<ComputeDataType>(x_m_n(m, n));
ComputeDataType gamma = ck_tile::type_convert<ComputeDataType>(gamma_n(n));
ComputeDataType beta = ck_tile::type_convert<ComputeDataType>(beta_n(n));
auto y = (x - mean) * divisor;
y = y * gamma + beta;
y_m_n(m, n) = ck_tile::type_convert<YDataType>(y);
}
};
make_ParallelTensorFunctor(layernorm2d_fwd_func,
mean_m.mDesc.get_lengths()[0])(std::thread::hardware_concurrency());
}
} // namespace ck_tile
......@@ -27,7 +27,7 @@ struct gpu_timer
CK_TILE_HOST void start(const hipStream_t& s)
{
HIP_CHECK_ERROR(hipDeviceSynchronize());
HIP_CHECK_ERROR(hipStreamSynchronize(s));
HIP_CHECK_ERROR(hipEventRecord(start_evt, s));
}
......@@ -51,15 +51,15 @@ struct gpu_timer
struct cpu_timer
{
// torch.utils.benchmark.Timer(), there is a sync inside each timer callback
CK_TILE_HOST void start(const hipStream_t&)
CK_TILE_HOST void start(const hipStream_t& s)
{
HIP_CHECK_ERROR(hipDeviceSynchronize());
HIP_CHECK_ERROR(hipStreamSynchronize(s));
start_tick = std::chrono::high_resolution_clock::now();
}
// torch.utils.benchmark.Timer(), there is a sync inside each timer callback
CK_TILE_HOST void stop(const hipStream_t&)
CK_TILE_HOST void stop(const hipStream_t& s)
{
HIP_CHECK_ERROR(hipDeviceSynchronize());
HIP_CHECK_ERROR(hipStreamSynchronize(s));
stop_tick = std::chrono::high_resolution_clock::now();
}
// return in ms
......
......@@ -10,6 +10,10 @@
#include "ck_tile/ops/fmha/kernel/fmha_bwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_bwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o_default_policy.hpp"
......@@ -22,6 +26,12 @@
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs.hpp"
......
......@@ -8,6 +8,20 @@
namespace ck_tile {
struct NullBlockDropout
{
template <typename BlockGemm, bool IsFwd = true, typename RandValDramBlockWindowTmp>
__host__ __device__ static constexpr auto
MakeRandvalDramWindow(RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
index_t seqlen_qk_start)
{
(void)randval_dram_block_window_tmp;
(void)seqlen_qk_start;
return make_null_tile_window(make_tuple(number<0>{}, number<0>{}));
}
};
struct BlockDropout
{
CK_TILE_HOST_DEVICE BlockDropout(index_t i_batch,
......@@ -195,6 +209,42 @@ struct BlockDropout
MakeRandValLdsShuffleTileDistribution<BlockGemm>());
const int start_m0_idx = randval_dram_window.get_window_origin().at(number<0>{});
if(is_store_randval)
{
static_for<0, kMPerBlock / kMPerStep, 1>{}([&](auto i_m0) {
static_for<0, kNPerBlock / kNPerStep, 1>{}([&](auto i_n0) {
int block_row_start = (start_m0_idx / WG::kM) + (i_m0 * MWarp) + get_warp_id();
int block_col_start = (start_n0_idx / WG::kN) + i_n0;
uint2 rowcol = make_uint2(block_row_start, block_col_start);
// generate random number
uint8_t random_uint8_t[16];
ph.get_random_16x8(random_uint8_t,
reinterpret_cast<unsigned long long&>(rowcol));
constexpr auto randval_dist_generated_spans =
decltype(randval_dist_generated)::get_distributed_spans();
int i_random_idx = 0;
sweep_tile_span(randval_dist_generated_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(randval_dist_generated_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = ck_tile::make_tuple(idx0, idx1);
randval_dist_generated(i_j_idx) = random_uint8_t[i_random_idx++];
});
});
// save to LDS
store_tile(randval_lds_window, randval_dist_generated);
block_sync_lds();
// read from LDS to register
auto randval = load_tile(randval_lds_read_window);
// save to Global
const auto randval_store = cast_tile<RandValOutputDataType>(randval);
store_tile(randval_dram_window, randval_store);
move_tile_window(randval_dram_window, {0, kNPerStep});
});
move_tile_window(randval_dram_window, {kMPerStep, -kNPerBlock});
});
move_tile_window(randval_dram_window, {-kMPerBlock, kNPerBlock});
};
static_for<0, kMPerBlock / kMPerStep, 1>{}([&](auto i_m0) {
static_for<0, kNPerBlock / kNPerStep, 1>{}([&](auto i_n0) {
int block_row_start = (start_m0_idx / WG::kM) + (i_m0 * MWarp) + get_warp_id();
......@@ -232,23 +282,8 @@ struct BlockDropout
: PComputeDataType(0);
});
});
// save to Global
if(is_store_randval)
{
const auto randval_store = cast_tile<RandValOutputDataType>(randval);
store_tile(randval_dram_window, randval_store);
move_tile_window(randval_dram_window, {0, kNPerStep});
}
});
if(is_store_randval)
{
move_tile_window(randval_dram_window, {kMPerStep, -kNPerBlock});
}
});
if(is_store_randval)
{
move_tile_window(randval_dram_window, {-kMPerBlock, kNPerBlock});
}
}
template <typename BlockGemm,
......
......@@ -299,6 +299,23 @@ struct SimplifiedGenericAttentionMask
}
}
template <index_t TileHeight, index_t TileWidth>
CK_TILE_HOST_DEVICE constexpr auto GetTileRangeAlongX(index_t i_y,
number<TileHeight> height,
number<TileWidth> width,
index_t num_splits,
index_t i_split) const
{
auto [origin_start, origin_end] = GetTileRangeAlongX(i_y, height, width);
const index_t x_per_split = ck_tile::max(1, x_total / num_splits);
const index_t split_start = x_per_split * i_split;
const index_t split_end = (i_split == num_splits - 1 ? x_total : split_start + x_per_split);
return ck_tile::make_tuple(ck_tile::max(origin_start, split_start),
ck_tile::min(origin_end, split_end));
}
// to get the loop length along Y axis, return index:[start, end), end-start=length
// use this if need loop over Y axis tile by tile (like q-seqlen loopover)
// TODO: y_end still could be negative, so end-start could be negative(need check)
......@@ -372,7 +389,7 @@ struct SimplifiedGenericAttentionMask
// index_t x_end = min(i_y + x, x_total);
bool top_right_edge = i_x_end > min(i_y + x, x_total); // consider right pad
bool bottom_left_edge = i_y_end > (i_x + y);
bool bottom_left_edge = i_y_end > min(i_x + y, y_total); // consider bottom pad
// bool is_partial_out_of_bound = i_x_end > x_end; // only consider right-pad for now
return top_right_edge || bottom_left_edge;
......
......@@ -744,29 +744,23 @@ struct FmhaFwdKernel
}
}();
// dropout
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
uint64_t drop_seed = 0;
uint64_t drop_offset = 0;
bool is_store_randval = false;
if constexpr(kHasDropout)
{
rp_undrop = kargs.rp_undrop;
p_undrop_in_uint8_t = kargs.p_undrop_in_uint8_t;
drop_seed = kargs.drop_seed;
drop_offset = kargs.drop_offset;
is_store_randval = kargs.is_store_randval;
}
BlockDropout dropout(i_batch,
i_nhead,
kargs.num_head_q,
drop_seed,
drop_offset,
rp_undrop,
p_undrop_in_uint8_t,
is_store_randval);
auto dropout = [&, i_nhead_ = i_nhead, i_batch_ = i_batch]() {
if constexpr(kHasDropout)
{
return BlockDropout{i_batch_,
i_nhead_,
kargs.num_head_q,
kargs.drop_seed,
kargs.drop_offset,
kargs.rp_undrop,
kargs.p_undrop_in_uint8_t,
kargs.is_store_randval};
}
else
{
return NullBlockDropout{};
};
}();
auto randval_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto randval_dram_window_lengths =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck_tile {
template <typename TilePartitioner_, typename FmhaPipeline_, typename EpiloguePipeline_>
struct FmhaFwdSplitKVCombineKernel
{
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = remove_cvref_t<FmhaPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
static constexpr index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
static constexpr index_t kBlockPerCuInput = FmhaPipeline::Problem::kBlockPerCu;
using LSEDataType = remove_cvref_t<typename FmhaPipeline::LSEDataType>;
using OaccDataType = remove_cvref_t<typename FmhaPipeline::OaccDataType>;
using ODataType = remove_cvref_t<typename FmhaPipeline::ODataType>;
static constexpr bool kIsGroupMode = FmhaPipeline::kIsGroupMode;
static constexpr bool kPadSeqLenQ = FmhaPipeline::kPadSeqLenQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr bool kStoreLSE = FmhaPipeline::kStoreLSE;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
// clang-format on
__host__ static std::string GetName()
{
// sync with generate.py
// clang-format off
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadHeadDimV) n += "dv";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_splitkv_combine_d") + _TS_(FmhaPipeline::kHeadDimV) + "_" + _SS_(t2s<ODataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_"
"b" + _TS_(FmhaPipeline::kM0) + "x" +
_TS_(FmhaPipeline::kN1) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) +
_SS_(FmhaPipeline::name) +
(pn.empty() ? "" : "_" + pn) +
(kStoreLSE ? "_lse" : "" ) +
(kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
// clang-format on
}
template <ck_tile::index_t I> // to avoid duplicated base class prblem, introduce an template
// arg
struct EmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct CommonKargs
{
const void* lse_acc_ptr;
const void* o_acc_ptr;
void* o_ptr;
ck_tile::index_t batch;
ck_tile::index_t max_seqlen_q;
ck_tile::index_t seqlen_q;
ck_tile::index_t hdim_v;
ck_tile::index_t num_splits;
ck_tile::index_t row_stride_o_acc;
ck_tile::index_t row_stride_o;
ck_tile::index_t nhead_stride_lse_acc;
ck_tile::index_t nhead_stride_o_acc;
ck_tile::index_t nhead_stride_o;
ck_tile::index_t batch_stride_lse_acc;
ck_tile::index_t batch_stride_o_acc;
ck_tile::index_t split_stride_lse_acc;
ck_tile::index_t split_stride_o_acc;
};
struct CommonLSEKargs
{
void* lse_ptr = nullptr;
ck_tile::index_t nhead_stride_lse = 0;
ck_tile::index_t batch_stride_lse = 0;
};
struct Fp8StaticQuantKargs
{
float scale_o;
};
struct BatchModeKargs
: CommonKargs,
std::conditional_t<kStoreLSE, CommonLSEKargs, EmptyKargs<0>>,
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<1>>
{
ck_tile::index_t batch_stride_o;
};
struct GroupModeKargs
: CommonKargs,
std::conditional_t<kStoreLSE, CommonLSEKargs, EmptyKargs<0>>,
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<3>>
{
const int32_t* seqstart_q_ptr;
};
using Kargs = std::conditional_t<kIsGroupMode, GroupModeKargs, BatchModeKargs>;
template <bool Cond = !kIsGroupMode>
__host__ static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* lse_acc_ptr,
const void* o_acc_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t batch,
ck_tile::index_t max_seqlen_q,
ck_tile::index_t seqlen_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_splits,
float scale_o,
ck_tile::index_t row_stride_o_acc,
ck_tile::index_t row_stride_o,
ck_tile::index_t nhead_stride_lse_acc,
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc)
{
Kargs kargs{{lse_acc_ptr,
o_acc_ptr,
o_ptr,
batch,
max_seqlen_q,
seqlen_q,
hdim_v,
num_splits,
row_stride_o_acc,
row_stride_o,
nhead_stride_lse_acc,
nhead_stride_o_acc,
nhead_stride_o,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
batch_stride_o};
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_o = scale_o;
}
return kargs;
}
template <bool Cond = kIsGroupMode>
__host__ static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* lse_acc_ptr,
const void* o_acc_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t batch,
ck_tile::index_t max_seqlen_q,
const void* seqstart_q_ptr,
ck_tile::index_t hdim_v,
ck_tile::index_t num_splits,
float scale_o,
ck_tile::index_t row_stride_o_acc,
ck_tile::index_t row_stride_o,
ck_tile::index_t nhead_stride_lse_acc,
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc)
{
Kargs kargs{{lse_acc_ptr,
o_acc_ptr,
o_ptr,
batch,
max_seqlen_q,
-1, // seqlen will be updated by another pointer
hdim_v,
num_splits,
row_stride_o_acc,
row_stride_o,
nhead_stride_lse_acc,
nhead_stride_o_acc,
nhead_stride_o,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
reinterpret_cast<const int32_t*>(seqstart_q_ptr)};
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_o = scale_o;
}
return kargs;
}
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
{
return TilePartitioner::GridSize(batch_size_, nhead_, seqlen_q_, hdim_v_);
}
__host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return ck_tile::max(FmhaPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
// divide problem
const auto [i_tile_m, i_tile_n, i_nhead, i_batch] =
TilePartitioner{}(kargs.seqlen_q, kargs.hdim_v);
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
const long_index_t batch_offset_lse_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse_acc;
const long_index_t batch_offset_o_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_o_acc;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
if constexpr(kIsGroupMode)
{
// get starting offset for each batch
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
batch_offset_o = query_start * kargs.row_stride_o;
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
kargs.seqlen_q = adjusted_seqstart_q_ptr[1] - adjusted_seqstart_q_ptr[0];
// # of required blocks is different in each groups, terminate unnecessary blocks
// earlier
if(kargs.seqlen_q <= i_m0)
{
return;
}
}
else
{
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
}
// for simplicity, batch stride we just modify the pointer
const LSEDataType* lse_acc_ptr =
reinterpret_cast<const LSEDataType*>(kargs.lse_acc_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_lse_acc + batch_offset_lse_acc;
const OaccDataType* o_acc_ptr =
reinterpret_cast<const OaccDataType*>(kargs.o_acc_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_o_acc + batch_offset_o_acc;
ODataType* o_ptr = reinterpret_cast<ODataType*>(kargs.o_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_o +
batch_offset_o;
// LSEacc/Oacc DRAM and DRAM windows
const auto lse_acc_dram = [&]() {
const auto lse_acc_dram_naive = make_naive_tensor_view<address_space_enum::global>(
lse_acc_ptr,
make_tuple(kargs.num_splits, kargs.seqlen_q),
make_tuple(kargs.split_stride_lse_acc, 1),
number<FmhaPipeline::kAlignmentLSEacc>{},
number<1>{});
return pad_tensor_view(
lse_acc_dram_naive,
make_tuple(number<FmhaPipeline::kMaxSplits>{}, number<FmhaPipeline::kM0>{}),
sequence<true, kPadSeqLenQ>{});
}();
auto o_acc_dram = [&]() {
const auto o_acc_dram_naive = make_naive_tensor_view<address_space_enum::global>(
o_acc_ptr,
make_tuple(kargs.num_splits, kargs.max_seqlen_q, kargs.hdim_v),
make_tuple(kargs.split_stride_o_acc, kargs.row_stride_o_acc, 1),
number<FmhaPipeline::kAlignmentOacc>{},
number<1>{});
auto o_acc_dram_view = pad_tensor_view(
o_acc_dram_naive,
make_tuple(number<1>{}, number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<false, kPadSeqLenQ, kPadHeadDimV>{});
const index_t padded_max_seqlen_q =
o_acc_dram_view.get_tensor_descriptor().get_lengths()[number<1>{}];
const index_t padded_hdim_v =
o_acc_dram_view.get_tensor_descriptor().get_lengths()[number<2>{}];
return transform_tensor_view(
o_acc_dram_view,
make_tuple(make_merge_transform(make_tuple(kargs.num_splits, padded_max_seqlen_q)),
make_pass_through_transform(padded_hdim_v)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
}();
auto lse_acc_dram_window = make_tile_window(
lse_acc_dram,
[&]() {
return make_tuple(number<FmhaPipeline::kMaxSplits>{}, number<FmhaPipeline::kM0>{});
}(),
{0, i_m0});
auto o_acc_dram_window = make_tile_window(
o_acc_dram,
[&]() {
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{});
}(),
{i_m0, i_n1});
// LSE DRAM window
auto lse_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto lse_dram_window_lengths = make_tuple(number<FmhaPipeline::kM0>{});
if constexpr(kStoreLSE)
{
LSEDataType* lse_ptr =
reinterpret_cast<LSEDataType*>(kargs.lse_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_lse + batch_offset_lse;
const auto lse_dram = [&]() {
const auto lse_dram_naive = make_naive_tensor_view<address_space_enum::global>(
lse_ptr,
make_tuple(kargs.seqlen_q),
make_tuple(1),
number<FmhaPipeline::kAlignmentLSE>{},
number<1>{});
return pad_tensor_view(
lse_dram_naive, lse_dram_window_lengths, sequence<kPadSeqLenQ>{});
}();
return make_tile_window(lse_dram, lse_dram_window_lengths, {i_m0});
}
else
{
return make_null_tile_window(lse_dram_window_lengths);
}
}();
auto o_acc_tile = [&]() {
if constexpr(kDoFp8StaticQuant)
{
return FmhaPipeline{}(
lse_acc_dram_window,
o_acc_dram_window,
lse_dram_window,
identity{}, // lse_element_func
composes(saturates<fp8_t>{}, scales{kargs.scale_o}), // o_acc_element_func
kargs.num_splits,
kargs.max_seqlen_q,
smem_ptr);
}
else
{
return FmhaPipeline{}(lse_acc_dram_window,
o_acc_dram_window,
lse_dram_window,
kargs.num_splits,
kargs.max_seqlen_q,
smem_ptr);
}
}();
// O DRAM and DRAM window
auto o_dram = [&]() {
const auto o_dram_naive = make_naive_tensor_view<address_space_enum::global>(
o_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_v),
make_tuple(kargs.row_stride_o, 1),
number<FmhaPipeline::kAlignmentO>{},
number<1>{});
return pad_tensor_view(
o_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
}();
auto o_dram_window =
make_tile_window(o_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
{i_m0, i_n1});
EpiloguePipeline{}(o_dram_window, o_acc_tile);
}
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment