Commit 5ec6a912 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents d39c3f5d 3bb0fe6c
......@@ -40,7 +40,8 @@ __global__ void
const CDEElementwiseOperation cde_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx103__) || defined(__gfx11__) || defined(__gfx94__))
defined(__gfx90a__) || defined(__gfx103__) || defined(__gfx11__) || defined(__gfx94__) || \
defined(__gfx12__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
......@@ -673,7 +674,7 @@ struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
}
if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
ck::is_gfx103_supported() || ck::is_gfx11_supported())
ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
......
......@@ -19,6 +19,7 @@
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d.hpp" // stare wywalic
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
......@@ -42,16 +43,22 @@ namespace device {
template <typename GridwiseGemm,
typename GemmDesc,
GemmSpecialization GemmSpec,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
index_t KPerBlock,
typename OffsettedBlockToCTileMap,
typename LocalBlock2ETileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
typename CDEElementwiseOperation,
BlockGemmPipelineScheduler BlkGemmPipeSched,
BlockGemmPipelineVersion BlkGemmPipelineVer>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
......@@ -67,6 +74,7 @@ __global__ void
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
__shared__ uint8_t p_shared1[shared_size];
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
......@@ -81,27 +89,8 @@ __global__ void
index_t gemm_tile_id_start = 0;
index_t gemm_tile_id_end = 0;
using AGridDescMK =
remove_cvref_t<decltype(GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(
1, 1, 1))>;
using BGridDescNK =
remove_cvref_t<decltype(GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(
1, 1, 1))>;
using EGridDescMN =
remove_cvref_t<decltype(GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
1, 1, 1))>;
using DsGridDescMN =
remove_cvref_t<decltype(GridwiseGemm::template MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>(
{}, {}, {}))>;
index_t M = 0, N = 0, K = 0;
index_t StrideA, StrideB, StrideE;
std::array<index_t, NumDTensor> StrideDs;
AGridDescMK a_grid_desc_mk;
BGridDescNK b_grid_desc_nk;
EGridDescMN e_grid_desc_mn;
DsGridDescMN ds_grid_desc_mn;
auto b2c_tile_map = OffsettedBlockToCTileMap(LocalBlock2ETileMap(1, 1), 1, 1);
do
......@@ -127,31 +116,13 @@ __global__ void
}
b2c_tile_map =
OffsettedBlockToCTileMap(LocalBlock2ETileMap(M, N), group_offset, tile_offset);
OffsettedBlockToCTileMap(LocalBlock2ETileMap(M, N, 4), group_offset, tile_offset);
grid_size_grp = b2c_tile_map.CalculateGridSize(M, N);
gemm_tile_id_start = group_offset;
gemm_tile_id_end = group_offset + grid_size_grp;
}
StrideA = gemm_desc_ptr[group_id].StrideA;
StrideB = gemm_desc_ptr[group_id].StrideB;
StrideDs = gemm_desc_ptr[group_id].StrideDs;
StrideE = gemm_desc_ptr[group_id].StrideE;
a_grid_desc_mk =
GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(M, K, StrideA);
b_grid_desc_nk =
GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(K, N, StrideB);
e_grid_desc_mn =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_mn(j) = GridwiseGemm::template MakeEGridDescriptor_M_N<DLayout, GemmSpec>(
M, N, StrideDs[j]);
});
using DsGridPointer = decltype(GridwiseGemm::MakeDsGridPointer());
DsGridPointer p_ds_grid;
......@@ -160,43 +131,269 @@ __global__ void
p_ds_grid(i) = static_cast<const DDataType*>(gemm_desc_ptr[group_id].p_ds_grid[i]);
});
bool has_main_kblock_loop =
GridwiseGemm::CalculateHasMainKBlockLoop(a_grid_desc_mk.GetLength(Number<1>{}));
static constexpr index_t kbatch = 1;
static constexpr index_t k_grain = kbatch * KPerBlock;
index_t K_split = (K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
// Update tile offset if we have moved within group
b2c_tile_map.UpdateTileOffset(tile_offset);
if(has_main_kblock_loop)
using Problem = typename GridwiseGemm::Problem;
auto problem = Problem(gemm_desc_ptr[group_id].M,
gemm_desc_ptr[group_id].N,
gemm_desc_ptr[group_id].K,
gemm_desc_ptr[group_id].StrideA,
gemm_desc_ptr[group_id].StrideB,
gemm_desc_ptr[group_id].StrideDs,
gemm_desc_ptr[group_id].StrideE,
kbatch);
if(has_main_k_block_loop)
{
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Full>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::One>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Full)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Full>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Two>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Three)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Three>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Four)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Four>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Five)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Five>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Six>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Seven)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Seven>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
GridwiseGemm::template Run_2Lds<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Odd>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
static_cast<void*>(p_shared1),
problem,
a_element_op,
b_element_op,
cde_element_op,
b2c_tile_map);
}
else
{
GridwiseGemm::template Run<true>(gemm_desc_ptr[group_id].p_a_grid,
gemm_desc_ptr[group_id].p_b_grid,
GridwiseGemm::template Run_2Lds<OffsettedBlockToCTileMap,
true,
InMemoryDataOperationEnum::Set,
TailNumber::Even>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
gemm_desc_ptr[group_id].p_e_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
static_cast<void*>(p_shared1),
problem,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map);
}
}
}
else
{
GridwiseGemm::template Run<false>(gemm_desc_ptr[group_id].p_a_grid,
gemm_desc_ptr[group_id].p_b_grid,
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
GridwiseGemm::template Run<OffsettedBlockToCTileMap,
false,
InMemoryDataOperationEnum::Set,
TailNumber::Full>(
static_cast<const ADataType*>(gemm_desc_ptr[group_id].p_a_grid),
static_cast<const BDataType*>(gemm_desc_ptr[group_id].p_b_grid),
p_ds_grid,
gemm_desc_ptr[group_id].p_e_grid,
static_cast<EDataType*>(gemm_desc_ptr[group_id].p_e_grid),
static_cast<void*>(p_shared),
problem,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map);
}
}
tile_id += get_grid_size();
tile_offset += get_grid_size();
......@@ -253,10 +450,12 @@ template <typename ALayout,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
PipelineVersion PipelineVer = PipelineVersion::v1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
typename ComputeDataType = EDataType>
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = EDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
: public DeviceGroupedGemmTileLoop<ALayout,
BLayout,
......@@ -273,10 +472,13 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
using DeviceOp = DeviceGroupedGemmMultipleDXdlCShuffleTileLoop;
static constexpr index_t NumDTensor = DsDataType::Size();
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
using GridwiseGemm = GridwiseGemmMultiD_xdl_cshuffle_v3<
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
CShuffleDataType,
DsDataType,
......@@ -284,8 +486,7 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
NumGemmKPrefetchStage,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
......@@ -315,58 +516,15 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
PipelineVer>;
template <typename UnderlyingBlockToCTileMap>
struct OffsettedBlockToCTileMap
{
using underlying_type = UnderlyingBlockToCTileMap;
__host__ __device__ OffsettedBlockToCTileMap(UnderlyingBlockToCTileMap block_to_ctile_map,
index_t group_offset,
index_t tile_offset)
: block_to_ctile_map_{block_to_ctile_map},
group_offset_{group_offset},
tile_offset_{tile_offset}
{
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_to_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[Number<0>{}] + tile_offset_ - group_offset_));
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_to_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
template <typename CGridDesc_M_N>
__host__ constexpr bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
__host__ __device__ constexpr index_t CalculateGridSize(index_t M, index_t N) const
{
return block_to_ctile_map_.CalculateGridSize(M, N);
}
__device__ void UpdateTileOffset(index_t offset) { tile_offset_ = offset; }
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t group_offset_;
index_t tile_offset_;
};
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB>;
using KernelArguments = GroupedGemmTileLoopKernelArguments<NumDTensor>;
using Block2ETileMap = BlockToCTileMap_N00_M0_N01Adapt<MPerBlock, NPerBlock>;
using OffsetedLocalBlock2ETileMap = OffsettedBlockToCTileMap<Block2ETileMap>;
using Block2ETileMap = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
using OffsettedLocalBlock2ETileMap = OffsettedBlockToCTileMap2<Block2ETileMap>;
// Argument
struct Argument : public BaseArgument
......@@ -403,7 +561,6 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
const void* p_dev_gemm_args_;
int occupancy_num_blocks_;
int gpu_cu_count_;
const std::vector<GemmDesc>& gemm_descs_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
......@@ -496,16 +653,22 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
ADataType,
BDataType,
DsDataType,
EDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
KPerBlock,
OffsettedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
CDEElementwiseOperation,
BlkGemmPipeSched,
BlkGemmPipelineVer>;
return LaunchKernel(kernel, arg, dev_gemm_args, stream_config);
}
......@@ -546,6 +709,8 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<< std::endl;
}
// run multiple kernels
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
......@@ -572,63 +737,41 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
return false;
}
using DsGridDescMN = remove_cvref_t<
decltype(GridwiseGemm::template MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>(
{}, {}, {}))>;
bool supported = true;
for(const auto& gdesc : arg.gemm_descs_)
{
const auto M = gdesc.M_;
const auto N = gdesc.N_;
const auto K = gdesc.K_;
const auto StrideA = gdesc.stride_A_;
const auto StrideB = gdesc.stride_B_;
const auto StrideE = gdesc.stride_C_;
const auto& StrideDs = gdesc.stride_Ds_;
// If M dimension is unknown at launch time then validate just NK.
// If N or K dim is zero (or unknown) then the vector loads responsibility lies on
// the user.
if(N * K == 0)
continue;
const auto a_grid_desc_mk =
GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(M, K, StrideA);
const auto b_grid_desc_nk =
GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(K, N, StrideB);
const auto e_grid_desc_mn =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
DsGridDescMN ds_grid_desc_mn;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_mn(j) =
GridwiseGemm::template MakeEGridDescriptor_M_N<DLayout, GemmSpec>(
M, N, StrideDs[j]);
});
const auto b2c_tile_map = Block2ETileMap(M, N);
constexpr index_t k_batch = 1;
for(index_t i = 0; i < arg.group_count_; ++i)
{
std::array<const void*, NumDTensor> placeholder_p_ds_grid{};
std::array<index_t, NumDTensor> stride_Ds;
std::copy_n(arg.gemm_descs_[i].stride_Ds_.begin(), NumDTensor, stride_Ds.begin());
using GridArg = typename GridwiseGemm::Argument;
GridArg gridwise_arg(nullptr, // p_a_grid,
nullptr, // p_b_grid,
placeholder_p_ds_grid, // p_ds_grid,
nullptr, // p_e_grid ,
arg.gemm_descs_[i].M_,
arg.gemm_descs_[i].N_,
arg.gemm_descs_[i].K_,
arg.gemm_descs_[i].stride_A_,
arg.gemm_descs_[i].stride_B_,
stride_Ds,
arg.gemm_descs_[i].stride_C_,
k_batch,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_);
if(!(GridwiseGemm::template CheckValidity(a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map) &&
GridwiseGemm::template CheckTensorTransfersValidity<ALayout, BLayout, ELayout>(
M, N, K)))
{
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
if((arg.gemm_descs_[i].K_ % AK1 != 0 || arg.gemm_descs_[i].K_ % BK1 != 0) &&
!(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
std::cout << "The provided GEMM problem size (M,N,K) [" << M << "," << N << ","
<< K << "] are not supported by current template parameters!"
<< " In " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__;
}
supported = false;
return false;
}
supported = supported && GridwiseGemm::CheckValidity(gridwise_arg);
}
return supported;
......@@ -651,16 +794,22 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
ADataType,
BDataType,
DsDataType,
EDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
KPerBlock,
OffsettedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
CDEElementwiseOperation,
BlkGemmPipeSched,
BlkGemmPipelineVer>;
int occupancy, num_cu;
hip_check_error(
hipOccupancyMaxActiveBlocksPerMultiprocessor(&occupancy, kernel, BlockSize, 0));
......@@ -696,16 +845,22 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
ADataType,
BDataType,
DsDataType,
EDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
KPerBlock,
OffsettedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
CDEElementwiseOperation,
BlkGemmPipeSched,
BlkGemmPipelineVer>;
int occupancy, num_cu;
hip_check_error(
hipOccupancyMaxActiveBlocksPerMultiprocessor(&occupancy, kernel, BlockSize, 0));
......@@ -739,6 +894,17 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
{
auto str = std::ostringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGroupedGemmMultipleDXdlCShuffleTileLoop"
<< "<"
......@@ -760,8 +926,10 @@ struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec) << ", "
<< PipelineVer << ", "
<< LoopSched
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer]
<< ">";
// clang-format on
......
......@@ -61,7 +61,7 @@ __global__ void
bool input_permute,
bool output_permute)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
......@@ -166,6 +166,7 @@ __global__ void
ignore = O;
ignore = G0;
ignore = G1;
ignore = alpha;
ignore = input_permute;
ignore = output_permute;
#endif // end of if (defined(__gfx11__))
......@@ -596,7 +597,7 @@ struct DeviceGroupedQueryAttentionForward_Wmma
static bool IsSupportedArgument(const RawArg& arg)
{
if(ck::is_gfx11_supported())
if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -108,7 +108,8 @@ struct DeviceImageToColumnImpl
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
N);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......
......@@ -60,7 +60,7 @@ __global__ void
bool input_permute,
bool output_permute)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
......@@ -165,6 +165,7 @@ __global__ void
ignore = O;
ignore = G0;
ignore = G1;
ignore = alpha;
ignore = input_permute;
ignore = output_permute;
#endif // end of if (defined(__gfx11__))
......@@ -594,7 +595,7 @@ struct DeviceMultiQueryAttentionForward_Wmma
static bool IsSupportedArgument(const RawArg& arg)
{
if(ck::is_gfx11_supported())
if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
{
......
......@@ -180,6 +180,19 @@ struct MatrixPadder : public GemmPadder<GemmSpec, MPerTileType, NPerTileType, KP
{
};
// function to take in a struct of type MatrixPadder and call the appropriate function to get
// the output descriptor at runtime for codegen
template <GemmSpecialization GemmSpec,
typename MPerTileType,
typename NPerTileType,
typename KPerTileType,
typename CDesc_MRaw_NRaw>
auto grid_desc(MatrixPadder<GemmSpec, MPerTileType, NPerTileType, KPerTileType> matrix_padder,
CDesc_MRaw_NRaw conv_desc)
{
auto res = matrix_padder.PadCDescriptor_M_N(conv_desc);
return res;
}
// M/N/KPerTileType could be index_t or Number<>
template <bool PadM,
bool PadN,
......
......@@ -528,26 +528,6 @@ struct UnaryTypeConvert<ck::bhalf_t, float>
}
};
struct ConvInvscale
{
/// @brief Op to multiply convolution results by inverted scale factors
/// @param e Output after scaling
/// @param c Convolution result
/// @param d0 Input scale factor
/// @param d1 Weights scale factor
/// @param d2 Output scale factor
template <typename E, typename C, typename D0, typename D1, typename D2>
__host__ __device__ void
operator()(E& e, const C& c, const D0& d0, const D1& d1, const D2& d2) const;
template <>
__host__ __device__ void operator()<f8_t, float, float, float, float>(
f8_t& e, const float& c, const float& d0, const float& d1, const float& d2) const
{
e = type_convert<f8_t>(c / d0 / d1 / d2);
};
};
} // namespace element_wise
} // namespace tensor_operation
} // namespace ck
......@@ -961,6 +961,47 @@ struct Elu
const float alpha_;
};
struct Logistic
{
Logistic(float alpha = 1.f) : alpha_(alpha){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
constexpr T one = type_convert<T>(1);
y = casted_alpha / (one + ck::math::exp(-x) * casted_alpha);
}
const float alpha_;
};
struct ConvInvscale
{
__host__ __device__ ConvInvscale(float scale_in = 1.f,
float scale_wei = 1.f,
float scale_out = 1.f)
: scale_in_(scale_in), scale_wei_(scale_wei), scale_out_(scale_out)
{
}
template <typename E, typename C>
__host__ __device__ void operator()(E& e, const C& c) const;
template <>
__host__ __device__ void operator()<f8_t, float>(f8_t& e, const float& c) const
{
e = type_convert<f8_t>(c / scale_in_ / scale_wei_ / scale_out_);
};
float scale_in_;
float scale_wei_;
float scale_out_;
};
struct ConvScale
{
__host__ __device__ ConvScale(float scale_in = 1.f,
......
......@@ -908,6 +908,51 @@ struct OffsettedBlockToCTileMap
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t block_start_;
};
// second version with 2 offsets
template <typename UnderlyingBlockToCTileMap>
struct OffsettedBlockToCTileMap2
{
using underlying_type = UnderlyingBlockToCTileMap;
__host__ __device__ OffsettedBlockToCTileMap2(UnderlyingBlockToCTileMap block_to_ctile_map,
index_t group_offset,
index_t tile_offset)
: block_to_ctile_map_{block_to_ctile_map},
group_offset_{group_offset},
tile_offset_{tile_offset}
{
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_to_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[Number<0>{}] + tile_offset_ - group_offset_));
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_to_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
template <typename CGridDesc_M_N>
__host__ constexpr bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
__host__ __device__ constexpr index_t CalculateGridSize(index_t M, index_t N) const
{
return block_to_ctile_map_.CalculateGridSize(M, N);
}
__device__ void UpdateTileOffset(index_t offset) { tile_offset_ = offset; }
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t group_offset_;
index_t tile_offset_;
};
/**
* @brief Simple tile mapping which creates 3D grid of block of threads.
......
......@@ -373,10 +373,14 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
// BK0_L_BK1 -> BK0_LRepeat_Lwaves_LPerWmma_BK1
constexpr auto B_K0 = B0BlockDesc_{}.GetLength(I0);
constexpr auto B_K1 = B0BlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto B_KRow = I2;
#else
constexpr auto B_KRow = I1;
#endif
return transform_tensor_descriptor(
B0BlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
make_unmerge_transform(make_tuple(
Number<LRepeat>{}, Number<LWaves>{}, Number<LPerWmma>{})),
make_pass_through_transform(Number<B_K1>{})),
......@@ -430,10 +434,14 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
// BL0_N_BL1 -> BL0_NRepeat_Nwaves_NPerWmma_BL1
constexpr auto B_L0 = B1BlockDesc_{}.GetLength(I0);
constexpr auto B_L1 = B1BlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto B_LRow = I2;
#else
constexpr auto B_LRow = I1;
#endif
return transform_tensor_descriptor(
B1BlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<B_L0>{}, B_LRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<B_L0 / B_LRow>{}, B_LRow)),
make_unmerge_transform(make_tuple(
Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
make_pass_through_transform(Number<B_L1>{})),
......
......@@ -50,7 +50,7 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
__shared__ char p_shared[GridwiseGemm::SharedMemTrait::lds_size];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -304,10 +304,14 @@ struct GridwiseFpAintBGemm_Wmma
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto A_KRow = I2;
#else
constexpr auto A_KRow = I1;
#endif
return transform_tensor_descriptor(
ABlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
make_unmerge_transform(make_tuple(
Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
make_pass_through_transform(Number<A_K1>{})),
......@@ -362,10 +366,14 @@ struct GridwiseFpAintBGemm_Wmma
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto B_KRow = I2;
#else
constexpr auto B_KRow = I1;
#endif
return transform_tensor_descriptor(
BBlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
make_unmerge_transform(make_tuple(
Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
make_pass_through_transform(Number<B_K1>{})),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -54,18 +54,18 @@ __global__ void
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -147,7 +147,7 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2CTileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// printf("entry kernel launch");
__shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];
......@@ -155,12 +155,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -237,7 +237,7 @@ __global__ void
const CDEElementwiseOperation cde_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
__shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];
GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -375,8 +375,9 @@ struct GridwiseGemmMultipleD_Wmma
}
else
{
constexpr auto A_KRow = I2;
constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
constexpr auto K0PerWmma = WmmaK / 2 / K1;
constexpr auto K0PerWmma = WmmaK / A_KRow / K1;
// KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return make_naive_tensor_descriptor(
make_tuple(Number<KWmmaPerblock>{},
......@@ -422,8 +423,9 @@ struct GridwiseGemmMultipleD_Wmma
}
else
{
constexpr auto B_KRow = I2;
constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
constexpr auto K0PerWmma = WmmaK / 2 / K1;
constexpr auto K0PerWmma = WmmaK / B_KRow / K1;
// KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return make_naive_tensor_descriptor(
make_tuple(Number<KWmmaPerblock>{},
......@@ -497,10 +499,14 @@ struct GridwiseGemmMultipleD_Wmma
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto A_KRow = I2;
#else
constexpr auto A_KRow = I1;
#endif
return transform_tensor_descriptor(
ABlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
make_unmerge_transform(make_tuple(
Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
make_pass_through_transform(Number<A_K1>{})),
......@@ -536,10 +542,14 @@ struct GridwiseGemmMultipleD_Wmma
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto B_KRow = I2;
#else
constexpr auto B_KRow = I1;
#endif
return transform_tensor_descriptor(
BBlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
make_unmerge_transform(make_tuple(
Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
make_pass_through_transform(Number<B_K1>{})),
......@@ -571,15 +581,12 @@ struct GridwiseGemmMultipleD_Wmma
// *Caution Here repeat is shuffle repeat
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerWmma);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerWmma);
constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerWmma>{},
Number<CShuffleMRepeatPerShuffle * MWaves * MPerWmma>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerWmma>{}));
Number<CShuffleNRepeatPerShuffle * NWaves * NPerWmma>{}));
return c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat;
}
......@@ -801,6 +808,7 @@ struct GridwiseGemmMultipleD_Wmma
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
......
......@@ -45,7 +45,7 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
__shared__ char p_shared[GridwiseGemm::SharedMemTrait::lds_size];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -170,8 +170,9 @@ struct GridwiseGemm_Wmma
}
else
{
constexpr auto A_KRow = I2;
constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
constexpr auto K0PerWmma = WmmaK / 2 / K1;
constexpr auto K0PerWmma = WmmaK / A_KRow / K1;
// KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return make_naive_tensor_descriptor(
make_tuple(Number<KWmmaPerblock>{},
......@@ -217,8 +218,10 @@ struct GridwiseGemm_Wmma
}
else
{
constexpr auto B_KRow = I2;
constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
constexpr auto K0PerWmma = WmmaK / 2 / K1;
constexpr auto K0PerWmma = WmmaK / B_KRow / K1;
// KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return make_naive_tensor_descriptor(
make_tuple(Number<KWmmaPerblock>{},
......@@ -292,10 +295,15 @@ struct GridwiseGemm_Wmma
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto A_KRow = I2;
#else
constexpr auto A_KRow = I1;
#endif
return transform_tensor_descriptor(
ABlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
make_unmerge_transform(make_tuple(
Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
make_pass_through_transform(Number<A_K1>{})),
......@@ -350,10 +358,14 @@ struct GridwiseGemm_Wmma
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
#ifdef __gfx12__
constexpr auto B_KRow = I2;
#else
constexpr auto B_KRow = I1;
#endif
return transform_tensor_descriptor(
BBlockDesc_{},
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
make_unmerge_transform(make_tuple(
Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
make_pass_through_transform(Number<B_K1>{})),
......@@ -522,12 +534,6 @@ struct GridwiseGemm_Wmma
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
CGridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
struct SharedMemTrait
{
// LDS allocation for A and B: be careful of alignment
......@@ -559,6 +565,12 @@ struct GridwiseGemm_Wmma
b_block_space_size_aligned * sizeof(BDataType));
};
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
CGridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainKBlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
__device__ static void Run(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -189,55 +189,55 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
__host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch)
{
return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch);
return std::make_tuple(Block2CTileMapDefault::CalculateGridSize(M, N), 1, KBatch);
}
__host__ static auto CalculateMPadded(index_t M)
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ static auto CalculateNPadded(index_t N)
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ static auto CalculateKPadded(index_t K)
__host__ __device__ static auto CalculateKPadded(index_t K)
{
return math::integer_divide_ceil(K, KPerBlock) * KPerBlock;
}
__host__ static auto CalculateAK0Padded(index_t K, index_t K_Batch = 1)
__host__ __device__ static auto CalculateAK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / AK1Value);
}
__host__ static auto CalculateBK0Padded(index_t K, index_t K_Batch = 1)
__host__ __device__ static auto CalculateBK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / BK1Value);
}
__host__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * KPerBlock;
}
__host__ static auto CalculateKRead(index_t K, index_t K_Batch = 1)
__host__ __device__ static auto CalculateKRead(index_t K, index_t K_Batch = 1)
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = K_Batch * KReadVec;
return (K + K_t - 1) / K_t * KReadVec;
}
__host__ static auto CalculateMBlock(index_t M)
__host__ __device__ static auto CalculateMBlock(index_t M)
{
return math::integer_divide_ceil(M, MPerBlock);
}
__host__ static auto CalculateNBlock(index_t N)
__host__ __device__ static auto CalculateNBlock(index_t N)
{
return math::integer_divide_ceil(N, NPerBlock);
}
......@@ -520,7 +520,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
struct Problem
{
__host__ Problem(index_t M_,
__host__ __device__ Problem(index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
......@@ -1180,14 +1180,14 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
return true;
}
__host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockHasHotloop(num_loop);
}
__host__ static constexpr TailNumber CalculateKBlockLoopTailNum(index_t K)
__host__ __device__ static constexpr TailNumber CalculateKBlockLoopTailNum(index_t K)
{
const index_t num_loop = K / KPerBlock;
......@@ -1210,8 +1210,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using Block2CTileMap = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
// using Block2CTileMap = BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>;
using Block2CTileMapDefault = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
......@@ -1225,6 +1224,35 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
Run<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_c_grid,
p_shared,
problem,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
template <typename Block2CTileMap,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
......@@ -1244,9 +1272,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
......@@ -1653,6 +1678,38 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMapDefault{problem.M, problem.N, 4};
Run_2Lds<Block2CTileMapDefault, HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_c_grid,
p_shared_0,
p_shared_1,
problem,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
template <typename Block2CTileMap,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run_2Lds(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared_0,
void* p_shared_1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
......@@ -1672,9 +1729,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
......
......@@ -36,7 +36,8 @@ __global__ void
const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
defined(__gfx12__))
GridwiseTensorRearrangeKernel::Run(in_grid_desc,
p_in_global,
out_grid_desc,
......
......@@ -1304,7 +1304,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic
ElementwiseOperation element_op_;
};
// Specilized for WMMA
// Specilized for WMMA-Navi3
// A single Wave32 is composed by double row
// Data exchange allowed between these two rows
// This RowLane Dst buf will be filled from two Src buf
......@@ -1439,4 +1439,111 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
ElementwiseOperation element_op_{};
};
// Specilized for WMMA-Navi4
template <typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename ElementwiseOperation,
typename SliceLengths,
typename DimAccessOrder,
index_t DstVectorDim,
index_t DstScalarPerVector,
bool IntraRowSwizzlePerm,
typename enable_if<SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow
{
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
__device__ constexpr ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow(const Index& src_idx)
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc need to known at compile-time");
static_assert(SliceLengths::At(Number<DstVectorDim>{}) % DstScalarPerVector == 0,
"wrong! Not divisible");
ignore = src_idx;
}
template <typename SrcSliceOriginIdx,
typename DstSliceOriginIdx,
typename SrcBuffer,
typename DstBuffer>
__device__ void Run(const SrcDesc&,
const SrcSliceOriginIdx&,
const SrcBuffer& src_buf,
const DstDesc&,
const DstSliceOriginIdx&,
DstBuffer& dst_buf) const
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc need to known at compile-time");
static_assert(is_known_at_compile_time<remove_cvref_t<SrcSliceOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<DstSliceOriginIdx>>::value,
"wrong! SliceOrigin need to known at compile-time");
static_assert(SrcBuffer::IsStaticBuffer() && DstBuffer::IsStaticBuffer(),
"wrong! Buffer need to be StaticBuffer");
// SrcDesc and src_slice_origin_idx are known at compile-time
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
constexpr auto src_slice_origin_idx = to_multi_index(SrcSliceOriginIdx{});
constexpr auto dst_slice_origin_idx = to_multi_index(DstSliceOriginIdx{});
// scalar per access on each dim
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
constexpr auto dst_scalar_step_in_vector =
generate_sequence(detail::lambda_scalar_step_in_vector<DstVectorDim>{}, Number<nDim>{});
using SpaceFillingCurve = SpaceFillingCurve<SliceLengths,
DimAccessOrder,
remove_cv_t<decltype(dst_scalar_per_access)>>;
static_assert(DstScalarPerVector == SpaceFillingCurve::ScalarPerVector,
"wrong!DstScalarPerVector != SpaceFillingCurve::ScalarPerVector");
constexpr auto num_access = SpaceFillingCurve::GetNumOfAccess();
static_for<0, num_access, 1>{}([&](auto idx_1d) {
constexpr auto idx_md = SpaceFillingCurve::GetIndex(idx_1d);
// copy data from src_buf into dst_vector
static_for<0, DstScalarPerVector, 1>{}([&](auto i) {
// src_desc error, non constexpr, caused by merge transform
constexpr index_t src_offset = src_desc.CalculateOffset(
src_slice_origin_idx + idx_md + i * dst_scalar_step_in_vector);
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_slice_origin_idx + idx_md + i * dst_scalar_step_in_vector);
SrcData v_this_row;
// int type temp value due to intrinsic requirement
int temp = 0;
// apply element-wise operation
element_op_(v_this_row, src_buf[Number<src_offset>{}]);
// apply intra-row permute.
if constexpr(IntraRowSwizzlePerm)
{
temp = __builtin_amdgcn_permlane16(
temp, type_convert_sp<int>(v_this_row), 0xb3a29180, 0xf7e6d5c4, 1, 0);
v_this_row = type_convert_sp<SrcData>(temp);
}
// apply type convert
dst_buf(Number<dst_offset>{}) = type_convert_sp<DstData>(v_this_row);
});
});
}
ElementwiseOperation element_op_{};
};
} // namespace ck
......@@ -11,12 +11,17 @@ namespace ck {
enum struct WmmaInstr
{
// gfx11
wmma_f32_16x16x16_f16 = 0,
wmma_f32_16x16x16_bf16,
wmma_f16_16x16x16_f16,
wmma_bf16_16x16x16_bf16,
wmma_i32_16x16x16_iu8,
wmma_i32_16x16x16_iu4
wmma_i32_16x16x16_iu4,
// gfx12
wmma_f32_16x16x16_f16_gfx12,
wmma_f32_16x16x16_bf16_gfx12,
wmma_i32_16x16x16_iu8_gfx12,
};
/*
......@@ -279,6 +284,122 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
}
};
// gfx12
// A-swizzled
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
// * Data Pixel
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
// static constexpr index_t src_a_data_size = 2;
// static constexpr index_t src_b_data_size = 2;
// static constexpr index_t acc_data_size = 4;
// * Thread mapping inside wave, num_thread_per_subgroups always alone N direction
static constexpr index_t acc_data_size = 4;
static constexpr index_t acc_pack_number = 1;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
// * Fixed in Navi3x, Will be wave mode dependent on Navi4x
// static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4;
// * num_acc_vgprs_per_wave alone M direction
// * num_subgroups alone M direction
static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
if constexpr(wave_size == 32)
{
intrin_wmma_f32_16x16x16_f16_w32_gfx12<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
}
};
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16_gfx12,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
// static constexpr index_t src_a_data_size = 2;
// static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 4;
static constexpr index_t acc_pack_number = 1;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
// static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
if constexpr(wave_size == 32)
{
intrin_wmma_f32_16x16x16_bf16_w32_gfx12<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
}
};
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8_gfx12,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
// static constexpr index_t src_a_data_size = 2;
// static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 4;
static constexpr index_t acc_pack_number = 1;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
// static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma,
index_t NPerWmma,
class FloatA,
class FloatB,
class FloatC,
bool neg_a = false,
bool neg_b = false,
bool clamp = false>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
if constexpr(wave_size == 32)
{
intrin_wmma_i32_16x16x16_iu8_w32_gfx12<MPerWmma, NPerWmma, neg_a, neg_b, clamp>::Run(
a, b, reg_c);
}
}
};
template <typename src_type_a,
typename src_type_b,
typename dst_type,
......@@ -296,13 +417,21 @@ struct WmmaSelector
template <>
static constexpr auto GetWmma<half_t, half_t, float, 16, 16>()
{
#ifdef __gfx12__
return WmmaInstr::wmma_f32_16x16x16_f16_gfx12;
#else
return WmmaInstr::wmma_f32_16x16x16_f16;
#endif
}
template <>
static constexpr auto GetWmma<bhalf_t, bhalf_t, float, 16, 16>()
{
#ifdef __gfx12__
return WmmaInstr::wmma_f32_16x16x16_bf16_gfx12;
#else
return WmmaInstr::wmma_f32_16x16x16_bf16;
#endif
}
template <>
......@@ -320,8 +449,13 @@ struct WmmaSelector
template <>
static constexpr auto GetWmma<int8_t, int8_t, int, 16, 16>()
{
#ifdef __gfx12__
return WmmaInstr::wmma_i32_16x16x16_iu8_gfx12;
#else
return WmmaInstr::wmma_i32_16x16x16_iu8;
#endif
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
static constexpr auto GetWmma<int4_t, int4_t, int, 16, 16>()
......@@ -502,6 +636,9 @@ struct WmmaGemm
__device__ static auto GetSubGroupId()
{
static_assert(wmma_instr.num_thread_per_subgroups * wmma_instr.num_subgroups ==
wmma_instr.wave_size,
"");
return (GetLaneId() / wmma_instr.num_thread_per_subgroups) % wmma_instr.num_subgroups;
}
......@@ -516,12 +653,20 @@ struct WmmaGemm
__host__ __device__ static auto CalculateAThreadOriginDataIndex()
{
#ifdef __gfx12__
return GetLaneIdUnderSubGroup();
#else
return TransposeC ? GetLaneIdUnderSubGroup() : GetSwizzledLaneIdLow();
#endif
}
__host__ __device__ static auto CalculateBThreadOriginDataIndex()
{
#ifdef __gfx12__
return GetLaneIdUnderSubGroup();
#else
return TransposeC ? GetSwizzledLaneIdLow() : GetLaneIdUnderSubGroup();
#endif
}
__device__ static CIndex GetBeginOfThreadBlk()
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -14,12 +14,88 @@
namespace ck {
namespace tensor_operation {
// function to be used on device, emulates std::accumulate
template <typename T, typename ForwardIterator, typename Size>
__host__ __device__ auto mult_accumulate_n(ForwardIterator first, Size count, T init)
{
for(ForwardIterator x = first; x != first + count; x++)
{
init *= *x;
}
return init;
}
template <index_t NDimSpatial, device::ConvolutionForwardSpecialization ConvForwardSpecialization>
struct TransformConvFwdToGemm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static long_index_t
calculate_element_space_size_impl(const std::array<index_t, NDimSpatial + 3>& lengths,
const std::array<index_t, NDimSpatial + 3>& strides,
index_t i)
{
long_index_t acc = 1;
for(; i < (NDimSpatial + 3); i++)
{
acc +=
static_cast<long_index_t>(lengths[i] - I1) * static_cast<long_index_t>(strides[i]);
}
return acc;
}
template <typename ADataType, typename CDataType>
static index_t GetSplitedNSize(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
{
const long_index_t a_element_space_size =
calculate_element_space_size_impl(a_g_n_c_wis_lengths, a_g_n_c_wis_strides, I1);
const long_index_t c_element_space_size =
calculate_element_space_size_impl(c_g_n_k_wos_lengths, c_g_n_k_wos_strides, I1);
const long_index_t element_space_size = math::max(a_element_space_size * sizeof(ADataType),
c_element_space_size * sizeof(CDataType));
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
const index_t N = a_g_n_c_wis_lengths[I1];
if(element_space_size > TwoGB)
{
// Minimum divisor of N to not exceed 2GB
const auto divisor = math::integer_divide_ceil(element_space_size, TwoGB);
if(divisor <= static_cast<double>(N))
{
// Find least divisor of N larger than element_space_size / TwoGB
// Iterate up to sqrt(N). There are no divisors above this value.
for(index_t least_divisor = divisor; least_divisor * least_divisor <= N;
least_divisor++)
{
if(N % least_divisor == 0)
{
return N / least_divisor;
}
}
// Not found, process one Convolution N per block
return 1;
}
else
{
// Not possible to support even after split N.
// Too large tensor.
return N;
}
}
else
{
// Split N is not needed.
return N;
}
}
// TODO: implement ck::tensor_layout::convolution that describe packed/strided dimemsion as
// properties
template <typename ALayout,
......@@ -38,9 +114,9 @@ struct TransformConvFwdToGemm
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t N)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Wi = a_g_n_c_wis_lengths[3];
......@@ -151,9 +227,10 @@ struct TransformConvFwdToGemm
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t N)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Hi = a_g_n_c_wis_lengths[3];
......@@ -276,13 +353,14 @@ struct TransformConvFwdToGemm
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* b_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */,
const std::array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides*/,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t N)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
......@@ -478,9 +556,9 @@ struct TransformConvFwdToGemm
bool>::type = false>
static auto
MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */)
const std::array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */,
const index_t N)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo =
......@@ -502,9 +580,9 @@ struct TransformConvFwdToGemm
is_same_v<CLayout, tensor_layout::convolution::NDHWGK>,
bool>::type = false>
static auto MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides,
const index_t N)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const auto KStride = I1;
......@@ -525,9 +603,9 @@ struct TransformConvFwdToGemm
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::G_K>,
bool>::type = false>
static auto MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides,
const index_t N)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t KStride = c_g_n_k_wos_strides[2];
......@@ -540,6 +618,559 @@ struct TransformConvFwdToGemm
return out_gemmm_gemmn_desc;
}
// Overloaded functions for hipRTC purposes
template <typename ALayout,
typename std::enable_if<NDimSpatial == 1 &&
(is_same_v<ALayout, tensor_layout::convolution::G_NW_C> ||
is_same_v<ALayout, tensor_layout::convolution::NWGC> ||
is_same_v<ALayout, tensor_layout::convolution::GNWC>),
bool>::type = false>
__host__ __device__ static auto
MakeADescriptor_M_K(const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* b_g_k_c_xs_strides */,
const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Wi = a_g_n_c_wis_lengths[3];
const index_t Wo = c_g_n_k_wos_lengths[3];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
return in_gemmm_gemmk_desc;
}
else if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wo_c_desc = transform_tensor_descriptor(
in_n_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmm_gemmk_desc = transform_tensor_descriptor(
in_n_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)), make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
else
{
const index_t X = b_g_k_c_xs_lengths[3];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wip_c_desc = transform_tensor_descriptor(
in_n_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_desc = transform_tensor_descriptor(
in_n_wip_c_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmm_gemmk_desc =
transform_tensor_descriptor(in_n_x_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)),
make_merge_transform(make_tuple(X, C))),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
}
template <typename ALayout,
typename std::enable_if<
NDimSpatial == 2 && (is_same_v<ALayout, tensor_layout::convolution::G_NHW_C> ||
is_same_v<ALayout, tensor_layout::convolution::NHWGC> ||
is_same_v<ALayout, tensor_layout::convolution::GNHWC>),
bool>::type = false>
__host__ __device__ static auto
MakeADescriptor_M_K(const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* b_g_k_c_xs_strides */,
const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Hi = a_g_n_c_wis_lengths[3];
const index_t Wi = a_g_n_c_wis_lengths[4];
const index_t Ho = c_g_n_k_wos_lengths[3];
const index_t Wo = c_g_n_k_wos_lengths[4];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
return in_gemmm_gemmk_desc;
}
else if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_ho_wo_c_desc = transform_tensor_descriptor(
in_n_hi_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmm_gemmk_desc =
transform_tensor_descriptor(in_n_ho_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
else
{
const index_t Y = b_g_k_c_xs_lengths[3];
const index_t X = b_g_k_c_xs_lengths[4];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_desc = transform_tensor_descriptor(
in_n_hi_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_desc = transform_tensor_descriptor(
in_n_hip_wip_c_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmm_gemmk_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_merge_transform(make_tuple(Y, X, C))),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
}
template <typename ALayout,
typename std::enable_if<
NDimSpatial == 3 && (is_same_v<ALayout, tensor_layout::convolution::G_NDHW_C> ||
is_same_v<ALayout, tensor_layout::convolution::NDHWGC> ||
is_same_v<ALayout, tensor_layout::convolution::GNDHWC>),
bool>::type = false>
static auto
MakeADescriptor_M_K(const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* b_g_k_c_xs_strides */,
const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
const index_t Hi = a_g_n_c_wis_lengths[4];
const index_t Wi = a_g_n_c_wis_lengths[5];
const index_t Do = c_g_n_k_wos_lengths[3];
const index_t Ho = c_g_n_k_wos_lengths[4];
const index_t Wo = c_g_n_k_wos_lengths[5];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor(make_tuple(NDoHoWo, C), make_tuple(WiStride, CStride));
return in_gemmm_gemmk_desc;
}
else if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_do_ho_wo_c_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmm_gemmk_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
else
{
const index_t Z = b_g_k_c_xs_lengths[3];
const index_t Y = b_g_k_c_xs_lengths[4];
const index_t X = b_g_k_c_xs_lengths[5];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_desc = transform_tensor_descriptor(
in_n_hip_wip_c_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmm_gemmk_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_merge_transform(make_tuple(Z, Y, X, C))),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return in_gemmm_gemmk_desc;
}
}
template <typename BLayout,
typename std::enable_if<is_same_v<BLayout, tensor_layout::convolution::GKXC> ||
is_same_v<BLayout, tensor_layout::convolution::GKYXC> ||
is_same_v<BLayout, tensor_layout::convolution::GKZYXC>,
bool>::type = false>
__host__ __device__ static auto
MakeBDescriptor_N_K(const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* b_g_k_c_xs_strides */)
{
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX =
mult_accumulate_n<index_t>(b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1);
const auto wei_gemmn_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, YX * C));
return wei_gemmn_gemmk_desc;
}
template <
typename BLayout,
typename std::enable_if<is_same_v<BLayout, tensor_layout::convolution::G_K_X_C> ||
is_same_v<BLayout, tensor_layout::convolution::G_K_YX_C> ||
is_same_v<BLayout, tensor_layout::convolution::G_K_ZYX_C> ||
is_same_v<BLayout, tensor_layout::convolution::KXGC> ||
is_same_v<BLayout, tensor_layout::convolution::KYXGC> ||
is_same_v<BLayout, tensor_layout::convolution::KZYXGC>,
bool>::type = false>
__host__ __device__ static auto
MakeBDescriptor_N_K(const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX =
mult_accumulate_n<index_t>(b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1);
const index_t KStride = b_g_k_c_xs_strides[1];
const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto wei_k_yx_c_desc = make_naive_tensor_descriptor(
make_tuple(K, YX, C), make_tuple(KStride, XStride, CStride));
const auto wei_gemmn_gemmk_desc = transform_tensor_descriptor(
wei_k_yx_c_desc,
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(YX, C))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return wei_gemmn_gemmk_desc;
}
template <typename CLayout,
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::GNWK> ||
is_same_v<CLayout, tensor_layout::convolution::GNHWK> ||
is_same_v<CLayout, tensor_layout::convolution::GNDHWK>,
bool>::type = false>
__host__ __device__ static auto
MakeCDescriptor_M_N(const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo =
N * mult_accumulate_n<index_t>(c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1);
const auto out_gemmm_gemmn_desc = make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K));
return out_gemmm_gemmn_desc;
}
template <
typename CLayout,
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::G_NW_K> ||
is_same_v<CLayout, tensor_layout::convolution::G_NHW_K> ||
is_same_v<CLayout, tensor_layout::convolution::G_NDHW_K> ||
is_same_v<CLayout, tensor_layout::convolution::NWGK> ||
is_same_v<CLayout, tensor_layout::convolution::NHWGK> ||
is_same_v<CLayout, tensor_layout::convolution::NDHWGK>,
bool>::type = false>
__host__ __device__ static auto
MakeCDescriptor_M_N(const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const auto KStride = I1;
const index_t WoStride = c_g_n_k_wos_strides[NDimSpatial + 2];
const index_t NHoWo =
N * mult_accumulate_n<index_t>(c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1);
const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride));
return out_gemmm_gemmn_desc;
}
// for output bias
template <typename CLayout,
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::G_K>,
bool>::type = false>
__host__ __device__ static auto
MakeCDescriptor_M_N(const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t KStride = c_g_n_k_wos_strides[2];
const index_t NHoWo =
N * mult_accumulate_n<index_t>(c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1);
const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, KStride));
return out_gemmm_gemmn_desc;
}
};
// wrapper class to call member functions on TransformConvToGemm struct at runtime
// TODO: figure out aq way to properly pass in layout as an argument
struct TransformConv
{
TransformConv() {}
template <index_t NDimSpatial,
device::ConvolutionForwardSpecialization ConvForwardSpecialization>
auto
transform_func(ck::Array<index_t, NDimSpatial + 3> out_lengths,
ck::Array<index_t, NDimSpatial + 3> out_strides,
TransformConvFwdToGemm<NDimSpatial, ConvForwardSpecialization> conv_fwd_to_gemm)
{
if(NDimSpatial == 2)
{
return conv_fwd_to_gemm
.template MakeCDescriptor_M_N<ck::tensor_layout::convolution::NHWGK>(out_lengths,
out_strides);
}
else if(NDimSpatial == 3)
{
return conv_fwd_to_gemm
.template MakeCDescriptor_M_N<tensor_layout::convolution::NDHWGK>(out_lengths,
out_strides);
}
else if(NDimSpatial == 1)
{
return conv_fwd_to_gemm.template MakeCDescriptor_M_N<tensor_layout::convolution::NWGK>(
out_lengths, out_strides);
}
}
};
} // namespace tensor_operation
......
......@@ -991,7 +991,8 @@ __device__ void amd_direct_load_global_to_lds(const T* global_base_ptr,
asm volatile("s_mov_b32 m0, %0; \n\t"
"buffer_load_dword %1, %2, 0 offen lds;\n\t" ::"s"(lds_ptr_sgpr),
"v"(global_offset_bytes),
"s"(src_resource));
"s"(src_resource)
: "memory");
#else
// LDS pointer must be attributed with the LDS address space.
__attribute__((address_space(3))) uint32_t* lds_ptr =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#pragma once
namespace ck {
template <index_t MPerWave, index_t NPerWave>
struct intrin_smfmac_f32_16x16x32f16;
template <>
struct intrin_smfmac_f32_16x16x32f16<16, 16>
{
template <class FloatC>
__device__ static void
Run(const half4_t& reg_a, const half8_t& reg_b, const int32_t& reg_idx, FloatC& reg_c)
{
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_smfmac_f32_16x16x32_f16(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}], reg_idx, 0, 0);
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_smfmac_f32_16x16x32bf16;
template <>
struct intrin_smfmac_f32_16x16x32bf16<16, 16>
{
template <class FloatC>
__device__ static void
Run(const bhalf4_t& reg_a, const bhalf8_t& reg_b, const int32_t& reg_idx, FloatC& reg_c)
{
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_smfmac_f32_16x16x32_bf16(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}], reg_idx, 0, 0);
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_smfmac_f32_32x32x16f16;
template <>
struct intrin_smfmac_f32_32x32x16f16<32, 32>
{
template <class FloatC>
__device__ static void
Run(const half4_t& reg_a, const half8_t& reg_b, const int32_t& reg_idx, FloatC& reg_c)
{
reg_c.template AsType<float16_t>()(Number<0>{}) = __builtin_amdgcn_smfmac_f32_32x32x16_f16(
reg_a, reg_b, reg_c.template AsType<float16_t>()[Number<0>{}], reg_idx, 0, 0);
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_smfmac_f32_32x32x16bf16;
template <>
struct intrin_smfmac_f32_32x32x16bf16<32, 32>
{
template <class FloatC>
__device__ static void
Run(const bhalf4_t& reg_a, const bhalf8_t& reg_b, const int32_t& reg_idx, FloatC& reg_c)
{
reg_c.template AsType<float16_t>()(Number<0>{}) = __builtin_amdgcn_smfmac_f32_32x32x16_bf16(
reg_a, reg_b, reg_c.template AsType<float16_t>()[Number<0>{}], reg_idx, 0, 0);
}
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment