Commit 563c1e23 authored by Astha Rai's avatar Astha Rai
Browse files

Merge branch 'codegen_hiprtc' of github.com:ROCm/composable_kernel into codegen_hiprtc

parents fb1bc1bf b14b1973
......@@ -269,15 +269,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
......@@ -341,14 +340,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
......@@ -396,14 +395,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
......@@ -447,14 +446,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
......@@ -760,15 +759,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
__builtin_amdgcn_sched_barrier(0);
// NOTE: Synchronize threads in a workgroup at the start of each MAC
......@@ -866,14 +864,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
__builtin_amdgcn_sched_barrier(0);
......@@ -942,14 +940,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
__builtin_amdgcn_sched_barrier(0);
......@@ -1018,14 +1016,14 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
__builtin_amdgcn_sched_barrier(0);
......
......@@ -305,14 +305,14 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(I0));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(I0),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(I0));
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(I0),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(I0));
});
});
......@@ -356,15 +356,14 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
......@@ -437,14 +436,14 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
......@@ -496,14 +495,14 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -53,6 +53,47 @@ struct DeviceBatchedGemmMultiD : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceBatchedGemmV2MultiD : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(DsLayout::Size() == DsDataType::Size(), "wrong! inconsisiten NumDTensor");
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
index_t M,
index_t N,
index_t K,
index_t Batch,
index_t StrideA,
index_t StrideB,
const std::array<ck::index_t, NumDTensor>& StrideDs,
index_t StrideE,
index_t BatchStrideA,
index_t BatchStrideB,
const std::array<ck::index_t, NumDTensor>& BatchStrideDs,
index_t BatchStrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <vector>
#include "device_base.hpp"
#include "ck/utility/ignore.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
///
template <index_t NumDTensor = 0>
struct GroupedGemmKernelArgument
{
__host__ __device__ GroupedGemmKernelArgument(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
struct GemmDesc
{
ck::index_t M_, N_, K_;
......@@ -48,6 +118,66 @@ struct DeviceGroupedGemm : public BaseOperator
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
//---------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer and may copy data to device.
///
/// TODO: Add which kernels are using this (TileLoop * FixedNK ??)
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which will contain kernel
/// arguments.
/// @param[in] p_host_kernel_args The pointer to the host memory which contains kernel
/// arguments that should be copied to device memory.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg,
void* p_dev_kernel_args,
const void* p_host_kernel_args) const
{
ignore = p_arg;
ignore = p_dev_kernel_args;
ignore = p_host_kernel_args;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer and may copy data to device.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const
{
ignore = p_arg;
ignore = p_dev_kernel_args;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const
{
ignore = p_arg;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
};
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm.hpp"
#include "device_grouped_gemm_splitk.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumDTensor = 0>
struct GroupedGemmKernelArgument
{
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
......@@ -41,21 +20,18 @@ template <typename ALayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemmFixedNK : DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
struct DeviceGroupedGemmFixedNK : DeviceGroupedGemmSplitK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, const void* kernel_args) const = 0;
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
virtual void SetKBatch(BaseArgument* p_arg, index_t k_batch) const = 0;
};
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <iostream>
#include <vector>
#include <sstream>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
///
template <index_t NumDTensor = 0>
struct GroupedGemmMultipleDKernelArguments
{
__host__ __device__
GroupedGemmMultipleDKernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGroupedGemmMultipleDSplitK : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_grouped_gemm.hpp"
......@@ -31,7 +31,23 @@ struct DeviceGroupedGemmSplitK : public DeviceGroupedGemm<ALayout,
BElementwiseOperation,
CElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatch(BaseArgument* p_arg, index_t kbatch) const
{
this->SetKBatchSize(p_arg, kbatch);
};
};
} // namespace device
......
......@@ -3,83 +3,20 @@
#pragma once
#include <array>
#include <iostream>
#include <vector>
#include <sstream>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
/// @brief Grouped GEMM kernel using output Tile Looping algorithm
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
/// @par This kernel does not require any knowledge about input data sizes (GEMM M/N/K)
/// It requires only the number of groups to launch. Other information like
/// data pointers and GEMM sizes, packed into gemm kernel args may be all dynamic
/// (known only at kernel run-time).
///
template <index_t NumDTensor = 0>
struct GroupedGemmTileLoopKernelArguments
{
__host__ __device__
GroupedGemmTileLoopKernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
/// @note This kernel does not support SplitK.
template <typename ALayout,
typename BLayout,
......@@ -104,23 +41,6 @@ struct DeviceGroupedGemmTileLoop : public DeviceGroupedGemm<ALayout,
BElementwiseOperation,
CDEElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
};
} // namespace device
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment