Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
5a9c4962
Commit
5a9c4962
authored
Apr 24, 2024
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin/develop' into aosewski/ggemm_multi_d2
parents
3970cf73
43879b89
Changes
273
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
4543 additions
and
1796 deletions
+4543
-1796
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
...ation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
+6
-4
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
...or_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
+98
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
...ion/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
+81
-0
include/ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp
...ation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp
+94
-72
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
...ice/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
+8
-4
include/ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp
..._operation/gpu/device/impl/device_elementwise_2d_impl.hpp
+0
-338
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
..._operation/gpu/device/impl/device_elementwise_3d_impl.hpp
+0
-371
include/ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp
...vice/impl/device_elementwise_dynamic_vector_dims_impl.hpp
+424
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp
...eration/gpu/device/impl/device_elementwise_scale_impl.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp
...gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp
+15
-91
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
...operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
+687
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
...ion/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
+10
-32
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
...evice_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
+1085
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
...ice/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
+5
-14
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
...vice/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
+119
-857
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...mpl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+11
-8
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
.../impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+6
-4
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp
...r_operation/gpu/device/impl/device_grouped_conv_utils.hpp
+51
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
...evice/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
+851
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp
...grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp
+988
-0
No files found.
Too many changes to show.
To preserve performance only
273 of 273+
files are displayed.
Plain diff
Email patch
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -40,7 +40,8 @@ using is_tuple = decltype(std::declval<T&>().IsTuple());
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
* \tparam AComputeType Compute data type for A tensor (default: ADataType, first if tuple passed).
* \tparam BComputeType Compute data type for B tensor (default: AComputeType).
*/
template
<
index_t
NDimSpatial
,
typename
ALayout
,
...
...
@@ -54,12 +55,13 @@ template <index_t NDimSpatial,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputeType
=
typename
A
ComputeType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
())
>
// ComputeType is InputType by default (first
ADataType
>
())
,
//
A
ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename
BComputeType
=
AComputeType
>
struct
DeviceGroupedConvFwdMultipleABD
:
public
BaseOperator
{
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
GemmMultiABDDesc
{
ck
::
index_t
M_
,
N_
,
K_
;
std
::
vector
<
ck
::
index_t
>
stride_As_
;
std
::
vector
<
ck
::
index_t
>
stride_Bs_
;
std
::
vector
<
ck
::
index_t
>
stride_Ds_
;
ck
::
index_t
stride_C_
;
};
/*
* \brief Grouped Gemm Multi ABD
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam AsLayout A layouts (tuple).
* \tparam BsLayout B layouts (tuple).
* \tparam DsLayout Ds layouts (tuple).
* \tparam ELayout Output layout.
* \tparam AsDataType A data types (tuple).
* \tparam BsDataType B data types (tuple).
* \tparam DsDataType D data types (tuple).
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation C elementwise operation.
*/
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedGemmMultiABD
:
public
BaseOperator
{
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
AsLayout
::
Size
()
==
AsDataType
::
Size
(),
"wrong! inconsistent NumATensor"
);
static_assert
(
BsLayout
::
Size
()
==
BsDataType
::
Size
(),
"wrong! inconsistent NumBTensor"
);
static_assert
(
DsLayout
::
Size
()
==
DsDataType
::
Size
(),
"wrong! inconsistent NumDTensor"
);
/*
* \brief Make argument pointer for grouped gemm multi abd.
*
* \param p_as A pointers to the A.
* \param p_bs A pointers to the B.
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the E.
* \param gemm_desc Gemm descriptors for each group.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_as
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_ds
,
std
::
vector
<
void
*>&
p_e
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_desc
,
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{},
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{},
CDEElementwiseOperation
c_element_op
=
CDEElementwiseOperation
{})
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
void
SetElementwiseOps
(
BaseArgument
*
p_arg
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm_multi_abd.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumATensor
=
1
,
index_t
NumBTensor
=
1
,
index_t
NumDTensor
=
0
>
struct
GroupedGemmMultiABDKernelArgument
{
std
::
array
<
const
void
*
,
NumATensor
>
p_as_grid
;
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
std
::
array
<
index_t
,
NumATensor
>
StrideAs
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
/*
* \brief Grouped Gemm Multi ABD Fixed NK
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam AsLayout A layouts (tuple).
* \tparam BsLayout B layouts (tuple).
* \tparam DsLayout Ds layouts (tuple).
* \tparam ELayout Output layout.
* \tparam AsDataType A data types (tuple).
* \tparam BsDataType B data types (tuple).
* \tparam DsDataType D data types (tuple).
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation C elementwise operation.
*/
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmMultiABDFixedNK
:
DeviceGroupedGemmMultiABD
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
virtual
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
=
0
;
virtual
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_cgemm_4gemm_xdl_cshuffle.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -14,7 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_cgemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_
1
d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_
2
d.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
@@ -80,42 +80,41 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
MPerThread
=
Number
<
4
>
{};
static
constexpr
index_t
MPerThread
=
MPerBlock
/
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
1
);
static
constexpr
index_t
NPerThread
=
NPerBlock
/
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
3
);
static
constexpr
auto
AScalarPerVector
=
Number
<
4
>
{};
static
constexpr
auto
BScalarPerVector
=
Number
<
4
>
{};
static
constexpr
auto
CScalarPerVector
=
Number
<
4
>
{};
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_
1d
(
Desc_M
desc
_m
,
index_t
gridSize
,
index_t
blockSize
)
template
<
typename
Desc_M
_N
>
static
auto
PadDescriptor_M_
N
(
Desc_M
_N
desc
)
{
const
auto
M
=
desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
MPerThread
;
const
auto
pad
=
math
::
integer_least_multiple
(
M
,
loop_step
)
-
M
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
M
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
const
auto
M
=
desc
.
GetLength
(
I0
);
const
auto
N
=
desc
.
GetLength
(
I1
);
const
auto
pad_M
=
math
::
integer_divide_ceil
(
M
,
MPerThread
)
*
MPerThread
-
M
;
const
auto
pad_N
=
math
::
integer_divide_ceil
(
N
,
NPerThread
)
*
NPerThread
-
N
;
const
auto
padded_desc
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_right_pad_transform
(
M
,
pad_M
),
make_right_pad_transform
(
N
,
pad_N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
padded_desc
;
}
static
auto
MakeDescriptor_M
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
,
index_t
gridSize
,
index_t
blockSize
)
static
auto
MakeDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
2
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
strides
[
I
];
},
Number
<
2
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
const
auto
desc_m
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
2
>
{})),
make_tuple
(
Sequence
<
0
>
{}));
return
PadDescriptor_M_1d
(
desc_m
,
gridSize
,
blockSize
);
return
PadDescriptor_M_N
(
desc
);
}
// GridwiseGemm
...
...
@@ -166,7 +165,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
CGridDesc_M
=
decltype
(
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
}
,
1
,
1
));
using
CGridDesc_M
_N
=
decltype
(
MakeDescriptor_M
_N
({
1
,
1
},
{
1
,
1
}));
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
GridwiseGemm
::
Problem
...
...
@@ -195,17 +194,13 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
p_c_grid_imag
{
p_c_grid_imag_
},
p_aux_grid
{
p_workspace
}
{
const
index_t
grid_size
=
std
::
get
<
1
>
(
GridwiseGemm
::
CalculateGridSize
(
M_
,
N_
));
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
c_grid_desc_m
=
DeviceOp
::
MakeDescriptor_M
({
M_
,
N_
},
{
StrideC_
,
I1
},
grid_size
,
BlockSize
);
c_grid_desc_m_n
=
DeviceOp
::
MakeDescriptor_M_N
({
M_
,
N_
},
{
StrideC_
,
I1
});
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
c_grid_desc_m
=
DeviceOp
::
MakeDescriptor_M
({
M_
,
N_
},
{
I1
,
StrideC_
},
grid_size
,
BlockSize
);
c_grid_desc_m_n
=
DeviceOp
::
MakeDescriptor_M_N
({
M_
,
N_
},
{
I1
,
StrideC_
});
}
p_aux_2_grid
=
p_workspace
+
GetCElementSpaceSize
(
M_
,
N_
,
StrideC_
);
...
...
@@ -220,7 +215,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
CDataType
*
p_c_grid_imag
;
CDataType
*
p_aux_grid
;
CDataType
*
p_aux_2_grid
;
CGridDesc_M
c_grid_desc_m
;
CGridDesc_M
_N
c_grid_desc_m
_n
;
};
// Invoker
...
...
@@ -248,39 +243,62 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
Subtract
=
ck
::
tensor_operation
::
element_wise
::
Subtract
;
using
GridwiseBinAdd
=
GridwiseElementwise_1D
<
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
Tuple
<
CGridDesc_M
>
,
using
Block2TileMap
=
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
>
;
using
GridwiseBinAdd
=
GridwiseElementwise
<
Tuple
<
CGridDesc_M_N
,
CGridDesc_M_N
>
,
Tuple
<
CGridDesc_M_N
>
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
Tuple
<
CDataType
*>
,
Block2TileMap
,
Add
,
BlockSize
,
MPerBlock
,
NPerBlock
,
MPerThread
,
NPerThread
,
Sequence
<
0
,
1
>
,
Sequence
<
AScalarPerVector
,
BScalarPerVector
>
,
Sequence
<
CScalarPerVector
>>
;
Sequence
<
CScalarPerVector
>
,
I1
,
I1
>
;
using
GridwiseBinSubtract
=
GridwiseElementwise
_1D
<
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
Tuple
<
CGridDesc_M
>
,
GridwiseElementwise
<
Tuple
<
CGridDesc_M
_N
,
CGridDesc_M
_N
>
,
Tuple
<
CGridDesc_M
_N
>
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
Tuple
<
CDataType
*>
,
Block2TileMap
,
Subtract
,
BlockSize
,
MPerBlock
,
NPerBlock
,
MPerThread
,
NPerThread
,
Sequence
<
0
,
1
>
,
Sequence
<
AScalarPerVector
,
BScalarPerVector
>
,
Sequence
<
CScalarPerVector
>>
;
Sequence
<
CScalarPerVector
>
,
I1
,
I1
>
;
const
index_t
M
=
arg
.
c_grid_desc_m_n
.
GetLength
(
I0
);
const
index_t
N
=
arg
.
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
block_2_tile_map
=
Block2TileMap
(
M
,
N
);
const
auto
add_kernel
=
kernel_elementwise
_1d
<
GridwiseBinAdd
,
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
Tuple
<
CGridDesc_M
>
,
const
auto
add_kernel
=
kernel_elementwise
<
GridwiseBinAdd
,
Tuple
<
CGridDesc_M
_N
,
CGridDesc_M
_N
>
,
Tuple
<
CGridDesc_M
_N
>
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
Tuple
<
CDataType
*>
,
Block2TileMap
,
Add
>
;
const
auto
subtract_kernel
=
kernel_elementwise
_1d
<
GridwiseBinSubtract
,
Tuple
<
CGridDesc_M
,
CGridDesc_M
>
,
Tuple
<
CGridDesc_M
>
,
kernel_elementwise
<
GridwiseBinSubtract
,
Tuple
<
CGridDesc_M
_N
,
CGridDesc_M
_N
>
,
Tuple
<
CGridDesc_M
_N
>
,
Tuple
<
const
CDataType
*
,
const
CDataType
*>
,
Tuple
<
CDataType
*>
,
Block2TileMap
,
Subtract
>
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
...
...
@@ -318,11 +336,12 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
make_tuple
(
arg
.
c_grid_desc_m
,
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
_n
,
arg
.
c_grid_desc_m
_n
),
make_tuple
(
arg
.
c_grid_desc_m
_n
),
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid
),
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid
)),
make_tuple
(
arg
.
p_c_grid_real
),
block_2_tile_map
,
Subtract
{});
ave_time
+=
launch_and_time_kernel
(
stream_config
,
...
...
@@ -352,11 +371,12 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
make_tuple
(
arg
.
c_grid_desc_m
,
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
_n
,
arg
.
c_grid_desc_m
_n
),
make_tuple
(
arg
.
c_grid_desc_m
_n
),
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid
),
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid
)),
make_tuple
(
arg
.
p_c_grid_imag
),
block_2_tile_map
,
Add
{});
}
else
...
...
@@ -394,11 +414,12 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
make_tuple
(
arg
.
c_grid_desc_m
,
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
_n
,
arg
.
c_grid_desc_m
_n
),
make_tuple
(
arg
.
c_grid_desc_m
_n
),
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid
),
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid
)),
make_tuple
(
arg
.
p_c_grid_real
),
block_2_tile_map
,
Subtract
{});
ave_time
+=
launch_and_time_kernel
(
stream_config
,
...
...
@@ -428,11 +449,12 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
make_tuple
(
arg
.
c_grid_desc_m
,
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
),
make_tuple
(
arg
.
c_grid_desc_m
_n
,
arg
.
c_grid_desc_m
_n
),
make_tuple
(
arg
.
c_grid_desc_m
_n
),
make_tuple
(
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_grid
),
const_cast
<
const
CDataType
*>
(
arg
.
p_aux_2_grid
)),
make_tuple
(
arg
.
p_c_grid_imag
),
block_2_tile_map
,
Add
{});
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
View file @
5a9c4962
...
...
@@ -663,7 +663,8 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
as_kz_consecutive_
[
i
];
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
if
(
!
((
valid_a_vector_size
&&
valid_a_access_dim
)
||
ABlockTransferSrcScalarPerVector
==
1
))
{
valid_as_access
=
false
;
}
...
...
@@ -682,7 +683,8 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
bs_kz_consecutive_
[
i
];
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
if
(
!
((
valid_b_vector_size
&&
valid_b_access_dim
)
||
BBlockTransferSrcScalarPerVector
==
1
))
{
valid_bs_access
=
false
;
}
...
...
@@ -698,7 +700,8 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector read of Ds is always on N dimension.
const
bool
valid_d_access_dim
=
arg
.
ds_nz_consecutive_
[
i
];
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
if
(
!
((
valid_d_vector_size
&&
valid_d_access_dim
)
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
))
{
valid_ds_access
=
false
;
}
...
...
@@ -712,7 +715,8 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
arg
.
e_max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector write of E is always on N dimension.
const
bool
valid_e_access_dim
=
arg
.
e_nz_consecutive_
;
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
if
(
!
((
valid_e_vector_size
&&
valid_e_access_dim
)
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp
deleted
100644 → 0
View file @
3970cf73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim_m
,
index_t
NumDim_n
,
index_t
MPerThread
,
index_t
NPerThread
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwise2dImpl
:
public
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim_m
+
NumDim_n
>
{
static
constexpr
index_t
NumDim
=
NumDim_m
+
NumDim_n
;
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static_assert
(
NumInput
==
InScalarPerVectorSeq
::
Size
()
&&
NumOutput
==
OutScalarPerVectorSeq
::
Size
(),
"Tuple size is inconsistent with the number of in/out!"
);
static
auto
GenerateInDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
nullptr
);
},
Number
<
NumInput
>
{});
};
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumOutput
>
{});
};
using
InDataTypePointerTuple
=
decltype
(
GenerateInDataTypePointerTuple
());
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
template
<
typename
Desc_MN
>
static
auto
PadDescriptor_MN_2d
(
Desc_MN
desc_mn
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
std
::
ignore
=
blockSize
;
std
::
ignore
=
gridSize
;
const
auto
m
=
desc_mn
.
GetLength
(
I0
);
const
auto
n
=
desc_mn
.
GetLength
(
I1
);
const
index_t
loop_step_m
=
num_threads_m
*
MPerThread
;
const
index_t
loop_step_n
=
num_threads_n
*
NPerThread
;
const
auto
pad_m
=
math
::
integer_least_multiple
(
m
,
loop_step_m
)
-
m
;
const
auto
pad_n
=
math
::
integer_least_multiple
(
n
,
loop_step_n
)
-
n
;
const
auto
desc_mn_pad
=
transform_tensor_descriptor
(
desc_mn
,
make_tuple
(
make_right_pad_transform
(
m
,
pad_m
),
make_right_pad_transform
(
n
,
pad_n
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
desc_mn_pad
;
}
static
auto
MakeDescriptor_MN
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NumDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NumDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDim_m
,
1
>::
type
();
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDim_m
,
NumDim_m
+
NumDim_n
,
1
>::
type
();
const
auto
mLengths
=
get_container_subset
(
tupleOfShape
,
mDimIds
);
const
auto
nLengths
=
get_container_subset
(
tupleOfShape
,
nDimIds
);
// merge nd to 2d desc - [s0 * s1 * ...]
if
constexpr
(
NumDim
>
2
)
{
const
auto
desc_mn
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
PadDescriptor_MN_2d
(
desc_mn
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
else
return
PadDescriptor_MN_2d
(
desc
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
template
<
index_t
TupleSize
>
static
auto
GenerateInOutGrid2dDescTuple
(
Number
<
TupleSize
>
)
{
return
generate_tuple
(
[
&
](
auto
)
{
if
constexpr
(
NumDim
>
2
)
{
return
MakeDescriptor_MN
({
1
,
1
},
{
1
,
1
},
1
,
1
,
1
,
1
);
}
else
{
return
MakeDescriptor_MN
({
1
},
{
1
},
1
,
1
,
1
,
1
);
};
},
Number
<
TupleSize
>
{});
};
using
OutGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumOutput
>
{}));
using
InGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumInput
>
{}));
using
GridwiseElementwise
=
GridwiseElementwise_2D
<
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
,
MPerThread
,
NPerThread
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
:
lengths_
(
lengths
),
inStridesArray_
(
inStridesArray
),
outStridesArray_
(
outStridesArray
),
elementwise_op_
(
elementwise_op
),
blockSize_
(
256
)
{
static_assert
(
NumDim_m
>
0
,
""
);
static_assert
(
NumDim_n
>
0
,
""
);
in_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
in_dev_buffers
[
I
.
value
]);
},
Number
<
NumInput
>
{});
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
out_dev_buffers
[
I
.
value
]);
},
Number
<
NumOutput
>
{});
}
InDataTypePointerTuple
in_dev_buffers_
;
OutDataTypePointerTuple
out_dev_buffers_
;
std
::
array
<
index_t
,
NumDim
>
lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
gridSize
=
getAvailableComputeUnitCount
(
stream_config
);
index_t
num_threads_m
=
(
gridSize
*
arg
.
blockSize_
)
/
16
;
index_t
num_threads_n
=
16
;
auto
in_grid_2d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
,
num_threads_m
,
num_threads_n
);
},
Number
<
NumInput
>
{});
auto
out_grid_2d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
,
num_threads_m
,
num_threads_n
);
},
Number
<
NumOutput
>
{});
const
auto
kernel
=
kernel_elementwise_2d
<
GridwiseElementwise
,
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
in_grid_2d_desc_tuple
,
out_grid_2d_desc_tuple
,
arg
.
in_dev_buffers_
,
arg
.
out_dev_buffers_
,
arg
.
elementwise_op_
,
num_threads_m
,
num_threads_n
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
strides
,
index_t
scalarPerVector
,
index_t
vectorDim
)
{
if
(
strides
[
vectorDim
]
==
1
&&
(
lengths
[
vectorDim
]
%
scalarPerVector
==
0
||
lengths
[
vectorDim
]
%
scalarPerVector
==
lengths
[
vectorDim
]))
{
return
true
;
}
if
(
strides
[
vectorDim
]
!=
1
&&
scalarPerVector
==
strides
[
vectorDim
])
{
return
true
;
}
return
false
;
};
bool
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
),
NumDim_m
-
1
))
valid
=
false
;
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
),
NumDim
-
1
))
valid
=
false
;
});
return
valid
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
lengths
,
inStridesArray
,
outStridesArray
,
in_dev_buffers
,
out_dev_buffers
,
elementwise_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
deleted
100644 → 0
View file @
3970cf73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_3d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim_m
,
// choose how to set dims
index_t
NumDim_n
,
index_t
NumDim_k
,
index_t
MPerThread
,
index_t
NPerThread
,
index_t
KPerThread
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwise3dImpl
:
public
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim_m
+
NumDim_n
+
NumDim_k
>
{
static
constexpr
index_t
NumDim
=
NumDim_m
+
NumDim_n
+
NumDim_k
;
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static_assert
(
NumInput
==
InScalarPerVectorSeq
::
Size
()
&&
NumOutput
==
OutScalarPerVectorSeq
::
Size
(),
"Tuple size is inconsistent with the number of in/out!"
);
static
auto
GenerateInDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
nullptr
);
},
Number
<
NumInput
>
{});
}
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumOutput
>
{});
}
using
InDataTypePointerTuple
=
decltype
(
GenerateInDataTypePointerTuple
());
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
template
<
typename
Desc_MNK
>
static
auto
PadDescriptor_MNK
(
Desc_MNK
desc_mnk
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
,
index_t
num_threads_k
)
{
std
::
ignore
=
blockSize
;
std
::
ignore
=
gridSize
;
const
auto
m
=
desc_mnk
.
GetLength
(
I0
);
const
auto
n
=
desc_mnk
.
GetLength
(
I1
);
const
auto
k
=
desc_mnk
.
GetLength
(
I2
);
const
index_t
loop_step_m
=
num_threads_m
*
MPerThread
;
const
index_t
loop_step_n
=
num_threads_n
*
NPerThread
;
const
index_t
loop_step_k
=
num_threads_k
*
KPerThread
;
const
auto
pad_m
=
math
::
integer_least_multiple
(
m
,
loop_step_m
)
-
m
;
const
auto
pad_n
=
math
::
integer_least_multiple
(
n
,
loop_step_n
)
-
n
;
const
auto
pad_k
=
math
::
integer_least_multiple
(
k
,
loop_step_k
)
-
k
;
const
auto
desc_mnk_pad
=
transform_tensor_descriptor
(
desc_mnk
,
make_tuple
(
make_right_pad_transform
(
m
,
pad_m
),
make_right_pad_transform
(
n
,
pad_n
),
make_right_pad_transform
(
k
,
pad_k
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
desc_mnk_pad
;
}
static
auto
MakeDescriptor_MNK
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
,
index_t
num_threads_k
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NumDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NumDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDim_m
,
1
>::
type
();
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDim_m
,
NumDim_m
+
NumDim_n
,
1
>::
type
();
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDim_m
+
NumDim_n
,
NumDim
,
1
>::
type
();
const
auto
mLengths
=
get_container_subset
(
tupleOfShape
,
mDimIds
);
const
auto
nLengths
=
get_container_subset
(
tupleOfShape
,
nDimIds
);
const
auto
kLengths
=
get_container_subset
(
tupleOfShape
,
kDimIds
);
// merge nd to 3d desc - [s0 * s1 * ...]
if
constexpr
(
NumDim
>
3
)
{
const
auto
desc_mnk
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
mDimIds
,
nDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
PadDescriptor_MNK
(
desc_mnk
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
,
num_threads_k
);
}
else
return
PadDescriptor_MNK
(
desc
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
,
num_threads_k
);
}
template
<
index_t
TupleSize
>
static
auto
GenerateInOutGrid3dDescTuple
(
Number
<
TupleSize
>
)
{
return
generate_tuple
(
[
&
](
auto
)
{
if
constexpr
(
NumDim
>
3
)
{
return
MakeDescriptor_MNK
({
1
,
1
,
1
},
{
1
,
1
,
1
},
1
,
1
,
1
,
1
,
1
);
}
else
{
return
MakeDescriptor_MNK
({
1
},
{
1
},
1
,
1
,
1
,
1
,
1
);
};
},
Number
<
TupleSize
>
{});
}
using
OutGrid3dDescTuple
=
decltype
(
GenerateInOutGrid3dDescTuple
(
Number
<
NumOutput
>
{}));
using
InGrid3dDescTuple
=
decltype
(
GenerateInOutGrid3dDescTuple
(
Number
<
NumInput
>
{}));
using
GridwiseElementwise
=
GridwiseElementwise_3D
<
InGrid3dDescTuple
,
OutGrid3dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
,
MPerThread
,
NPerThread
,
KPerThread
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
:
lengths_
(
lengths
),
inStridesArray_
(
inStridesArray
),
outStridesArray_
(
outStridesArray
),
elementwise_op_
(
elementwise_op
),
blockSize_
(
256
)
{
static_assert
(
NumDim_m
>
0
,
""
);
static_assert
(
NumDim_n
>
0
,
""
);
static_assert
(
NumDim_k
>
0
,
""
);
in_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
in_dev_buffers
[
I
.
value
]);
},
Number
<
NumInput
>
{});
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
out_dev_buffers
[
I
.
value
]);
},
Number
<
NumOutput
>
{});
}
InDataTypePointerTuple
in_dev_buffers_
;
OutDataTypePointerTuple
out_dev_buffers_
;
std
::
array
<
index_t
,
NumDim
>
lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
gridSize
=
getAvailableComputeUnitCount
(
stream_config
)
*
arg
.
blockSize_
;
index_t
num_threads_m
=
gridSize
/
(
16
*
16
);
index_t
num_threads_n
=
16
;
index_t
num_threads_k
=
16
;
auto
in_grid_3d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MNK
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
,
num_threads_m
,
num_threads_n
,
num_threads_k
);
},
Number
<
NumInput
>
{});
auto
out_grid_3d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MNK
(
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
,
num_threads_m
,
num_threads_n
,
num_threads_k
);
},
Number
<
NumOutput
>
{});
const
auto
kernel
=
kernel_elementwise_3d
<
GridwiseElementwise
,
InGrid3dDescTuple
,
OutGrid3dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
in_grid_3d_desc_tuple
,
out_grid_3d_desc_tuple
,
arg
.
in_dev_buffers_
,
arg
.
out_dev_buffers_
,
arg
.
elementwise_op_
,
num_threads_m
,
num_threads_n
,
num_threads_k
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
if
((
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
{
return
false
;
}
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
strides
,
index_t
scalarPerVector
,
index_t
vectorDim
)
{
if
(
strides
[
vectorDim
]
==
1
&&
(
lengths
[
vectorDim
]
%
scalarPerVector
==
0
||
lengths
[
vectorDim
]
%
scalarPerVector
==
lengths
[
vectorDim
]))
{
return
true
;
}
if
(
strides
[
vectorDim
]
>=
scalarPerVector
)
{
return
true
;
}
return
false
;
};
bool
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
valid
=
valid
&&
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
),
NumDim_m
-
1
);
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
valid
=
valid
&&
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
),
NumDim
-
1
);
});
return
valid
;
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
lengths
,
inStridesArray
,
outStridesArray
,
in_dev_buffers
,
out_dev_buffers
,
elementwise_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
}
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp
→
include/ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18-2023
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
24
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -9,8 +9,9 @@
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_
1
d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_
2
d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/stream_utility.hpp"
...
...
@@ -23,7 +24,12 @@ template <typename InDataTypeTuple,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim
,
index_t
MPerThread
,
index_t
BlockSize
,
index_t
M0PerBlock
,
index_t
M1PerBlock
,
index_t
M0PerThread
,
index_t
M1PerThread
,
typename
ThreadClusterArrangeOrder
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwiseImpl
...
...
@@ -32,6 +38,9 @@ struct DeviceElementwiseImpl
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static_assert
(
NumInput
==
InScalarPerVectorSeq
::
Size
()
&&
NumOutput
==
OutScalarPerVectorSeq
::
Size
(),
"Tuple size is inconsistent with the number of in/out!"
);
...
...
@@ -61,76 +70,145 @@ struct DeviceElementwiseImpl
using
InDataTypePointerTuple
=
decltype
(
GenerateInDataTypePointerTuple
());
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
,
index_t
gridSize
,
index_t
blockSize
)
static
index_t
GetLowestStrideDim
(
const
std
::
array
<
index_t
,
NumDim
>&
strides
)
{
index_t
most_continous_dim
=
NumDim
-
1
;
index_t
most_continous_dim_stride
=
strides
[
most_continous_dim
];
for
(
index_t
dim
=
0
;
dim
<
NumDim
;
dim
++
)
{
if
(
strides
[
dim
]
<
most_continous_dim_stride
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
const
auto
m
=
desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
MPerThread
;
const
auto
pad
=
math
::
integer_least_multiple
(
m
,
loop_step
)
-
m
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
m
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
most_continous_dim_stride
=
strides
[
dim
];
most_continous_dim
=
dim
;
}
}
return
most_continous_dim
;
}
static
auto
MakeDescriptor_M
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
)
template
<
typename
InOutDescriptor
>
static
auto
PadInputOutputDescriptor
(
const
InOutDescriptor
&
desc
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NumDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NumDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
const
auto
M0
=
desc
.
GetLength
(
I0
);
const
auto
M1
=
desc
.
GetLength
(
I1
);
const
auto
pad_M0
=
math
::
integer_divide_ceil
(
M0
,
M0PerThread
)
*
M0PerThread
-
M0
;
const
auto
pad_M1
=
math
::
integer_divide_ceil
(
M1
,
M1PerThread
)
*
M1PerThread
-
M1
;
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
NumDim
>
1
)
{
const
auto
desc_m
=
transform_tensor_descriptor
(
const
auto
padded_desc
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_
merge
_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
NumDim
>
{})
)
,
make_tuple
(
Sequence
<
0
>
{}));
make_tuple
(
make_
right_pad
_transform
(
M0
,
pad_M0
),
make_right_pad_transform
(
M1
,
pad_M1
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{}
,
Sequence
<
1
>
{}
));
return
PadDescriptor_M_1d
(
desc_m
,
gridSize
,
blockSize
);
}
else
return
PadDescriptor_M_1d
(
desc
,
gridSize
,
blockSize
);
return
padded_desc
;
}
template
<
index_t
TupleSize
>
static
auto
GenerateInOutGrid1dDescTuple
(
Number
<
TupleSize
>
)
static
auto
GenerateBatchDimsLenghtsTuple
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
index_t
M0_dim
,
const
index_t
M1_dim
)
{
return
generate_tuple
(
[
&
](
auto
)
{
if
constexpr
(
NumDim
>
1
)
// Generate batch dims, they will be merged to M0
// Add one more dim than needed in case that M0 is equal to M1
// If M0 is equal to M1, then will be one more batch dim
std
::
array
<
index_t
,
NumDim
-
1
>
batch_dims
;
index_t
batch_dim
=
0
;
for
(
index_t
i
=
0
;
i
<
NumDim
;
i
++
)
{
return
MakeDescriptor_M
({
1
,
1
},
{
1
,
1
},
1
,
1
);
if
(
i
!=
M0_dim
&&
i
!=
M1_dim
)
{
batch_dims
[
batch_dim
]
=
lengths
[
i
];
batch_dim
++
;
}
}
// Add dummy dim if M0_dim is not equal to M1_dim
if
(
M0_dim
!=
M1_dim
&&
NumDim
>=
2
)
batch_dims
[
NumDim
-
2
]
=
1
;
return
generate_tuple
([
&
](
auto
I
)
{
return
batch_dims
[
I
];
},
Number
<
NumDim
-
1
>
{});
}
else
static
auto
MakeDescriptor
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
in_strides
,
const
std
::
array
<
index_t
,
NumDim
>&
out_strides
,
const
std
::
array
<
index_t
,
NumDim
>&
desc_strides
)
{
return
MakeDescriptor_M
({
1
},
{
1
},
1
,
1
);
};
},
Number
<
TupleSize
>
{});
const
auto
M0_dim
=
GetLowestStrideDim
(
out_strides
);
const
auto
M1_dim
=
GetLowestStrideDim
(
in_strides
);
// If M0_dim is equal to M1_dim, then make M0_dim dummy
const
auto
M0
=
M0_dim
==
M1_dim
?
I1
:
lengths
[
M0_dim
];
const
auto
M1
=
lengths
[
M1_dim
];
const
auto
M0_stride
=
M0_dim
==
M1_dim
?
I1
:
desc_strides
[
M0_dim
];
const
auto
M1_stride
=
desc_strides
[
M1_dim
];
const
auto
batch_dims_lenghts
=
GenerateBatchDimsLenghtsTuple
(
lengths
,
M0_dim
,
M1_dim
);
const
auto
batch_dims_strides
=
GenerateBatchDimsLenghtsTuple
(
desc_strides
,
M0_dim
,
M1_dim
);
const
auto
desc
=
make_naive_tensor_descriptor
(
concat_tuple
(
batch_dims_lenghts
,
make_tuple
(
M0
),
make_tuple
(
M1
)),
concat_tuple
(
batch_dims_strides
,
make_tuple
(
M0_stride
),
make_tuple
(
M1_stride
)));
// Merged batch dims with M0
const
auto
transforms
=
make_tuple
(
make_merge_transform
(
concat_tuple
(
batch_dims_lenghts
,
make_tuple
(
M0
))),
make_pass_through_transform
(
M1
));
using
BatchElemsSequence
=
typename
arithmetic_sequence_gen
<
0
,
decltype
(
batch_dims_lenghts
)
::
Size
()
+
1
,
1
>::
type
;
const
auto
lower_dims
=
make_tuple
(
BatchElemsSequence
{},
Sequence
<
NumDim
>
{});
const
auto
upper_dims
=
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{});
// desc: (merged_dims + M0, M1)
auto
merged_desc
=
transform_tensor_descriptor
(
desc
,
transforms
,
lower_dims
,
upper_dims
);
return
PadInputOutputDescriptor
(
merged_desc
);
}
template
<
index_t
NumTensors
>
static
auto
GenerateInOutGridDescTuple
()
{
std
::
array
<
index_t
,
NumDim
>
ones
;
for
(
index_t
d
=
0
;
d
<
NumDim
;
d
++
)
{
ones
[
d
]
=
1
;
}
return
generate_tuple
([
&
](
auto
)
{
return
MakeDescriptor
(
ones
,
ones
,
ones
,
ones
);
},
Number
<
NumTensors
>
{});
};
using
InGrid
1d
DescTuple
=
decltype
(
GenerateInOutGrid
1d
DescTuple
(
Number
<
NumInput
>
{}
));
using
OutGrid
1d
DescTuple
=
decltype
(
GenerateInOutGrid
1d
DescTuple
(
Number
<
NumOutput
>
{}
));
using
InGridDescTuple
=
decltype
(
GenerateInOutGridDescTuple
<
NumInput
>
(
));
using
OutGridDescTuple
=
decltype
(
GenerateInOutGridDescTuple
<
NumOutput
>
(
));
using
GridwiseElementwise
=
GridwiseElementwise_1D
<
InGrid1dDescTuple
,
OutGrid1dDescTuple
,
using
Block2TileMap
=
BlockToCTileMap_M00_N0_M01Adapt
<
M0PerBlock
,
M1PerBlock
>
;
using
GridwiseElementwiseOp
=
GridwiseElementwise
<
InGridDescTuple
,
OutGridDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
Block2TileMap
,
ElementwiseOperation
,
MPerThread
,
BlockSize
,
M0PerBlock
,
M1PerBlock
,
M0PerThread
,
M1PerThread
,
ThreadClusterArrangeOrder
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
>
;
OutScalarPerVectorSeq
,
I1
,
I0
>
;
using
GridwiseElementwiseOpSameInOutVectorDim
=
GridwiseElementwise
<
InGridDescTuple
,
OutGridDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
Block2TileMap
,
ElementwiseOperation
,
BlockSize
,
M0PerBlock
,
M1PerBlock
,
M0PerThread
,
M1PerThread
,
ThreadClusterArrangeOrder
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
,
I1
,
I1
>
;
struct
Argument
:
public
BaseArgument
{
...
...
@@ -144,8 +222,7 @@ struct DeviceElementwiseImpl
:
lengths_
(
lengths
),
inStridesArray_
(
inStridesArray
),
outStridesArray_
(
outStridesArray
),
elementwise_op_
(
elementwise_op
),
blockSize_
(
256
)
elementwise_op_
(
elementwise_op
)
{
in_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
...
...
@@ -170,45 +247,67 @@ struct DeviceElementwiseImpl
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
gridSize
=
getAvailableComputeUnitCount
(
stream_config
);
auto
in_grid_1d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_M
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
);
auto
in_grid_desc_tuple
=
generate_tuple
(
[
&
](
auto
src_i
)
{
// Use Strides from first tensor to assert that M0 dim and
// M1 dim are the same for each tensor.
return
MakeDescriptor
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I0
],
arg
.
outStridesArray_
[
I0
],
arg
.
inStridesArray_
[
src_i
]);
},
Number
<
NumInput
>
{});
auto
out_grid_1d_desc_tuple
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_M
(
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
gridSize
,
arg
.
blockSize_
);
auto
out_grid_desc_tuple
=
generate_tuple
(
[
&
](
auto
dst_i
)
{
return
MakeDescriptor
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I0
],
arg
.
outStridesArray_
[
I0
],
arg
.
outStridesArray_
[
dst_i
]);
},
Number
<
NumOutput
>
{});
const
auto
kernel
=
kernel_elementwise_1d
<
GridwiseElementwise
,
InGrid1dDescTuple
,
OutGrid1dDescTuple
,
const
index_t
M0
=
in_grid_desc_tuple
.
At
(
I0
).
GetLength
(
Number
<
I0
>
{});
const
index_t
M1
=
in_grid_desc_tuple
.
At
(
I0
).
GetLength
(
Number
<
I1
>
{});
const
auto
block_2_tile_map
=
Block2TileMap
(
M0
,
M1
);
const
index_t
grid_size
=
block_2_tile_map
.
CalculateGridSize
(
M0
,
M1
);
const
bool
in_out_same_vector_dim
=
GetLowestStrideDim
(
arg
.
inStridesArray_
[
I0
])
==
GetLowestStrideDim
(
arg
.
outStridesArray_
[
I0
]);
const
auto
kernel
=
in_out_same_vector_dim
?
kernel_elementwise
<
GridwiseElementwiseOpSameInOutVectorDim
,
InGridDescTuple
,
OutGridDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
Block2TileMap
,
ElementwiseOperation
>
:
kernel_elementwise
<
GridwiseElementwiseOp
,
InGridDescTuple
,
OutGridDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
Block2TileMap
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid
S
ize
),
dim3
(
arg
.
b
lockSize
_
),
dim3
(
grid
_s
ize
),
dim3
(
B
lockSize
),
0
,
in_grid_
1d_
desc_tuple
,
out_grid_
1d_
desc_tuple
,
in_grid_desc_tuple
,
out_grid_desc_tuple
,
arg
.
in_dev_buffers_
,
arg
.
out_dev_buffers_
,
block_2_tile_map
,
arg
.
elementwise_op_
);
return
elapsed_time
;
}
...
...
@@ -223,35 +322,40 @@ struct DeviceElementwiseImpl
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
arg
.
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
const
index_t
M0_dim
=
GetLowestStrideDim
(
arg
.
inStridesArray_
[
I0
]);
const
index_t
M1_dim
=
GetLowestStrideDim
(
arg
.
outStridesArray_
[
I0
])
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
strides
,
index_t
scalarPerVector
)
{
if
(
strides
.
back
()
==
1
&&
lengths
.
back
()
%
scalarPerVector
==
0
)
index_t
scalarPerVector
,
index_t
M_dim
)
{
if
(
scalarPerVector
==
1
)
{
return
true
;
if
(
strides
.
back
()
!=
1
&&
scalarPerVector
==
1
)
}
if
(
strides
[
M_dim
]
==
1
&&
lengths
[
M_dim
]
%
scalarPerVector
==
0
)
{
return
true
;
}
return
false
;
};
bool
valid
=
true
;
bool
is_
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
)))
valid
=
false
;
static_assert
(
M0PerThread
%
InScalarPerVectorSeq
::
At
(
I
)
==
0
&&
M1PerThread
%
InScalarPerVectorSeq
::
At
(
I
)
==
0
);
is_valid
&=
IsScalarPerVectorValid
(
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
),
M0_dim
);
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
)))
valid
=
false
;
static_assert
(
M0PerThread
%
OutScalarPerVectorSeq
::
At
(
I
)
==
0
&&
M1PerThread
%
OutScalarPerVectorSeq
::
At
(
I
)
==
0
);
is_valid
&=
IsScalarPerVectorValid
(
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
),
M1_dim
);
});
return
valid
;
return
is_
valid
;
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
...
...
@@ -302,23 +406,18 @@ struct DeviceElementwiseImpl
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceElementwiseImpl<"
;
str
<<
"NumDim_"
<<
NumDim
<<
","
;
str
<<
"MPerThread_"
<<
MPerThread
<<
","
;
str
<<
"InScalarPerVector"
;
static_for
<
0
,
InScalarPerVectorSeq
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
str
<<
"_"
<<
InScalarPerVectorSeq
::
At
(
i
).
value
;
});
str
<<
","
;
str
<<
"OutScalarPerVector"
;
static_for
<
0
,
OutScalarPerVectorSeq
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
str
<<
"_"
<<
OutScalarPerVectorSeq
::
At
(
i
).
value
;
});
str
<<
">"
;
str
<<
"DeviceElementwiseImpl<"
;
str
<<
NumDim
<<
", "
;
str
<<
BlockSize
<<
", "
;
str
<<
M0PerBlock
<<
", "
;
str
<<
M1PerBlock
<<
", "
;
str
<<
M0PerThread
<<
", "
;
str
<<
M1PerThread
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
// namespace device
};
}
// namespace device
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp
View file @
5a9c4962
...
...
@@ -19,6 +19,10 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
/**
* \note This structure is deprecated (left for backwards compatibility). Please use
* DeviceElementwiseImpl from device_elementwise_dynamic_vector_dims_impl.hpp.
*/
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp
View file @
5a9c4962
...
...
@@ -169,78 +169,6 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
#if 0
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
static auto MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideAs)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, AsLayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideAs, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, AsLayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideAs));
}
}();
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
static auto MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideBs)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BsLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideBs));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BsLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideBs, I1));
}
}();
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
#endif
using
ComputeDataType
=
EDataType
;
// GridwiseGemm
...
...
@@ -384,7 +312,7 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
// B desc
bs_grid_desc_n_k_
(
i
)
=
GridwiseGemm
::
template
MakeBGridDescriptor_N_K
<
BLayout
,
GemmSpec
>(
K
Raw
,
N
Raw
,
StrideBs
[
i
]);
N
Raw
,
K
Raw
,
StrideBs
[
i
]);
});
// populate pointer, desc for Ds
...
...
@@ -424,15 +352,6 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
}
}
void
Print
()
const
{
// std::cout << "A[M, K]: " << as_grid_desc_m_k_ << std::endl;
// std::cout << "B[N, K]: " << bs_grid_desc_n_k_ << std::endl;
// static_for<0, NumDTensor, 1>{}(
//[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
// std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
typename
GridwiseGemm
::
AsGridPointer
p_as_grid_
;
...
...
@@ -577,9 +496,12 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
}
}
else
{
if
(
ABlockTransferSrcScalarPerVector
!=
1
)
{
all_valid
=
false
;
}
}
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
...
...
@@ -601,14 +523,16 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
}
}
else
{
if
(
BBlockTransferSrcScalarPerVector
!=
1
)
{
all_valid
=
false
;
}
}
});
// check vector load of Ds
// only support RowMajor for now
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
...
...
@@ -618,21 +542,21 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
}
});
if
(
!
all_valid
)
{
return
false
;
}
// check vector store of E
// only support RowMajor for now
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
all_valid
=
false
;
}
}
else
{
all_valid
=
false
;
}
if
(
!
all_valid
)
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
DeviceGemm_Xdl_CShuffleV3
:
public
DeviceGemmV2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_xdl_cshuffle_v3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
M
,
arg
.
N
,
arg
.
KBatch
);
float
ave_time
=
0
;
index_t
k_grain
=
arg
.
KBatch
*
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
arg
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
);
};
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
1
:
2
;
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
if
(
arg
.
KBatch
>
1
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
if
(
arg
.
KBatch
>
1
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
KBatch
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
KBatch
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
KBatch
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGemmXdlUniversal"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -137,34 +137,6 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
WeiElementwiseOperation
,
OutElementwiseOperation
>
{
// 1d
static
constexpr
bool
is_NWGK_GKXC_NWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NWGK
>
;
static
constexpr
bool
is_GNWK_GKXC_GNWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNWK
>
;
// 2d
static
constexpr
bool
is_NHWGK_GKYXC_NHWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NHWGK
>
;
static
constexpr
bool
is_GNHWK_GKYXC_GNHWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNHWK
>
;
// 3d
static
constexpr
bool
is_NDHWGK_GKZYXC_NDHWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
;
static
constexpr
bool
is_GNDHWK_GKZYXC_GNDHWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
;
using
DeviceOp
=
DeviceGroupedConvBwdWeight_Dl
;
using
ADataType
=
OutDataType
;
...
...
@@ -1065,9 +1037,15 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
if
(
arg
.
k_batch_
!=
1
)
return
false
;
if
constexpr
(
!
((
NDimSpatial
==
1
&&
(
is_NWGK_GKXC_NWGC
||
is_GNWK_GKXC_GNWC
))
||
(
NDimSpatial
==
2
&&
(
is_NHWGK_GKYXC_NHWGC
||
is_GNHWK_GKYXC_GNHWC
))
||
(
NDimSpatial
==
3
&&
(
is_NDHWGK_GKZYXC_NDHWGC
||
is_GNDHWK_GKZYXC_GNDHWC
))))
if
constexpr
(
!
((
NDimSpatial
==
1
&&
(
is_NWGK_GKXC_NWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNWK_GKXC_GNWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
||
(
NDimSpatial
==
2
&&
(
is_NHWGK_GKYXC_NHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNHWK_GKYXC_GNHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
||
(
NDimSpatial
==
3
&&
(
is_NDHWGK_GKZYXC_NDHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNDHWK_GKZYXC_GNDHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight_multiple_d.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
FloatA
,
typename
FloatB
,
typename
FloatC
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
AGridDesc_B_K0_M_K1
,
typename
BGridDesc_B_K0_N_K1
,
typename
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2CTileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_xdlops_bwd_weight
(
const
FloatA
*
__restrict__
p_a_grid
,
const
FloatB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
index_t
batch_count
,
const
AGridDesc_B_K0_M_K1
a_b_k0_m_k1_grid_desc
,
const
BGridDesc_B_K0_N_K1
b_b_k0_n_k1_grid_desc
,
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
)));
__shared__
FloatA
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatA
)];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_shared
,
a_b_k0_m_k1_grid_desc
,
b_b_k0_n_k1_grid_desc
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
a_element_op
,
b_element_op
,
c_element_op
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
a_b_k0_m_k1_grid_desc
;
ignore
=
b_b_k0_n_k1_grid_desc
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
ignore
=
batch_count
;
ignore
=
block_2_ctile_map
;
ignore
=
compute_ptr_offset_of_batch
;
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
0
);
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
DsLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
DsDataType
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ConvolutionBackwardWeightSpecialization
ConvBackwardWeightSpecialization
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXdl
,
ck
::
index_t
NPerXdl
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CBlockTransferScalarPerVector_NWaveNPerXdl
,
typename
ComputeTypeA
=
InDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle
:
public
DeviceGroupedConvBwdWeightMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
DsLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
DsDataType
,
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
,
ComputeTypeA
,
ComputeTypeB
>
{
using
DeviceOp
=
DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle
;
using
ADataType
=
OutDataType
;
using
BDataType
=
InDataType
;
using
EDataType
=
WeiDataType
;
static
constexpr
index_t
NumDTensor
=
DsLayout
::
Size
();
using
AElementwiseOperation
=
OutElementwiseOperation
;
using
BElementwiseOperation
=
InElementwiseOperation
;
using
CDEElementwiseOperation
=
WeiElementwiseOperation
;
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvBwdWeightToGemm
<
NDimSpatial
,
MPerBlock
,
NPerBlock
,
K1Number
,
K0PerBlock
,
ConvBackwardWeightSpecialization
>
{};
// Bytes per 32 lds bank: 32 * 4 bytes
static
constexpr
auto
BankLength
=
128
;
static
constexpr
auto
ElePerBank
=
BankLength
/
sizeof
(
ADataType
);
// M1 & M0
static
constexpr
auto
ABlockLdsM1PerBlock
=
ElePerBank
/
K1
;
static
constexpr
auto
ABlockLdsM0PerBlock
=
MPerBlock
/
ABlockLdsM1PerBlock
;
static
constexpr
auto
ABlockLdsM1Padding
=
4
;
// N1 & N0
static
constexpr
auto
BBlockLdsN1PerBlock
=
ElePerBank
/
K1
;
static
constexpr
auto
BBlockLdsN0PerBlock
=
NPerBlock
/
BBlockLdsN1PerBlock
;
static
constexpr
auto
BBlockLdsN1Padding
=
4
;
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
const
ck
::
index_t
dim
=
1
;
const
ck
::
index_t
batch
=
1
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
};
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
1
>(
dim
,
dim
,
dim
,
lengths
,
lengths
,
lengths
,
strides
,
strides
,
strides
,
params
,
params
,
params
,
params
,
batch
);
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
const
ck
::
index_t
dim
=
1
;
const
ck
::
index_t
batch
=
1
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
,
1
};
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
2
>(
dim
,
dim
,
dim
,
lengths
,
lengths
,
lengths
,
strides
,
strides
,
strides
,
params
,
params
,
params
,
params
,
batch
);
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
const
ck
::
index_t
dim
=
1
;
const
ck
::
index_t
batch
=
1
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
,
1
,
1
};
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
3
>(
dim
,
dim
,
dim
,
lengths
,
lengths
,
lengths
,
strides
,
strides
,
strides
,
params
,
params
,
params
,
params
,
batch
);
}
using
ABCGridDescs
=
decltype
(
GetABCGridDesc
<
NDimSpatial
>
());
using
AGridDesc_K0_M_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
using
BGridDesc_K0_N_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I1
])
>
;
using
CGridDesc_M_N
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I2
])
>
;
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
<
BlockSize
,
ADataType
,
BDataType
,
AccDataType
,
EDataType
,
InMemoryDataOperationEnum
::
AtomicAdd
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
AElementwiseOperation
,
BElementwiseOperation
,
element_wise
::
PassThrough
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXdl
,
NPerXdl
,
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
ABlockLdsM1PerBlock
,
ABlockLdsM0PerBlock
,
ABlockLdsM1Padding
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
BBlockLdsN1PerBlock
,
BBlockLdsN0PerBlock
,
BBlockLdsN1Padding
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CBlockTransferScalarPerVector_NWaveNPerXdl
,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
true
,
true
,
1
,
PipelineVersion
::
v1
,
ComputeTypeA
,
ComputeTypeB
>
;
static
constexpr
auto
MakeElementwiseInputSequence
()
{
return
generate_sequence_v2
(
[
&
](
auto
)
constexpr
{
return
Number
<
CBlockTransferScalarPerVector_NWaveNPerXdl
>
{};
},
Number
<
NumDTensor
+
1
>
{});
}
static
constexpr
auto
GetDsGridPointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
template
<
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
const
index_t
K
=
ds_g_k_c_xs_lengths
[
i
][
I1
];
const
index_t
C
=
ds_g_k_c_xs_lengths
[
i
][
I2
];
const
index_t
X
=
ds_g_k_c_xs_lengths
[
i
][
I3
];
const
index_t
CStride
=
ds_g_k_c_xs_strides
[
I2
];
const
index_t
KStride
=
ds_g_k_c_xs_strides
[
I1
];
const
auto
wei_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
K
,
X
*
C
),
make_tuple
(
KStride
,
CStride
));
if
constexpr
(
ConvBackwardWeightSpecialization
==
device
::
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
return
wei_grid_desc
;
}
else
{
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
;
const
auto
PadGemmM
=
MPerBlock
-
GemmM
%
MPerBlock
;
const
auto
PadGemmN
=
NPerBlock
-
GemmN
%
NPerBlock
;
return
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
},
Number
<
NumDTensor
>
{});
}
template
<
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
const
index_t
K
=
ds_g_k_c_xs_lengths
[
i
][
I1
];
const
index_t
C
=
ds_g_k_c_xs_lengths
[
i
][
I2
];
const
index_t
Y
=
ds_g_k_c_xs_lengths
[
i
][
I3
];
const
index_t
X
=
ds_g_k_c_xs_lengths
[
i
][
I4
];
const
auto
wei_grid_desc
=
conv_to_gemm_transformer
.
template
make_wei_grid_desc
<
NDim
>(
K
,
Y
,
X
,
C
,
ds_g_k_c_xs_strides
[
i
]);
if
constexpr
(
ConvBackwardWeightSpecialization
==
device
::
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
return
wei_grid_desc
;
}
else
{
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
*
Y
;
const
auto
PadGemmM
=
MPerBlock
-
GemmM
%
MPerBlock
;
const
auto
PadGemmN
=
NPerBlock
-
GemmN
%
NPerBlock
;
return
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
},
Number
<
NumDTensor
>
{});
}
template
<
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDim
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
const
index_t
K
=
ds_g_k_c_xs_lengths
[
i
][
I1
];
const
index_t
C
=
ds_g_k_c_xs_lengths
[
i
][
I2
];
const
index_t
Z
=
ds_g_k_c_xs_lengths
[
i
][
I3
];
const
index_t
Y
=
ds_g_k_c_xs_lengths
[
i
][
I4
];
const
index_t
X
=
ds_g_k_c_xs_lengths
[
i
][
I5
];
const
auto
wei_grid_desc
=
conv_to_gemm_transformer
.
template
make_wei_grid_desc
<
NDim
>(
K
,
Z
,
Y
,
X
,
C
,
ds_g_k_c_xs_strides
[
i
]);
if
constexpr
(
ConvBackwardWeightSpecialization
==
device
::
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
return
wei_grid_desc
;
}
else
{
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
*
Y
*
Z
;
const
auto
PadGemmM
=
MPerBlock
-
GemmM
%
MPerBlock
;
const
auto
PadGemmN
=
NPerBlock
-
GemmN
%
NPerBlock
;
return
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
},
Number
<
NumDTensor
>
{});
}
template
<
typename
ComputePtrOffsetOfBatch
>
static
void
InitElementwiseBatchStrides
(
const
ComputePtrOffsetOfBatch
&
compute_ptr_offset_of_batch_
,
std
::
array
<
index_t
,
NumDTensor
+
I1
>&
input_batch_strides
,
std
::
array
<
index_t
,
I1
>&
output_batch_strides
)
{
input_batch_strides
[
I0
]
=
compute_ptr_offset_of_batch_
.
BatchStrideC_
;
output_batch_strides
[
I0
]
=
compute_ptr_offset_of_batch_
.
BatchStrideC_
;
// input_batch_strides = {C, Ds...}
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
input_batch_strides
[
i
+
1
]
=
compute_ptr_offset_of_batch_
.
BatchStrideDs_
[
i
];
});
}
using
DsGridDesc_M_N
=
decltype
(
MakeDsGridDescriptor_M_N
<
NDimSpatial
>
({},
{}));
using
CDGridDesc_M_N
=
decltype
(
concat_tuple
(
Tuple
<
CGridDesc_M_N
>
{},
DsGridDesc_M_N
{}));
using
DsGridPointerTuple
=
decltype
(
GetDsGridPointerTuple
());
using
CDDataTypes
=
decltype
(
concat_tuple
(
Tuple
<
const
EDataType
*>
{},
DsGridPointerTuple
{}));
using
EGridDesc_M_N
=
CGridDesc_M_N
;
static
constexpr
index_t
ClusterLengthMPerBlock
=
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
1
);
static
constexpr
index_t
ClusterLengthNPerBlock
=
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
3
);
using
Block2TileMapElementwise
=
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
>
;
using
GridwiseElementwise
=
GridwiseElementwise
<
CDGridDesc_M_N
,
Tuple
<
EGridDesc_M_N
>
,
CDDataTypes
,
Tuple
<
EDataType
*>
,
Block2TileMapElementwise
,
CDEElementwiseOperation
,
BlockSize
,
MPerBlock
,
NPerBlock
,
MPerBlock
/
ClusterLengthMPerBlock
,
NPerBlock
/
ClusterLengthNPerBlock
,
Sequence
<
0
,
1
>
,
decltype
(
MakeElementwiseInputSequence
()),
Sequence
<
CBlockTransferScalarPerVector_NWaveNPerXdl
>
,
I1
,
I1
>
;
// Argument
using
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
decltype
(
GridwiseGemm
::
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
decltype
(
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
CGridDesc_M_N
{},
1
,
1
,
1
));
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
const
ck
::
index_t
M01
,
const
ck
::
index_t
N01
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
ck
::
index_t
split_k
)
:
p_a_grid_
{
p_out_grid
},
p_b_grid_
{
p_in_grid
},
p_ds_grid_
{},
p_e_grid_
{
p_wei_grid
},
a_grid_desc_kbatch_k0_m_k1_
{},
b_grid_desc_kbatch_k0_n_k1_
{},
ce_grid_desc_m_n_
{},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{},
compute_ptr_offset_of_batch_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
out_element_op
},
b_element_op_
{
in_element_op
},
cde_element_op_
{
wei_element_op
},
Conv_G_
{
b_g_n_c_wis_lengths
[
0
]},
Conv_N_
{
b_g_n_c_wis_lengths
[
1
]},
Conv_K_
{
e_g_k_c_xs_lengths
[
1
]},
Conv_C_
{
b_g_n_c_wis_lengths
[
2
]},
input_spatial_lengths_
{},
filter_spatial_lengths_
{},
output_spatial_lengths_
{},
conv_filter_strides_
{
conv_filter_strides
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
},
k_batch_
{
split_k
}
{
constexpr
index_t
spatial_offset
=
3
;
std
::
copy
(
begin
(
b_g_n_c_wis_lengths
)
+
spatial_offset
,
end
(
b_g_n_c_wis_lengths
),
begin
(
input_spatial_lengths_
));
std
::
copy
(
begin
(
e_g_k_c_xs_lengths
)
+
spatial_offset
,
end
(
e_g_k_c_xs_lengths
),
begin
(
filter_spatial_lengths_
));
std
::
copy
(
begin
(
a_g_n_k_wos_lengths
)
+
spatial_offset
,
end
(
a_g_n_k_wos_lengths
),
begin
(
output_spatial_lengths_
));
const
auto
descs
=
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
NDimSpatial
>(
Conv_N_
,
Conv_K_
,
Conv_C_
,
input_spatial_lengths_
,
filter_spatial_lengths_
,
output_spatial_lengths_
,
b_g_n_c_wis_strides
,
e_g_k_c_xs_strides
,
a_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
k_batch_
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
static_assert
(
is_same_v
<
DLayout
,
WeiLayout
>
,
"Not supported D data layout"
);
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_k_c_xs_strides
[
i
][
0
];
});
a_grid_desc_kbatch_k0_m_k1_
=
descs
[
I0
];
b_grid_desc_kbatch_k0_n_k1_
=
descs
[
I1
];
ce_grid_desc_m_n_
=
descs
[
I2
];
ds_grid_descs_tuple_
=
MakeDsGridDescriptor_M_N
<
NDimSpatial
>
(
ds_g_k_c_xs_lengths
,
ds_g_k_c_xs_strides
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
ce_grid_desc_m_n_
,
M01
,
N01
,
k_batch_
);
elementwise_block_2_ctile_map_
=
Block2TileMapElementwise
{
ce_grid_desc_m_n_
.
GetLength
(
I0
),
ce_grid_desc_m_n_
.
GetLength
(
I1
)};
// A/B/C Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideC_
=
Conv_K_
*
Conv_C_
*
std
::
accumulate
(
begin
(
filter_spatial_lengths_
),
end
(
filter_spatial_lengths_
),
index_t
{
1
},
std
::
multiplies
<>
{});
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_kbatch_k0_m_k1_
,
b_grid_desc_kbatch_k0_n_k1_
,
ce_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
(
ce_grid_desc_m_n_
);
}
}
std
::
size_t
GetWorkspaceSizeBytes
()
const
{
return
sizeof
(
EDataType
)
*
ce_grid_desc_m_n_
.
GetElementSpaceSize
()
*
Conv_G_
;
}
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
DsGridPointerTuple
p_ds_grid_
;
EDataType
*
p_e_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_kbatch_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_kbatch_k0_n_k1_
;
CGridDesc_M_N
ce_grid_desc_m_n_
;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
DsGridDesc_M_N
ds_grid_descs_tuple_
;
Block2CTileMap
block_2_ctile_map_
;
Block2TileMapElementwise
elementwise_block_2_ctile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
NumDTensor
>
compute_ptr_offset_of_batch_
;
index_t
M01_
;
index_t
N01_
;
OutElementwiseOperation
a_element_op_
;
InElementwiseOperation
b_element_op_
;
WeiElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
const
index_t
Conv_G_
;
const
index_t
Conv_N_
;
const
index_t
Conv_K_
;
const
index_t
Conv_C_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths_
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides_
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads_
;
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads_
;
const
index_t
k_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
void
ShowInfo
(
const
Argument
&
arg
)
{
std
::
cout
<<
"arg.a_grid_desc_kbatch_k0_m_k1_{"
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_kbatch_k0_n_k1_{"
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.ce_grid_desc_m_n_{"
<<
arg
.
ce_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
ce_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
ce_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting"
);
}
const
auto
K0
=
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I1
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
auto
launch_gemm_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
EDataType
*
p_c_grid
=
type_convert
<
EDataType
*>
(
arg
.
p_workspace_
);
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
ce_grid_desc_m_n_
)
*
arg
.
Conv_G_
;
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
auto
preprocess
=
[
&
]()
{
hip_check_error
(
hipMemsetAsync
(
p_c_grid
,
0
,
arg
.
GetWorkspaceSizeBytes
(),
stream_config
.
stream_id_
));
};
const
auto
kernel
=
kernel_batched_gemm_xdlops_bwd_weight
<
GridwiseGemm
,
ADataType
,
BDataType
,
EDataType
,
OutElementwiseOperation
,
InElementwiseOperation
,
element_wise
::
PassThrough
,
remove_reference_t
<
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceOp
::
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
>
,
remove_reference_t
<
DeviceOp
::
Block2CTileMap
>
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
NumDTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel_with_preprocess
(
stream_config
,
preprocess
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
p_c_grid
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
element_wise
::
PassThrough
{},
arg
.
Conv_G_
,
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_ctile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
auto
launch_elementwise_kernel
=
[
&
]()
{
const
EDataType
*
p_c_grid
=
type_convert
<
const
EDataType
*>
(
arg
.
p_workspace_
);
const
index_t
grid_size
=
arg
.
elementwise_block_2_ctile_map_
.
CalculateGridSize
(
arg
.
ce_grid_desc_m_n_
)
*
arg
.
Conv_G_
;
std
::
array
<
index_t
,
NumDTensor
+
I1
>
input_batch_strides
;
std
::
array
<
index_t
,
I1
>
output_batch_strides
;
InitElementwiseBatchStrides
(
arg
.
compute_ptr_offset_of_batch_
,
input_batch_strides
,
output_batch_strides
);
const
auto
kernel
=
kernel_batched_elementwise
<
GridwiseElementwise
,
CDGridDesc_M_N
,
ck
::
Tuple
<
EGridDesc_M_N
>
,
CDDataTypes
,
ck
::
Tuple
<
EDataType
*>
,
Block2TileMapElementwise
,
CDEElementwiseOperation
,
NumDTensor
+
I1
,
I1
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
concat_tuple
(
make_tuple
(
arg
.
ce_grid_desc_m_n_
),
arg
.
ds_grid_descs_tuple_
),
make_tuple
(
arg
.
ce_grid_desc_m_n_
),
concat_tuple
(
make_tuple
(
p_c_grid
),
arg
.
p_ds_grid_
),
arg
.
p_e_grid_
,
arg
.
elementwise_block_2_ctile_map_
,
arg
.
cde_element_op_
,
arg
.
Conv_G_
,
input_batch_strides
,
output_batch_strides
);
};
float
avg_time
=
0
;
if
(
has_main_k0_block_loop
)
{
avg_time
=
launch_gemm_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
avg_time
=
launch_gemm_kernel
(
integral_constant
<
bool
,
false
>
{});
}
avg_time
+=
launch_elementwise_kernel
();
return
avg_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
constexpr
(
NDimSpatial
==
1
)
{
if
constexpr
(
!
is_GNWK_GKXC_GNWC
<
InLayout
,
WeiLayout
,
OutLayout
>
())
{
return
false
;
}
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
if
constexpr
(
!
(
is_NHWGK_GKYXC_NHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNHWK_GKYXC_GNHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
{
return
false
;
}
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
if
constexpr
(
!
(
is_NDHWGK_GKZYXC_NDHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNDHWK_GKZYXC_GNDHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
{
return
false
;
}
}
else
{
return
false
;
}
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 pad = 0 conv
for
(
int
i
=
0
;
i
<
NDimSpatial
;
i
++
)
{
if
(
!
(
arg
.
filter_spatial_lengths_
[
i
]
==
1
&&
arg
.
conv_filter_strides_
[
i
]
==
1
&&
arg
.
input_left_pads_
[
i
]
==
0
&&
arg
.
input_right_pads_
[
i
]
==
0
))
{
return
false
;
}
}
}
// vector load A/B matrix from global memory
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
BBlockTransferSrcVectorDim
==
2
&&
arg
.
Conv_K_
%
ABlockTransferSrcScalarPerVector
==
0
&&
arg
.
Conv_C_
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
// vector store C matrix into global memory
if
(
!
(
arg
.
Conv_C_
%
CBlockTransferScalarPerVector_NWaveNPerXdl
==
0
))
{
return
false
;
}
// Gridwise GEMM size
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
ce_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
ck
::
index_t
split_k
)
{
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
p_ds
,
b_g_n_c_wis_lengths
,
// input
b_g_n_c_wis_strides
,
e_g_k_c_xs_lengths
,
// weight
e_g_k_c_xs_strides
,
a_g_n_k_wos_lengths
,
// output
a_g_n_k_wos_strides
,
ds_g_k_c_xs_lengths
,
ds_g_k_c_xs_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_grid
,
void
*
p_wei_grid
,
const
void
*
p_out_grid
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_k_c_xs_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
ck
::
index_t
split_k
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
const
OutDataType
*>
(
p_out_grid
),
p_ds
,
b_g_n_c_wis_lengths
,
// input
b_g_n_c_wis_strides
,
e_g_k_c_xs_lengths
,
// weight
e_g_k_c_xs_strides
,
a_g_n_k_wos_lengths
,
// output
a_g_n_k_wos_strides
,
ds_g_k_c_xs_lengths
,
ds_g_k_c_xs_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
getConvBackwardWeightSpecializationString
(
ConvBackwardWeightSpecialization
)
<<
", "
<<
K1
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
ABlockTransferDstScalarPerVector_K1
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferDstScalarPerVector_K1
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
CBlockTransferScalarPerVector_NWaveNPerXdl
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
arg
)
{
return
arg
->
GetWorkspaceSizeBytes
();
}
else
throw
std
::
runtime_error
(
"The argument pointer is not an object of "
"DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle::Argument structure!"
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
if
(
p_arg_
)
{
p_arg_
->
p_workspace_
=
p_workspace
;
}
else
throw
std
::
runtime_error
(
"The argument pointer is not an object of "
"DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle::Argument structure!"
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -90,16 +90,6 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
// 3d
static
constexpr
bool
is_NDHWGK_GKZYXC_NDHWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
;
static
constexpr
bool
is_GNDHWK_GKZYXC_GNDHWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
...
...
@@ -218,8 +208,8 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
Z
*
X
*
Y
;
const
auto
PadGemmM
=
(
MPerBlock
-
GemmM
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadGemmN
=
(
NPerBlock
-
GemmN
%
NPerBlock
)
%
NPerBlock
;
const
auto
PadGemmM
=
MPerBlock
-
GemmM
%
MPerBlock
;
const
auto
PadGemmN
=
NPerBlock
-
GemmN
%
NPerBlock
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
)
*
K0PerBlock
;
...
...
@@ -720,7 +710,8 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
return
false
;
}
if
constexpr
(
!
(
is_NDHWGK_GKZYXC_NDHWGC
||
is_GNDHWK_GKZYXC_GNDHWC
))
if
constexpr
(
!
(
is_NDHWGK_GKZYXC_NDHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNDHWK_GKZYXC_GNDHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -12,6 +12,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
...
...
@@ -169,30 +170,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
// 1d
static
constexpr
bool
is_GNWK_GKXC_GNWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNWK
>
;
// 2d
static
constexpr
bool
is_NHWGK_GKYXC_NHWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NHWGK
>
;
static
constexpr
bool
is_GNHWK_GKYXC_GNHWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNHWK
>
;
// 3d
static
constexpr
bool
is_NDHWGK_GKZYXC_NDHWGC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
;
static
constexpr
bool
is_GNDHWK_GKZYXC_GNDHWC
=
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
...
...
@@ -201,7 +178,14 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
GemmK1Number
=
K1Number
;
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvBwdWeightToGemm
<
NDimSpatial
,
MPerBlock
,
NPerBlock
,
K1Number
,
K0PerBlock
,
ConvBackwardWeightSpecialization
>
{};
// Bytes per 32 lds bank: 32 * 4 bytes
static
constexpr
auto
BankLength
=
128
;
...
...
@@ -217,690 +201,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
static
constexpr
auto
BBlockLdsN0PerBlock
=
NPerBlock
/
BBlockLdsN1PerBlock
;
static
constexpr
auto
BBlockLdsN1Padding
=
4
;
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_out_grid_desc
(
const
ck
::
index_t
N
,
const
ck
::
index_t
Ho
,
const
ck
::
index_t
Wo
,
const
ck
::
index_t
K
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
output_strides
)
{
const
index_t
WoStride
=
output_strides
[
4
];
const
auto
KStride
=
Number
<
1
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Ho
*
Wo
,
K
),
make_tuple
(
WoStride
,
KStride
));
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_in_grid_desc
(
const
ck
::
index_t
N
,
const
ck
::
index_t
Hi
,
const
ck
::
index_t
Wi
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
input_strides
)
{
const
index_t
NStride
=
input_strides
[
1
];
const
index_t
HiStride
=
input_strides
[
3
];
const
index_t
WiStride
=
input_strides
[
4
];
const
auto
CStride
=
input_strides
[
2
];
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Hi
*
Wi
,
C
),
make_tuple
(
WiStride
,
CStride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
}
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_wei_grid_desc
(
const
ck
::
index_t
K
,
const
ck
::
index_t
Y
,
const
ck
::
index_t
X
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
weights_strides
)
{
const
auto
CStride
=
Number
<
1
>
{};
const
auto
KStride
=
weights_strides
[
1
];
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
Y
*
X
*
C
),
make_tuple
(
KStride
,
CStride
));
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_out_grid_desc
(
const
ck
::
index_t
N
,
const
ck
::
index_t
Do
,
const
ck
::
index_t
Ho
,
const
ck
::
index_t
Wo
,
const
ck
::
index_t
K
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
output_strides
)
{
const
index_t
WoStride
=
output_strides
[
5
];
const
auto
KStride
=
Number
<
1
>
{};
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
K
),
make_tuple
(
WoStride
,
KStride
));
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_in_grid_desc
(
const
ck
::
index_t
N
,
const
ck
::
index_t
Di
,
const
ck
::
index_t
Hi
,
const
ck
::
index_t
Wi
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
input_strides
)
{
const
index_t
NStride
=
input_strides
[
1
];
const
index_t
DiStride
=
input_strides
[
3
];
const
index_t
HiStride
=
input_strides
[
4
];
const
index_t
WiStride
=
input_strides
[
5
];
const
auto
CStride
=
input_strides
[
2
];
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Di
*
Hi
*
Wi
,
C
),
make_tuple
(
WiStride
,
CStride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
DiStride
,
HiStride
,
WiStride
,
CStride
));
}
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
constexpr
static
auto
make_wei_grid_desc
(
const
ck
::
index_t
K
,
const
ck
::
index_t
Z
,
const
ck
::
index_t
Y
,
const
ck
::
index_t
X
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
weights_strides
)
{
const
auto
CStride
=
Number
<
1
>
{};
const
auto
KStride
=
weights_strides
[
1
];
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
Z
*
Y
*
X
*
C
),
make_tuple
(
KStride
,
CStride
));
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
/* input_strides */
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
/* weights_strides */
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
/* output_strides */
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
const
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Wi
=
input_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
const
index_t
GemmKTotal
=
N
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
;
const
auto
PadGemmM
=
(
MPerBlock
-
GemmM
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadGemmN
=
(
NPerBlock
-
GemmN
%
NPerBlock
)
%
NPerBlock
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wi
,
C
));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
else
{
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wo
,
K
));
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
X
*
C
));
// Padd
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmN
,
PadGemmN
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
wei_gemmm_gemmn_pad_grid_desc
=
transform_tensor_descriptor
(
wei_gemmm_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
,
wei_gemmm_gemmn_pad_grid_desc
);
}
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
input_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
weights_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
output_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
const
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
Y
=
filter_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
*
Y
;
const
auto
PadGemmM
=
(
MPerBlock
-
GemmM
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadGemmN
=
(
NPerBlock
-
GemmN
%
NPerBlock
)
%
NPerBlock
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
const
auto
out_grid_desc
=
make_out_grid_desc
<
NDim
>
(
N
,
Ho
,
Wo
,
K
,
output_strides
);
const
auto
in_grid_desc
=
make_in_grid_desc
<
NDim
>
(
N
,
Hi
,
Wi
,
C
,
input_strides
);
const
auto
wei_grid_desc
=
make_wei_grid_desc
<
NDim
>
(
K
,
Y
,
X
,
C
,
weights_strides
);
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_grid_desc
);
}
else
{
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// Padd
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmN
,
PadGemmN
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
wei_gemmm_gemmn_pad_grid_desc
=
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
,
wei_gemmm_gemmn_pad_grid_desc
);
}
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
input_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
weights_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>&
output_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_right_pads
,
const
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Di
=
input_spatial_lengths
[
0
];
const
index_t
Hi
=
input_spatial_lengths
[
1
];
const
index_t
Wi
=
input_spatial_lengths
[
2
];
const
index_t
Do
=
output_spatial_lengths
[
0
];
const
index_t
Ho
=
output_spatial_lengths
[
1
];
const
index_t
Wo
=
output_spatial_lengths
[
2
];
const
index_t
Z
=
filter_spatial_lengths
[
0
];
const
index_t
Y
=
filter_spatial_lengths
[
1
];
const
index_t
X
=
filter_spatial_lengths
[
2
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
const
index_t
GemmKTotal
=
N
*
Do
*
Ho
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
Z
*
X
*
Y
;
const
auto
PadGemmM
=
(
MPerBlock
-
GemmM
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadGemmN
=
(
NPerBlock
-
GemmN
%
NPerBlock
)
%
NPerBlock
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
const
auto
out_grid_desc
=
make_out_grid_desc
<
NDim
>
(
N
,
Do
,
Ho
,
Wo
,
K
,
output_strides
);
const
auto
in_grid_desc
=
make_in_grid_desc
<
NDim
>
(
N
,
Di
,
Hi
,
Wi
,
C
,
input_strides
);
const
auto
wei_grid_desc
=
make_wei_grid_desc
<
NDim
>
(
K
,
Z
,
Y
,
X
,
C
,
weights_strides
);
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_grid_desc
);
}
else
{
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_dip_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_dip_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
,
7
>
{},
Sequence
<
0
,
2
,
4
,
6
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// Padd
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
=
transform_tensor_descriptor
(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmKBatch
),
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmN
,
PadGemmN
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
wei_gemmm_gemmn_pad_grid_desc
=
transform_tensor_descriptor
(
wei_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmM
,
PadGemmM
),
make_right_pad_transform
(
GemmN
,
PadGemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc
,
wei_gemmm_gemmn_pad_grid_desc
);
}
}
// function end
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
...
...
@@ -909,7 +209,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
};
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
1
>
(
dim
,
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
1
>(
dim
,
dim
,
dim
,
lengths
,
...
...
@@ -933,7 +234,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
,
1
};
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
2
>
(
dim
,
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
2
>(
dim
,
dim
,
dim
,
lengths
,
...
...
@@ -957,7 +259,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
lengths
{
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
strides
{
1
,
1
,
1
,
1
,
1
,
1
};
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
params
{
1
,
1
,
1
};
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
3
>
(
dim
,
return
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
3
>(
dim
,
dim
,
dim
,
lengths
,
...
...
@@ -973,50 +276,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
batch
);
}
// type convert descs
template
<
typename
Desc_M0
>
static
auto
PadDescriptor_M0_1d
(
Desc_M0
desc_m0
,
index_t
gridSize
,
index_t
blockSize
)
{
const
auto
m0
=
desc_m0
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
4
;
const
auto
pad
=
math
::
integer_least_multiple
(
m0
,
loop_step
)
-
m0
;
const
auto
desc_m0_pad
=
transform_tensor_descriptor
(
desc_m0
,
make_tuple
(
make_right_pad_transform
(
m0
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m0_pad
;
}
template
<
index_t
Dim
>
static
auto
MakeDescriptor_M0
(
const
std
::
array
<
index_t
,
Dim
>&
shape
,
const
std
::
array
<
index_t
,
Dim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
shape
[
I
];
},
Number
<
Dim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
Dim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
Dim
>
1
)
{
const
auto
desc_m0
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
Dim
>
{})),
make_tuple
(
Sequence
<
0
>
{}));
return
PadDescriptor_M0_1d
(
desc_m0
,
gridSize
,
blockSize
);
}
else
return
PadDescriptor_M0_1d
(
desc
,
gridSize
,
blockSize
);
}
using
GridDesc_M0
=
decltype
(
MakeDescriptor_M0
<
1
>
({
1
},
{
1
},
1
,
1
));
using
ABCGridDescs
=
decltype
(
GetABCGridDesc
<
NDimSpatial
>
());
using
AGridDesc_K0_M_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
...
...
@@ -1089,12 +348,12 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
Argument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
...
...
@@ -1119,10 +378,10 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
a_element_op_
{
out_element_op
},
b_element_op_
{
in_element_op
},
c_element_op_
{
wei_element_op
},
Conv_G_
{
a
_g_n_c_wis_lengths
[
0
]},
Conv_N_
{
a
_g_n_c_wis_lengths
[
1
]},
Conv_K_
{
b
_g_k_c_xs_lengths
[
1
]},
Conv_C_
{
a
_g_n_c_wis_lengths
[
2
]},
Conv_G_
{
b
_g_n_c_wis_lengths
[
0
]},
Conv_N_
{
b
_g_n_c_wis_lengths
[
1
]},
Conv_K_
{
e
_g_k_c_xs_lengths
[
1
]},
Conv_C_
{
b
_g_n_c_wis_lengths
[
2
]},
input_spatial_lengths_
{},
filter_spatial_lengths_
{},
output_spatial_lengths_
{},
...
...
@@ -1132,27 +391,28 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
k_batch_
{
split_k
}
{
constexpr
index_t
spatial_offset
=
3
;
std
::
copy
(
begin
(
a
_g_n_c_wis_lengths
)
+
spatial_offset
,
end
(
a
_g_n_c_wis_lengths
),
std
::
copy
(
begin
(
b
_g_n_c_wis_lengths
)
+
spatial_offset
,
end
(
b
_g_n_c_wis_lengths
),
begin
(
input_spatial_lengths_
));
std
::
copy
(
begin
(
b
_g_k_c_xs_lengths
)
+
spatial_offset
,
end
(
b
_g_k_c_xs_lengths
),
std
::
copy
(
begin
(
e
_g_k_c_xs_lengths
)
+
spatial_offset
,
end
(
e
_g_k_c_xs_lengths
),
begin
(
filter_spatial_lengths_
));
std
::
copy
(
begin
(
e
_g_n_k_wos_lengths
)
+
spatial_offset
,
end
(
e
_g_n_k_wos_lengths
),
std
::
copy
(
begin
(
a
_g_n_k_wos_lengths
)
+
spatial_offset
,
end
(
a
_g_n_k_wos_lengths
),
begin
(
output_spatial_lengths_
));
const
auto
descs
=
DeviceOp
::
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
NDimSpatial
>
(
conv_to_gemm_transformer
.
template
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
NDimSpatial
>(
Conv_N_
,
Conv_K_
,
Conv_C_
,
input_spatial_lengths_
,
filter_spatial_lengths_
,
output_spatial_lengths_
,
a
_g_n_c_wis_strides
,
b
_g_k_c_xs_strides
,
e
_g_n_k_wos_strides
,
b
_g_n_c_wis_strides
,
e
_g_k_c_xs_strides
,
a
_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -1167,8 +427,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
c_grid_desc_m_n_
,
M01
,
N01
,
k_batch_
);
// A/B/C Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
e
_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
a
_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a
_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b
_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideC_
=
Conv_K_
*
Conv_C_
*
std
::
accumulate
(
begin
(
filter_spatial_lengths_
),
...
...
@@ -1329,21 +589,23 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
}
if
constexpr
(
NDimSpatial
==
1
)
{
if
constexpr
(
!
is_GNWK_GKXC_GNWC
)
if
constexpr
(
!
is_GNWK_GKXC_GNWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
)
{
return
false
;
}
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
if
constexpr
(
!
(
is_NHWGK_GKYXC_NHWGC
||
is_GNHWK_GKYXC_GNHWC
))
if
constexpr
(
!
(
is_NHWGK_GKYXC_NHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNHWK_GKYXC_GNHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
{
return
false
;
}
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
if
constexpr
(
!
(
is_NDHWGK_GKZYXC_NDHWGC
||
is_GNDHWK_GKZYXC_GNDHWC
))
if
constexpr
(
!
(
is_NDHWGK_GKZYXC_NDHWGC
<
InLayout
,
WeiLayout
,
OutLayout
>
()
||
is_GNDHWK_GKZYXC_GNDHWC
<
InLayout
,
WeiLayout
,
OutLayout
>
()))
{
return
false
;
}
...
...
@@ -1397,12 +659,12 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
MakeArgument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
...
...
@@ -1415,12 +677,12 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
a
_g_n_c_wis_lengths
,
// input
a
_g_n_c_wis_strides
,
b
_g_k_c_xs_lengths
,
// weight
b
_g_k_c_xs_strides
,
e
_g_n_k_wos_lengths
,
// output
e
_g_n_k_wos_strides
,
b
_g_n_c_wis_lengths
,
// input
b
_g_n_c_wis_strides
,
e
_g_k_c_xs_lengths
,
// weight
e
_g_k_c_xs_strides
,
a
_g_n_k_wos_lengths
,
// output
a
_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -1439,12 +701,12 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
MakeArgumentPointer
(
const
void
*
p_in_grid
,
void
*
p_wei_grid
,
const
void
*
p_out_grid
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_lengths
,
// input
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b
_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e
_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_lengths
,
// output
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a
_g_n_k_wos_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NDimSpatial
>&
input_left_pads
,
...
...
@@ -1457,12 +719,12 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
const
OutDataType
*>
(
p_out_grid
),
a
_g_n_c_wis_lengths
,
// input
a
_g_n_c_wis_strides
,
b
_g_k_c_xs_lengths
,
// weight
b
_g_k_c_xs_strides
,
e
_g_n_k_wos_lengths
,
// output
e
_g_n_k_wos_strides
,
b
_g_n_c_wis_lengths
,
// input
b
_g_n_c_wis_strides
,
e
_g_k_c_xs_lengths
,
// weight
e
_g_k_c_xs_strides
,
a
_g_n_k_wos_lengths
,
// output
a
_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -254,12 +254,13 @@ template <index_t NDimSpatial,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
typename
ComputeDataType
=
typename
A
ComputeDataType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
()),
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename
BComputeDataType
=
AComputeDataType
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()
>
struct
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
:
public
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
...
...
@@ -274,7 +275,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
ComputeDataType
>
AComputeDataType
,
BComputeDataType
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
;
...
...
@@ -386,7 +388,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
using
GemmBDataType
=
std
::
conditional_t
<!
isMultiB
&&
isMultiA
,
Tuple
<
BDataType
>
,
BDataType
>
;
#define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType,
\
GemmADataType, GemmBDataType,
A
ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
InMemoryDataOperationEnum::Set, NumGemmKPrefetchStage, BlockSize, MPerBlock, NPerBlock, \
KPerBlock, AK1, BK1, MPerXDL, NPerXDL, MXdlPerWave, NXdlPerWave, \
...
...
@@ -399,7 +401,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
BBlockTransferDstScalarPerVector_BK1, false, BBlockLdsExtraN, \
CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched, PipelineVersion::v1, \
BComputeDataType
// Use appropriate gridwise gemm
using
GridwiseGemm
=
std
::
conditional_t
<
isMultiA
||
isMultiB
,
...
...
@@ -811,8 +814,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// check device
if
(
get_device_name
()
==
"gfx908"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
// FIXME: re-enable fp64 when SWDEV-335738 is fixed
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -75,12 +75,13 @@ template <index_t NDimSpatial,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
typename
ComputeDataType
=
typename
A
ComputeDataType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
()),
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename
BComputeDataType
=
AComputeDataType
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()
>
using
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
=
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
...
...
@@ -128,7 +129,8 @@ using DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle = DeviceGroupedConvFwdMultipl
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
ComputeDataType
,
AComputeDataType
,
BComputeDataType
,
LoopSched
>
;
}
// namespace device
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// 1d
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_NWGK_GKXC_NWGC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NWGK
>
;
}
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_GNWK_GKXC_GNWC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNWK
>
;
}
// 2d
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_NHWGK_GKYXC_NHWGC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NHWGK
>
;
}
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_GNHWK_GKYXC_GNHWC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNHWK
>
;
}
// 3d
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_NDHWGK_GKZYXC_NDHWGC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
NDHWGK
>
;
}
template
<
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
constexpr
bool
is_GNDHWK_GKZYXC_GNDHWC
()
{
return
is_same_v
<
InLayout
,
tensor_layout
::
convolution
::
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
tensor_layout
::
convolution
::
GKZYXC
>
&&
is_same_v
<
OutLayout
,
tensor_layout
::
convolution
::
GNDHWK
>
;
}
template
<
index_t
NumATensor
=
1
,
index_t
NumBTensor
=
1
,
index_t
NumDTensor
=
0
,
typename
=
void
>
struct
ComputePtrOffsetOfStridedBatch
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_fixed_nk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
KBatch
=
1
;
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
*
N
*
K
==
0
)
return
;
const
auto
StrideAs
=
gemm_desc_ptr
[
group_id
].
StrideAs
;
const
auto
StrideBs
=
gemm_desc_ptr
[
group_id
].
StrideBs
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
KBatch
};
const
auto
local_grid_size
=
local_b2e_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
constexpr
auto
NumATensor
=
GridwiseGemm
::
AsGridPointer
::
Size
();
constexpr
auto
NumBTensor
=
GridwiseGemm
::
BsGridPointer
::
Size
();
constexpr
auto
NumDTensor
=
GridwiseGemm
::
DsGridPointer
::
Size
();
typename
GridwiseGemm
::
AsGridPointer
p_as_grid_
;
typename
GridwiseGemm
::
BsGridPointer
p_bs_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
using
ADataType
=
remove_cvref_t
<
decltype
(
p_as_grid_
(
i
))
>
;
p_as_grid_
(
i
)
=
static_cast
<
ADataType
>
(
gemm_desc_ptr
[
group_id
].
p_as_grid
[
i
]);
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
using
BDataType
=
remove_cvref_t
<
decltype
(
p_bs_grid_
(
i
))
>
;
p_bs_grid_
(
i
)
=
static_cast
<
BDataType
>
(
gemm_desc_ptr
[
group_id
].
p_bs_grid
[
i
]);
});
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
decltype
(
p_ds_grid_
(
i
))
>
;
p_ds_grid_
(
i
)
=
static_cast
<
DDataType
>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
index_t
id_off
=
0
;
index_t
id_local
=
get_block_1d_id
()
-
BlockStart
;
while
(
id_local
<
local_grid_size
)
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
id_off
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
GemmSpec
,
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
>(
p_as_grid_
,
p_bs_grid_
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
M
,
N
,
K
,
StrideAs
,
StrideBs
,
StrideDs
,
StrideE
,
block_2_etile_map
);
id_off
+=
grid_size_grp
;
id_local
+=
grid_size_grp
;
}
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
ignore
=
grid_size_grp
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
#endif
}
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
typename
ComputeType
=
EDataType
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
:
public
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
;
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleABD_xdl_cshuffle
<
AsDataType
,
BsDataType
,
ComputeType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
id_off
=
0
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
id_off_
=
id_off
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
+
id_off_
));
return
make_tuple
(
// idx_bot[Number<0>{}],
idx_bot
[
Number
<
1
>
{}],
idx_bot
[
Number
<
2
>
{}]);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
KBatch
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
KBatch_
(
KBatch
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
KBatch
,
index_t
M01
=
8
)
:
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
KBatch
,
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
*
KBatch_
;
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KBatch_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_ksplit
,
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t
M_
;
index_t
N_
;
index_t
KBatch_
;
index_t
M01_
;
};
using
Block2ETileMap
=
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
std
::
array
<
const
void
*
,
NumATensor
>
as_ptr_
;
std
::
array
<
const
void
*
,
NumBTensor
>
bs_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
std
::
array
<
index_t
,
NumATensor
>
StrideAs_
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
void
UpdateKBatch
(
index_t
)
{}
Argument
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{},
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{},
CDEElementwiseOperation
c_element_op
=
CDEElementwiseOperation
{})
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
k_batch_
=
1
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
sum_of_m
=
gemm_descs
[
0
].
M_
;
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
N
=
gemm_descs
[
0
].
N_
;
const
index_t
K
=
gemm_descs
[
0
].
K_
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
if
(
sum_of_m
!=
gemm_descs
[
i
].
M_
||
N
!=
gemm_descs
[
i
].
N_
||
K
!=
gemm_descs
[
i
].
K_
)
{
throw
std
::
runtime_error
(
"wrong! M/N/K is not identical"
);
}
a_mtx_mraw_kraw_
.
emplace_back
(
sum_of_m
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
// pointer
std
::
array
<
const
void
*
,
NumATensor
>
p_as_grid
;
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
j
)
{
p_as_grid
[
j
]
=
nullptr
;
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
j
)
{
p_bs_grid
[
j
]
=
nullptr
;
});
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
p_ds_grid
[
j
]
=
nullptr
;
});
std
::
array
<
index_t
,
NumATensor
>
StrideAs
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
const
index_t
StrideE
=
gemm_descs
[
i
].
stride_C_
;
if
(
gemm_descs
[
i
].
stride_As_
.
size
()
!=
NumATensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_As_.size() does not match NumATensor"
);
}
static_for
<
0
,
NumATensor
,
1
>
{}(
[
&
](
auto
j
)
{
StrideAs
[
j
]
=
gemm_descs
[
i
].
stride_As_
[
j
];
});
if
(
gemm_descs
[
i
].
stride_Bs_
.
size
()
!=
NumBTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Bs_.size() does not match NumBTensor"
);
}
static_for
<
0
,
NumBTensor
,
1
>
{}(
[
&
](
auto
j
)
{
StrideBs
[
j
]
=
gemm_descs
[
i
].
stride_Bs_
[
j
];
});
if
(
gemm_descs
[
i
].
stride_Ds_
.
size
()
!=
NumDTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Ds_.size() does not match NumDTensor"
);
}
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
j
)
{
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
});
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
if
(
group_id
*
grid_size_grp_
!=
grid_size_
)
{
throw
std
::
runtime_error
(
"wrong! grid_size_grp_ is not identical!"
);
}
grid_size_
+=
grid_size_grp_
;
// check block-to-E-tile
if
(
!
local_b2c_tile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
throw
std
::
runtime_error
(
"wrong! block_2_etile_map validation failed"
);
}
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
p_as_grid
,
p_bs_grid
,
p_ds_grid
,
nullptr
,
AverM
,
N
,
K
,
StrideAs
,
StrideBs
,
StrideDs
,
StrideE
,
});
group_id
++
;
}
const
auto
e_grid_desc_sum_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
sum_of_m
,
gemm_desc_kernel_arg_
[
0
].
N_
,
gemm_desc_kernel_arg_
[
0
].
StrideE_
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_sum_m_n
,
1
};
barrier_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_sum_m_n
);
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
index_t
grid_size_grp_
;
index_t
barrier_size_grp_
;
index_t
sum_of_m
;
index_t
k_batch_
=
1
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
if
(
arg
.
grouped_gemm_kernel_args_dev
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! grouped_gemm_kernel_args_dev is nullpr"
);
}
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
,
auto
e_global_memory_operation_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_fixed_nk
<
GridwiseGemm
,
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
,
GemmSpec
,
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
e_global_memory_operation_
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
grouped_gemm_kernel_args_dev
),
arg
.
gemm_desc_kernel_arg_
.
size
(),
arg
.
grid_size_grp_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
constexpr
auto
AtomicAdd
=
InMemoryDataOperationEnum
::
AtomicAdd
;
constexpr
auto
Set
=
InMemoryDataOperationEnum
::
Set
;
if
(
arg
.
k_batch_
>
1
)
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
}
else
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if
constexpr
(
GemmSpec
!=
GemmSpecialization
::
Default
)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const
auto
a_raw_vector_dim
=
ABlockTransferSrcVectorDim
!=
1
?
1
:
0
;
const
auto
b_raw_vector_dim
=
BBlockTransferSrcVectorDim
!=
1
?
1
:
0
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
const
auto
a_vector_dim
=
arg
.
a_mtx_mraw_kraw_
[
i
].
At
(
Number
<
a_raw_vector_dim
>
{});
const
auto
b_vector_dim
=
arg
.
b_mtx_nraw_kraw_
[
i
].
At
(
Number
<
b_raw_vector_dim
>
{});
supported
=
supported
&
(
a_vector_dim
%
ABlockTransferSrcScalarPerVector
==
0
);
supported
=
supported
&
(
b_vector_dim
%
BBlockTransferSrcScalarPerVector
==
0
);
}
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_As
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmMultiABDDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{},
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{},
CDEElementwiseOperation
c_element_op
=
CDEElementwiseOperation
{})
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_As
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
=
AElementwiseOperation
{},
BElementwiseOperation
b_element_op
=
BElementwiseOperation
{},
CDEElementwiseOperation
c_element_op
=
CDEElementwiseOperation
{})
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl_Fixed_NK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
static
void
SetElementwiseOps
(
Argument
&
arg
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
arg
.
a_element_op_
=
a_element_op
;
arg
.
b_element_op_
=
b_element_op
;
arg
.
c_element_op_
=
c_element_op
;
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
void
SetElementwiseOps
(
BaseArgument
*
p_arg
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
const
override
{
SetElementwiseOps
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
a_element_op
,
b_element_op
,
c_element_op
);
}
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
sizeof
(
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
);
}
#if 0
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
auto arg = *dynamic_cast<const Argument*>(p_arg);
return arg.group_count_ * arg.barrier_size_grp_ * sizeof(uint32_t);
}
void SetWorkSpacePointer(BaseArgument* p_arg,
void* p_workspace,
const StreamConfig& stream_config = StreamConfig{}) const override
{
auto p_arg_ = dynamic_cast<Argument*>(p_arg);
p_arg_->p_workspace_ = p_workspace;
hip_check_error(
hipMemsetAsync(p_workspace, 0, GetWorkSpaceSize(p_arg), stream_config.stream_id_));
}
#endif
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
// polymorphic
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
override
{
return
SetKBatch
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
k_batch
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp
0 → 100644
View file @
5a9c4962
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <tuple>
#include "ck/ck.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/utility/common_header.hpp"
#include <ck/utility/loop_scheduler.hpp>
#include "ck/utility/tuple.hpp"
#include "ck/utility/sequence_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multiple_d_splitk.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include <ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp>
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumGemmKPrefetchStage
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
typename
ComputeDataType
=
EDataType
,
// TODO: change gridwise_gemm_v2r4r2 to support AK1 & BK1
enable_if_t
<
AK1
==
BK1
,
bool
>
=
false
>
struct
DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
:
public
DeviceGroupedGemmMultipleDSplitK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
// TODO change GridwiseGEMM v2r4r2 to support separate AK1 & BK1
static
constexpr
index_t
K0PerBlock
=
KPerBlock
/
AK1
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WorkspaceDataType
=
float
;
// First stage GridwiseGEMM kernel.
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
ADataType
,
BDataType
,
AccDataType
,
WorkspaceDataType
,
ALayout
,
BLayout
,
ELayout
,
AElementwiseOperation
,
BElementwiseOperation
,
PassThrough
,
// CElementwiseOperation
GemmSpec
,
NumGemmKPrefetchStage
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
AK1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
LoopSched
,
PipelineVer
,
ComputeDataType
>
;
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideE
)
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideE
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeEGridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
static
constexpr
auto
MakeElementwiseInputSequence
()
{
return
generate_sequence_v2
(
[
&
]([[
maybe_unused
]]
auto
i
)
constexpr
{
return
Number
<
CDEShuffleBlockTransferScalarPerVector_NPerBlock
>
{};
},
Number
<
NumDTensor
+
1
>
{});
}
using
CGridDesc_M_N
=
typename
GridwiseGemm
::
CGridDesc_M_N
;
using
EGridDesc_M_N
=
typename
GridwiseGemm
::
CGridDesc_M_N
;
using
DsGridDesc_M_N
=
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}));
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
CDGridDesc_M_N
=
decltype
(
concat_tuple
(
ck
::
Tuple
<
CGridDesc_M_N
>
{},
DsGridDesc_M_N
{}));
using
CDDataTypes
=
decltype
(
concat_tuple
(
ck
::
Tuple
<
WorkspaceDataType
*>
{},
DsGridPointer
{}));
using
ElementwiseInputSequence
=
decltype
(
MakeElementwiseInputSequence
());
static
constexpr
index_t
ClusterLengthMPerBlock
=
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
1
);
static
constexpr
index_t
ClusterLengthNPerBlock
=
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
::
At
(
3
);
using
Block2ETileMapKSplit
=
BlockToCTileMap_KSplit_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
;
using
Block2TileMap
=
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
>
;
using
GridwiseElementwise
=
GridwiseElementwise
<
CDGridDesc_M_N
,
ck
::
Tuple
<
EGridDesc_M_N
>
,
CDDataTypes
,
ck
::
Tuple
<
EDataType
*>
,
Block2TileMap
,
CDEElementwiseOperation
,
BlockSize
,
MPerBlock
,
NPerBlock
,
MPerBlock
/
ClusterLengthMPerBlock
,
NPerBlock
/
ClusterLengthNPerBlock
,
Sequence
<
0
,
1
>
,
ElementwiseInputSequence
,
ck
::
Sequence
<
CDEShuffleBlockTransferScalarPerVector_NPerBlock
>
,
I1
,
I1
>
;
// Block2CTileMap configuration parameter.
static
constexpr
index_t
B2E_M01
=
8
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMap
<
Block2ETileMapKSplit
>
;
using
GemmKernelArgument
=
typename
GridwiseGemm
::
Argument
;
struct
GemmTransKernelArg
{
GemmKernelArgument
karg_
;
GroupedGemmBlock2ETileMap
block_2_ctile_map_
;
index_t
block_start_
,
block_end_
;
GemmTransKernelArg
()
=
default
;
GemmTransKernelArg
(
GemmKernelArgument
&&
karg
,
GroupedGemmBlock2ETileMap
&&
b2c_map
,
index_t
block_start
,
index_t
block_end
)
:
karg_
{
karg
},
block_2_ctile_map_
{
b2c_map
},
block_start_
{
block_start
},
block_end_
{
block_end
}
{
}
};
static
constexpr
index_t
DefaultKBatch
=
1
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
Argument
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
,
DefaultKBatch
)
{
}
Argument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
kbatch
)
:
K_BATCH
{
kbatch
},
group_count_
{
0
},
skipped_group_count_
{
0
},
grid_size_
{
0
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
p_Ds_
{
p_Ds
}
{
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Es
.
size
())))
{
throw
std
::
runtime_error
(
"Error! group_count_ != p_As/Bs/Ds/Es size"
);
}
gemm_kernel_args_
.
reserve
(
group_count_
);
elementwise_c_grid_descs_m_n_
.
reserve
(
group_count_
);
elementwise_d_grid_descs_m_n_
.
reserve
(
group_count_
);
ds_grid_pointer_
.
reserve
(
group_count_
);
group_grid_size_
.
reserve
(
group_count_
);
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
++
i
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
if
(
M
*
N
*
K
==
0
)
{
skipped_group_count_
++
;
continue
;
}
const
index_t
stride_a
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
stride_b
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
stride_e
=
gemm_descs
[
i
].
stride_C_
;
const
index_t
m_padded
=
GridwiseGemm
::
CalculateMPadded
(
M
);
const
index_t
n_padded
=
GridwiseGemm
::
CalculateNPadded
(
N
);
const
index_t
k_padded
=
GridwiseGemm
::
CalculateKPadded
(
K
,
K_BATCH
);
const
index_t
k0_padded
=
GridwiseGemm
::
CalculateK0Padded
(
K
,
K_BATCH
);
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
M
,
N
,
stride_e
);
DsGridDesc_M_N
ds_grid_desc_m_n
;
DsGridPointer
p_ds_grid
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
K_BATCH
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
c_grid_desc_m_n
);
const
index_t
block_start
=
grid_size_
;
const
index_t
block_end
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
group_grid_size_
[
i
]
=
grid_size_grp
;
// block-to-e-tile map
auto
grouped_block_2_ctile_map
=
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
block_start
);
std
::
array
<
index_t
,
NumDTensor
>
stride_ds
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
if
(
gemm_descs
[
i
].
stride_Ds_
.
size
()
!=
NumDTensor
)
{
throw
std
::
runtime_error
(
"Error! gemm_descs[i].stride_Ds_.size() does not match NumDTensor"
);
}
stride_ds
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
});
stride_Ds_
.
emplace_back
(
std
::
move
(
stride_ds
));
// We first set E pointer to actual operation output, but later on
// when workspace will be set, this will be updated to workspace memory.
auto
karg
=
GemmKernelArgument
{
type_convert
<
const
ADataType
*>
(
p_As
[
i
]),
type_convert
<
const
BDataType
*>
(
p_Bs
[
i
]),
type_convert
<
WorkspaceDataType
*>
(
p_Es
[
i
]),
M
,
N
,
K
,
stride_a
,
stride_b
,
stride_e
,
m_padded
,
n_padded
,
k_padded
,
k0_padded
,
K_BATCH
};
gemm_kernel_args_
.
emplace_back
(
std
::
move
(
karg
),
std
::
move
(
grouped_block_2_ctile_map
),
block_start
,
block_end
);
elementwise_c_grid_descs_m_n_
.
push_back
(
c_grid_desc_m_n
);
elementwise_d_grid_descs_m_n_
.
push_back
(
ds_grid_desc_m_n
);
ds_grid_pointer_
.
push_back
(
p_ds_grid
);
}
// Store a copy of E pointers for elementwise kernel destination
e_ptrs_
=
p_Es
;
}
/**
* @brief Set new kbatch value.
*
* @param[in] kbatch The new splitK parameter value.
*/
void
UpdateKBatch
(
index_t
kbatch
)
{
K_BATCH
=
kbatch
;
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_kernel_args_
.
size
();
++
i
)
{
auto
&
karg
=
gemm_kernel_args_
[
i
].
karg_
;
const
index_t
k_padded
=
GridwiseGemm
::
CalculateKPadded
(
karg
.
K
,
K_BATCH
);
const
index_t
k0_padded
=
GridwiseGemm
::
CalculateK0Padded
(
karg
.
K
,
K_BATCH
);
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
);
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
K_BATCH
};
const
index_t
grid_size_grp
=
local_b2c_tile_map
.
CalculateGridSize
(
c_grid_desc_m_n
);
const
index_t
block_start
=
grid_size_
;
const
index_t
block_end
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
// block-to-e-tile map
auto
grouped_block_2_ctile_map
=
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
block_start
);
group_grid_size_
[
i
]
=
grid_size_grp
;
karg
.
KPadded
=
k_padded
;
karg
.
K0Padded
=
k0_padded
;
karg
.
k_batch
=
K_BATCH
;
gemm_kernel_args_
[
i
].
block_2_ctile_map_
=
grouped_block_2_ctile_map
;
gemm_kernel_args_
[
i
].
block_start_
=
block_start
;
gemm_kernel_args_
[
i
].
block_end_
=
block_end
;
#if DEBUG_LOG
index_t
tiles
=
(
block_end
-
block_start
)
/
K_BATCH
;
std
::
cout
<<
"block_start: "
<<
block_start
<<
"
\n
"
<<
"block_end: "
<<
block_end
<<
"
\n
"
<<
"tiles: "
<<
tiles
<<
std
::
endl
<<
std
::
endl
;
std
::
cout
<<
"KPadded: "
<<
karg
.
KPadded
<<
std
::
endl
<<
"K0Padded: "
<<
karg
.
K0Padded
<<
std
::
endl
<<
"KBatch: "
<<
karg
.
k_batch
<<
std
::
endl
<<
"grid_size_: "
<<
karg
.
KPadded
<<
std
::
endl
;
#endif
}
}
void
UpdateEPointers
()
{
// set-up each group E pointer to it's designated workspace memory.
WorkspaceDataType
*
p_workspace
=
reinterpret_cast
<
WorkspaceDataType
*>
(
p_workspace_
);
std
::
size_t
offset
=
0
;
for
(
auto
&
arg
:
gemm_kernel_args_
)
{
arg
.
karg_
.
p_c_grid
=
p_workspace
+
offset
;
index_t
tiles
=
(
arg
.
block_end_
-
arg
.
block_start_
)
/
arg
.
karg_
.
k_batch
;
offset
+=
tiles
*
MPerBlock
*
NPerBlock
;
#if DEBUG_LOG
std
::
cout
<<
"block_start: "
<<
arg
.
block_start_
<<
"
\n
"
<<
"block_end: "
<<
arg
.
block_end_
<<
"
\n
"
<<
"tiles: "
<<
tiles
<<
"
\n
"
<<
"offset: "
<<
offset
<<
std
::
endl
;
#endif
}
}
std
::
size_t
GetWorkspaceSizeBytes
()
const
{
std
::
size_t
size_bytes
{
0
};
for
(
const
auto
&
arg
:
gemm_kernel_args_
)
{
index_t
tiles
=
(
arg
.
block_end_
-
arg
.
block_start_
)
/
arg
.
karg_
.
k_batch
;
size_bytes
+=
tiles
*
MPerBlock
*
NPerBlock
*
sizeof
(
WorkspaceDataType
);
}
return
size_bytes
;
}
std
::
size_t
GetWorkspaceSize
(
std
::
size_t
group
)
const
{
const
auto
&
arg
=
gemm_kernel_args_
[
group
];
index_t
tiles
=
(
arg
.
block_end_
-
arg
.
block_start_
)
/
arg
.
karg_
.
k_batch
;
return
tiles
*
MPerBlock
*
NPerBlock
;
}
// private:
index_t
K_BATCH
;
index_t
group_count_
;
index_t
skipped_group_count_
;
index_t
grid_size_
;
// Pointer to device memory with GEMM kernel arguments.
const
void
*
p_dev_gemm_args_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds_
;
std
::
vector
<
std
::
array
<
index_t
,
NumDTensor
>>
stride_Ds_
;
std
::
vector
<
GemmTransKernelArg
>
gemm_kernel_args_
;
std
::
vector
<
index_t
>
group_grid_size_
;
std
::
vector
<
CGridDesc_M_N
>
elementwise_c_grid_descs_m_n_
;
std
::
vector
<
DsGridDesc_M_N
>
elementwise_d_grid_descs_m_n_
;
std
::
vector
<
DsGridPointer
>
ds_grid_pointer_
;
std
::
vector
<
void
*>
e_ptrs_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
///
/// @brief Launch Grouped Gemm kernel.
///
/// @note This function overload is using user provided device buffer for kernel
/// arguments.
///
/// @param[in] arg The structure containing kernel arguments (in host
/// memory).
/// @param[in] dev_gemm_args The pointer to device memory with kernel arguments.
/// @param[in] dev_gemm_workspace The pointer to device memory for kernel auxiliary
/// workspace.
/// @param[in] stream_config The device stream configuration.
///
/// @return The average kernel execution time (if time measurement is enabled.)
///
float
Run
(
const
Argument
&
arg
,
const
void
*
dev_gemm_args
,
void
*
dev_gemm_workspace
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
auto
[
all_have_kbatch_gt_one
,
all_have_main_k_block_loop
]
=
CheckArgument
(
arg
,
stream_config
);
if
(
dev_gemm_args
==
nullptr
)
{
std
::
ostringstream
err
;
err
<<
"The gemm arguments device buffer is not allocated!"
<<
" In "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
dev_gemm_workspace
==
nullptr
)
{
std
::
ostringstream
err
;
err
<<
"The gemm workspace buffer is not allocated!"
<<
" In "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
float
ave_time
=
0
;
if
(
all_have_main_k_block_loop
)
{
ave_time
=
DispatchKernel
<
true
>
(
arg
,
dev_gemm_args
,
dev_gemm_workspace
,
stream_config
);
}
else
{
ave_time
=
DispatchKernel
<
false
>
(
arg
,
dev_gemm_args
,
dev_gemm_workspace
,
stream_config
);
}
return
ave_time
;
}
///
/// @brief Launch Grouped Gemm kernel.
///
/// @note This function overload is using device buffers (for kernel arguments and
/// for kernel auxiliary workspace) provided with an argument. The user should
/// call @see GetDeviceKernelArgSize, @see GetWorkSpaceSize and @see
/// SetDeviceKernelArgs, @see SetWorkSpacePointer on arg parameter to properly
/// allocate those buffers.
///
/// @param[in] arg The structure containing kernel arguments (in host memory).
/// @param[in] stream_config The device stream configuration.
///
/// @return The average kernel execution time (if time measurement is enabled.)
///
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
arg
.
p_dev_gemm_args_
==
nullptr
)
{
std
::
ostringstream
err
;
err
<<
"The gemm arguments device buffer is not allocated!"
<<
" In "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
arg
.
p_workspace_
==
nullptr
)
{
std
::
ostringstream
err
;
err
<<
"The gemm workspace buffer is not allocated!"
<<
" In "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
return
Run
(
arg
,
arg
.
p_dev_gemm_args_
,
arg
.
p_workspace_
,
stream_config
);
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
private:
auto
CheckArgument
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
)
const
{
bool
all_have_kbatch_gt_one
,
all_have_main_k_block_loop
;
{
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
GridwiseGemm
::
MakeAGridDescriptor_KBatch_K0_M_K1
(
arg
.
gemm_kernel_args_
[
0
].
karg_
.
M
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
MPadded
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
StrideA
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K0Padded
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
KPadded
);
all_have_kbatch_gt_one
=
arg
.
K_BATCH
>
1
;
all_have_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I3
));
}
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
gemm_arg
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
if
(
stream_config
.
log_level_
>
0
)
{
gemm_arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
gemm_arg
))
{
std
::
ostringstream
err
;
err
<<
"Group id: "
<<
i
<<
" has invalid GridwiseGemm settings!"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
GridwiseGemm
::
MakeAGridDescriptor_KBatch_K0_M_K1
(
gemm_arg
.
M
,
gemm_arg
.
MPadded
,
gemm_arg
.
K
,
gemm_arg
.
StrideA
,
gemm_arg
.
k_batch
,
gemm_arg
.
K0Padded
,
gemm_arg
.
KPadded
);
bool
not_all_have_main_k_block_loop_same
=
all_have_main_k_block_loop
xor
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I3
));
bool
not_all_have_kbatch_value_same
=
all_have_kbatch_gt_one
xor
(
gemm_arg
.
k_batch
>
1
);
if
(
not_all_have_main_k_block_loop_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same value for main_k0_block_loop! in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
not_all_have_kbatch_value_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same kbatch value (=1 or >1)! "
<<
"group ["
<<
i
<<
"], kbatch: "
<<
gemm_arg
.
k_batch
<<
", group [0], kbatch: "
<<
gemm_arg
.
k_batch
<<
" in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
}
return
std
::
make_tuple
(
all_have_kbatch_gt_one
,
all_have_main_k_block_loop
);
}
template
<
bool
HasMainKBlockLoop
>
float
DispatchKernel
(
const
Argument
&
arg
,
const
void
*
dev_gemm_args
,
void
*
dev_gemm_workspace
,
const
StreamConfig
&
stream_config
)
const
{
const
auto
gemm_kernel
=
kernel_grouped_gemm_xdl_splitk
<
GridwiseGemm
,
GemmTransKernelArg
,
HasMainKBlockLoop
,
InMemoryDataOperationEnum
::
AtomicAdd
,
AElementwiseOperation
,
BElementwiseOperation
,
PassThrough
>
;
const
auto
elementwise_kernel
=
kernel_elementwise
<
GridwiseElementwise
,
CDGridDesc_M_N
,
ck
::
Tuple
<
EGridDesc_M_N
>
,
CDDataTypes
,
ck
::
Tuple
<
EDataType
*>
,
Block2TileMap
,
CDEElementwiseOperation
>
;
return
LaunchKernel
(
gemm_kernel
,
elementwise_kernel
,
arg
,
dev_gemm_args
,
dev_gemm_workspace
,
stream_config
);
}
template
<
typename
KernelFunction
,
typename
KernelFunction2
>
float
LaunchKernel
(
const
KernelFunction
&
gemm_kernel
,
const
KernelFunction2
&
elementwise_kernel
,
const
Argument
&
arg
,
const
void
*
dev_gemm_args
,
[[
maybe_unused
]]
void
*
dev_gemm_workspace
,
const
StreamConfig
&
stream_config
)
const
{
float
time
{
0.
f
};
auto
preprocess
=
[
&
]()
{
hip_check_error
(
hipMemsetAsync
(
dev_gemm_workspace
,
0
,
arg
.
GetWorkspaceSizeBytes
(),
stream_config
.
stream_id_
));
};
// GEMM kernel
time
=
launch_and_time_kernel_with_preprocess
(
stream_config
,
preprocess
,
gemm_kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
dev_gemm_args
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
PassThrough
{});
// Elementwise kernels
for
(
int
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
time
+=
launch_and_time_kernel
(
stream_config
,
elementwise_kernel
,
dim3
(
arg
.
group_grid_size_
[
i
]),
dim3
(
BlockSize
),
0
,
concat_tuple
(
make_tuple
(
arg
.
elementwise_c_grid_descs_m_n_
[
i
]),
arg
.
elementwise_d_grid_descs_m_n_
[
i
]),
make_tuple
(
arg
.
elementwise_c_grid_descs_m_n_
[
i
]),
concat_tuple
(
make_tuple
(
arg
.
gemm_kernel_args_
[
i
].
karg_
.
p_c_grid
),
arg
.
ds_grid_pointer_
[
i
]),
type_convert
<
EDataType
*>
(
arg
.
e_ptrs_
[
i
]),
Block2TileMap
{
arg
.
elementwise_c_grid_descs_m_n_
[
i
].
GetLength
(
I0
),
arg
.
elementwise_c_grid_descs_m_n_
[
i
].
GetLength
(
I1
)},
arg
.
cde_element_op_
);
}
return
time
;
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_kernel_args_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
#if DEBUG_LOG
std
::
cout
<<
"The group count is not equal to sum of skipped groups "
"and kernel args size!"
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
bool
supported
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
gemm_arg
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
bool
group_arg_valid
=
GridwiseGemm
::
CheckValidity
(
gemm_arg
);
if
(
not
group_arg_valid
)
{
#if DEBUG_LOG
std
::
cout
<<
"["
<<
__func__
<<
"] group id: "
<<
i
<<
" has invalid GridwiseGemm settings!"
<<
std
::
endl
;
gemm_arg
.
Print
();
#endif // DEBUG_LOG
}
supported
=
supported
&&
group_arg_valid
;
}
return
supported
;
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
a_elementwise_op
,
BElementwiseOperation
b_elementwise_op
,
CDEElementwiseOperation
cde_elementwise_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_elementwise_op
,
b_elementwise_op
,
cde_elementwise_op
};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_elementwise_op
,
BElementwiseOperation
b_elementwise_op
,
CDEElementwiseOperation
cde_elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_elementwise_op
,
b_elementwise_op
,
cde_elementwise_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage"
<<
"<"
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
","
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
","
<<
std
::
string
(
ELayout
::
name
)[
0
]
<<
","
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
">"
;
// clang-format on
return
str
.
str
();
}
void
SetDeviceKernelArgs
(
Argument
&
arg
,
void
*
p_dev_kernel_args
)
const
{
arg
.
p_dev_gemm_args_
=
p_dev_kernel_args
;
hip_check_error
(
hipMemcpy
(
p_dev_kernel_args
,
arg
.
gemm_kernel_args_
.
data
(),
GetDeviceKernelArgSize
(
&
arg
),
hipMemcpyHostToDevice
));
}
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
void
*
p_dev_kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
p_dev_kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
arg
)
{
return
arg
->
GetWorkspaceSizeBytes
();
}
else
throw
std
::
runtime_error
(
"The argument pointer is not an object of "
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!"
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
[[
maybe_unused
]]
const
StreamConfig
&
stream_config
=
StreamConfig
{})
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
if
(
p_arg_
)
{
p_arg_
->
p_workspace_
=
p_workspace
;
p_arg_
->
UpdateEPointers
();
}
else
throw
std
::
runtime_error
(
"The argument pointer is not an object of "
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!"
);
}
static
void
SetKBatchSize
(
Argument
&
arg
,
index_t
kbatch
)
{
arg
.
UpdateKBatch
(
kbatch
);
}
void
SetKBatchSize
(
BaseArgument
*
p_arg
,
index_t
kbatch
)
const
override
{
return
SetKBatchSize
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kbatch
);
}
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
gemm_kernel_args_
.
size
()
*
sizeof
(
GemmTransKernelArg
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
4
5
6
7
8
9
10
11
12
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment