Commit 5ec6a912 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents d39c3f5d 3bb0fe6c
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -31,51 +31,63 @@ using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastG
using MultiplyFastGelu = ck::tensor_operation::element_wise::MultiplyFastGelu;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename DsLayout, typename DsDataType, typename CDEElementwiseOp>
using device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <typename DsLayout,
typename DsDataType,
typename CDEElementwiseOp,
GemmSpecialization GemmSpec = GemmMNKPadding>
using device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances = std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 1
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>
#endif
#if 0
//comp
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
//latency
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
//mem
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 64, 128, 8, 4, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 64, 128, 8, 4, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, 8>
#endif
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 224, 256, 64, 8, 4, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 2, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v1>
// clang-format on
>;
template <typename DsLayout,
typename DsDataType,
typename CDEElementwiseOp,
GemmSpecialization GemmSpec = GemmMNKPadding,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave>
using device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances =
std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
// Latency friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 64, 128, 8, 4, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 64, 128, 8, 4, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
......@@ -89,33 +101,89 @@ void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instan
PassThrough,
Multiply>>>& instances)
{
// comp
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances<
ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply>{});
}
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding>{});
// mem
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Intrawave>{});
void add_device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row, Row>,
Row,
BF16,
I8,
ck::Tuple<BF16, BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances<
ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAdd>{});
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Interwave>{});
}
void add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Intrawave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Intrawave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Intrawave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Intrawave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Interwave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Interwave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnkpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Interwave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnpadding_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Interwave>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row, Row>,
Row,
BF16,
I8,
ck::Tuple<BF16, BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyAdd>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<
ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAdd>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAdd>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row, Row>,
Row,
BF16,
I8,
ck::Tuple<BF16, BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyAddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<
ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAddFastGelu>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<
ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAddFastGelu>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
MultiplyFastGelu>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
MultiplyFastGelu>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename DLayout,
typename ELayout>
bool profile_grouped_gemm_multiply_tile_loop_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideDs,
const std::vector<int>& StrideEs,
int n_warmup = 10,
int n_iter = 50)
{
using CDataType = EDataType;
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideEs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<DDataType>> d_m_n;
std::vector<Tensor<CDataType>> e_m_n_host_results;
std::vector<Tensor<CDataType>> e_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
d_m_n.push_back(
Tensor<DDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideDs[i], DLayout{})));
e_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideEs[i], ELayout{})));
e_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideEs[i], ELayout{})));
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n["
<< i << "]:" << b_k_n[i].mDesc << ", e_m_n_device_results[" << i
<< "]:" << e_m_n_device_results[i].mDesc << std::endl;
}
switch(init_method)
{
case 0: break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5, 5}(a_m_k[i]);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5, 5}(b_k_n[i]);
ck::utils::FillUniformDistributionIntegerValue<DDataType>{-5, 5}(d_m_n[i]);
break;
case 2:
ck::utils::FillUniformDistribution<ADataType>{.0, 1.}(a_m_k[i]);
ck::utils::FillUniformDistribution<BDataType>{-0.5, 0.5}(b_k_n[i]);
ck::utils::FillUniformDistribution<DDataType>{-0.5, 0.5}(d_m_n[i]);
break;
default:
ck::utils::FillConstant<ADataType>{1}(a_m_k[i]);
ck::utils::FillConstant<BDataType>{1}(b_k_n[i]);
ck::utils::FillConstant<DDataType>{1}(d_m_n[i]);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Multiply;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, d_device_buf, e_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
d_device_buf.reserve(group_count);
e_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b, p_d;
constexpr ck::index_t NumDTensor = 1;
auto p_ds = std::vector<std::array<const void*, NumDTensor>>{};
std::vector<void*> p_e;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_ds.reserve(group_count);
p_e.reserve(group_count);
using KernelArguments =
ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDTensor>;
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<KernelArguments> gemm_kargs;
gemm_descs.reserve(group_count);
gemm_kargs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
d_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(DDataType) * d_m_n[i].mDesc.GetElementSpaceSize()));
e_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * e_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
d_device_buf[i]->ToDevice(d_m_n[i].mData.data());
e_device_buf[i]->SetZero();
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_ds.push_back({d_device_buf[i]->GetDeviceBuffer()});
p_e.push_back(e_device_buf[i]->GetDeviceBuffer());
gemm_descs.push_back(
{0, Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideEs[i], {StrideDs[i]}});
gemm_kargs.push_back({a_device_buf[i]->GetDeviceBuffer(),
b_device_buf[i]->GetDeviceBuffer(),
{d_device_buf[i]->GetDeviceBuffer()},
e_device_buf[i]->GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{StrideDs[i]},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmTileLoop<ALayout,
BLayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
Tensor<CDataType> c_m_n({Ms[i], Ns[i]});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k[i], b_k_n[i], c_m_n, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
for(int m = 0; m < Ms[i]; ++m)
{
for(int n = 0; n < Ns[i]; ++n)
{
cde_element_op(e_m_n_host_results[i](m, n), c_m_n(m, n), d_m_n[i](m, n));
}
}
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_e,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
cde_element_op);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
std::string gemm_name = gemm_ptr->GetTypeString();
DeviceMem gemm_arg_dev_mem(gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
gemm_kargs.data(),
gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
gemm_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_arg_dev_mem.GetDeviceBuffer());
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
e_device_buf[i]->FromDevice(e_m_n_device_results[i].mData.data());
instance_pass = instance_pass && ck::utils::check_err(e_m_n_device_results[i],
e_m_n_host_results[i]);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "e_device: ", e_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "e_host : ", e_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
if(time_kernel)
{
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(EDataType) * Ms[i] * Ns[i] + // D matrix
sizeof(EDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -43,6 +43,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
......@@ -58,7 +59,7 @@ if(GPU_TARGETS MATCHES "gfx9")
endif()
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9")
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
......@@ -133,7 +134,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11")
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
};
enum struct GemmDataType
{
BF16_INT8_BF16_BF16, // 0
};
#define OP_NAME "grouped_gemm_multiply_tile_loop"
#define OP_DESC "Grouped GEMM Multiply Multiple D Tile Loop"
namespace {
std::vector<int> argToIntArray(char* input)
{
std::vector<int> out;
std::istringstream in(input);
std::string item;
while(std::getline(in, item, ','))
{
out.push_back(std::stoi(item));
}
return out;
}
int profile_grouped_gemm_tile_loop(int argc, char* argv[])
{
if(argc < 14)
{
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: bf16@int8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n]);\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0=n0, 1=yes)\n"
<< "arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "optional:\n"
<< "arg14: number of warm-up cycles (default 1)\n"
<< "arg15: number of iterations (default 10)\n"
<< std::endl;
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const auto Ms = argToIntArray(argv[8]);
const auto Ns = argToIntArray(argv[9]);
const auto Ks = argToIntArray(argv[10]);
auto StrideAs = argToIntArray(argv[11]);
auto StrideBs = argToIntArray(argv[12]);
auto StrideCs = argToIntArray(argv[13]);
const int DefaultStrideA = Ks[0];
const int DefaultStrideB = Ns[0];
const int DefaultStrideC = Ns[0];
for(size_t i = 0; i < Ms.size(); ++i)
{
StrideAs[i] = StrideAs[i] == -1 ? DefaultStrideA : StrideAs[i];
StrideBs[i] = StrideBs[i] == -1 ? DefaultStrideB : StrideBs[i];
StrideCs[i] = StrideCs[i] == -1 ? DefaultStrideC : StrideCs[i];
}
std::vector<int> StrideDs(StrideCs);
int n_warmup = 10;
int n_iter = 50;
if(argc == 16)
{
n_warmup = std::stoi(argv[14]);
n_iter = std::stoi(argv[15]);
}
if(data_type == GemmDataType::BF16_INT8_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_multiply_tile_loop_impl<
ck::bhalf_t,
int8_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideDs,
StrideCs,
n_warmup,
n_iter);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
}
return 0;
}
} // anonymous namespace
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_gemm_tile_loop);
......@@ -60,7 +60,7 @@ function(add_test_executable TEST_NAME)
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT TEST_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "wmma")
message("removing wmma test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -139,7 +139,7 @@ function(add_gtest_executable TEST_NAME)
endif()
endforeach()
foreach(source IN LISTS ARGN)
if(NOT TEST_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "wmma")
message("removing wmma test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -209,4 +209,7 @@ add_subdirectory(wrapper)
if(GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op)
endif()
if(GPU_TARGETS MATCHES "gfx942")
add_subdirectory(smfmac_op)
endif()
add_subdirectory(position_embedding)
......@@ -212,4 +212,10 @@ TYPED_TEST(TestContractionScaleMixedPrecision, scale)
this->template Run<6>({{1, 1, 1, 3, 2, 3}, {1, 1, 1, 3, 2, 3}, {1, 1, 1, 2, 2, 4}});
this->template Run<2>({{16, 8}, {16, 8}, {16, 8}});
this->template Run<2>({{8, 16}, {16, 8}, {8, 16}});
// special cases
this->template Run<2>({{1, 1}, {16, 8}, {8, 16}});
this->template Run<2>({{8, 16}, {16, 8}, {1, 1}});
this->template Run<2>({{8, 16}, {1, 1}, {8, 16}});
this->template Run<2>({{1, 1}, {1, 1}, {1, 1}});
}
......@@ -44,7 +44,7 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
}
}
if(ck::is_gfx11_supported())
if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
// on gfx11 only support for 3d is implemented
if constexpr(NDimSpatial{} != 3)
......
......@@ -69,6 +69,8 @@ using KernelTypes3d = ::testing::Types<std::tuple<float, GNDHWC, GKZYXC, GNDHWK>
std::tuple<ck::bhalf_t, NDHWGC, GKZYXC, NDHWGK>,
std::tuple<int8_t, NDHWGC, GKZYXC, NDHWGK>>;
using KernelTypes2dLargeCases = ::testing::Types<std::tuple<float, NHWGC, GKYXC, NHWGK>>;
template <typename Tuple>
class TestGroupedConvndFwd1d : public TestGroupedConvndFwd<Tuple>
{
......@@ -84,9 +86,15 @@ class TestGroupedConvndFwd3d : public TestGroupedConvndFwd<Tuple>
{
};
template <typename Tuple>
class TestGroupedConvndFwd2dLargeCases : public TestGroupedConvndFwd<Tuple>
{
};
TYPED_TEST_SUITE(TestGroupedConvndFwd1d, KernelTypes1d);
TYPED_TEST_SUITE(TestGroupedConvndFwd2d, KernelTypes2d);
TYPED_TEST_SUITE(TestGroupedConvndFwd3d, KernelTypes3d);
TYPED_TEST_SUITE(TestGroupedConvndFwd2dLargeCases, KernelTypes2dLargeCases);
TYPED_TEST(TestGroupedConvndFwd1d, Test1D)
{
......@@ -131,3 +139,11 @@ TYPED_TEST(TestGroupedConvndFwd3d, Test3D)
{3, 1, 1, 1, 1, {3, 3, 3}, {32, 32, 32}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->template Run<3>();
}
TYPED_TEST(TestGroupedConvndFwd2dLargeCases, Test2DLargeCases)
{
// Case larger than 2GB
this->conv_params.push_back(
{2, 1, 64, 4, 192, {2, 2}, {224, 224}, {224, 224}, {0, 0}, {0, 0}, {0, 0}});
this->template Run<2>();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment