Commit 55cdf2b9 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into ck_tile/layernorm_fusion

parents 4b59b5c9 b098b71b
...@@ -177,19 +177,15 @@ rocm_check_target_ids(SUPPORTED_GPU_TARGETS ...@@ -177,19 +177,15 @@ rocm_check_target_ids(SUPPORTED_GPU_TARGETS
message("Building CK for the following targets: ${SUPPORTED_GPU_TARGETS}") message("Building CK for the following targets: ${SUPPORTED_GPU_TARGETS}")
if (GPU_TARGETS) if (SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if (GPU_TARGETS MATCHES "gfx9") message("Enabling XDL instances")
add_definitions(-DCK_USE_XDL) add_definitions(-DCK_USE_XDL)
set(CK_USE_XDL "ON") set(CK_USE_XDL "ON")
endif() endif()
if (GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12") if (SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12")
message("Enabling WMMA instances")
add_definitions(-DCK_USE_WMMA) add_definitions(-DCK_USE_WMMA)
set(CK_USE_WMMA "ON") set(CK_USE_WMMA "ON")
endif()
else()
add_definitions(-DCK_USE_WMMA -DCK_USE_XDL)
set(CK_USE_XDL "ON")
set(CK_USE_WMMA "ON")
endif() endif()
# CK config file to record supported datatypes, etc. # CK config file to record supported datatypes, etc.
...@@ -578,7 +574,7 @@ rocm_package_setup_component(profiler ...@@ -578,7 +574,7 @@ rocm_package_setup_component(profiler
) )
add_subdirectory(profiler) add_subdirectory(profiler)
if(CK_USE_CODEGEN AND (GPU_TARGETS MATCHES "gfx9" OR GPU_ARCHS)) if(CK_USE_CODEGEN AND (SUPPORTED_GPU_TARGETS MATCHES "gfx9" OR GPU_ARCHS))
add_subdirectory(codegen) add_subdirectory(codegen)
endif() endif()
......
...@@ -75,7 +75,8 @@ struct ProblemSizeSplitK final ...@@ -75,7 +75,8 @@ struct ProblemSizeSplitK final
struct ExecutionConfig final struct ExecutionConfig final
{ {
bool do_verification = true; // 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 3;
int init_method = 2; int init_method = 2;
bool time_kernel = false; bool time_kernel = false;
}; };
...@@ -126,7 +127,7 @@ bool parse_cmd_args<ProblemSize>(int argc, ...@@ -126,7 +127,7 @@ bool parse_cmd_args<ProblemSize>(int argc,
} }
else else
{ {
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl << "arg3: time kernel (0=no, 1=yes)" << std::endl
...@@ -176,7 +177,7 @@ bool parse_cmd_args<ProblemSizeStreamK_universal>(int argc, ...@@ -176,7 +177,7 @@ bool parse_cmd_args<ProblemSizeStreamK_universal>(int argc,
else else
{ {
std::cerr std::cerr
<< "arg1: verification (0=no, 1=CPU and GPU)" << std::endl << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << std::endl << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl << "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl << "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
...@@ -225,7 +226,7 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc, ...@@ -225,7 +226,7 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
} }
else else
{ {
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl << "arg3: time kernel (0=no, 1=yes)" << std::endl
...@@ -275,7 +276,7 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc, ...@@ -275,7 +276,7 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
} }
else else
{ {
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl << "arg3: time kernel (0=no, 1=yes)" << std::endl
......
...@@ -330,7 +330,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -330,7 +330,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
bool pass = true; bool pass = true;
if(config.do_verification) if((config.do_verification == 1) || (config.do_verification == 3))
{ {
// CPU verification // CPU verification
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
...@@ -353,13 +353,16 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -353,13 +353,16 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else #else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result, pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result, c_m_n_host_result,
"Error: Incorrect results!", "Error: Incorrect results!",
get_rtol<CDataType>(), get_rtol<CDataType>(),
get_atol<CDataType>()); get_atol<CDataType>());
#endif #endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification // GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{}; auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker(); auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
...@@ -381,14 +384,14 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -381,14 +384,14 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data()); c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result, pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result, c_m_n_device_ref_result,
"Error: Incorrect results!", "Error: Incorrect results!",
get_rtol<CDataType>(), get_rtol<CDataType>(),
get_atol<CDataType>()); get_atol<CDataType>());
} }
return !pass; return pass == true;
} }
bool run_gemm_example(int argc, char* argv[]) bool run_gemm_example(int argc, char* argv[])
......
...@@ -241,7 +241,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -241,7 +241,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
} }
bool pass = true; bool pass = true;
if(config.do_verification) if((config.do_verification == 1) || (config.do_verification == 3))
{ {
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
......
...@@ -228,7 +228,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -228,7 +228,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
} }
bool pass = true; bool pass = true;
if(config.do_verification) if((config.do_verification == 1) || (config.do_verification == 3))
{ {
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
/* /*
Computes C_m_o = Relu(A0[m, k] * B0[n, k] + D00[m, n] + D01[mn]) * B1[n, o] + D1[m, o] Computes C_m_o = Relu(A0[m, k] * B0[n, k] + D00[m, n] + D01[mn]) * B1[n, o] + D1[m, o]
...@@ -60,14 +60,14 @@ struct AddAddRelu ...@@ -60,14 +60,14 @@ struct AddAddRelu
{ {
const ck::half_t x = c + d0 + d1; const ck::half_t x = c + d0 + d1;
ck::tensor_operation::element_wise::Relu{}.template operator()<ck::half_t>(e, x); ck::tensor_operation::element_wise::Relu{}.operator()(e, x);
} }
__host__ __device__ void __host__ __device__ void
operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const
{ {
const float x = c + (d0 + d1); const float x = c + (d0 + d1);
ck::tensor_operation::element_wise::Relu{}.template operator()<float>(e, x); ck::tensor_operation::element_wise::Relu{}.operator()(e, x);
} }
}; };
......
...@@ -6,6 +6,7 @@ add_subdirectory(convscale_add) ...@@ -6,6 +6,7 @@ add_subdirectory(convscale_add)
add_subdirectory(convscale_reduce) add_subdirectory(convscale_reduce)
add_subdirectory(multi_AB) add_subdirectory(multi_AB)
add_subdirectory(unary) add_subdirectory(unary)
add_subdirectory(dynamic_unary)
add_custom_target(example_convnd_activ_xdl) add_custom_target(example_convnd_activ_xdl)
# ScaleAdd ScaleAdd Relu # ScaleAdd ScaleAdd Relu
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_dynamic_unary_xdl)
# Sigmoid
add_example_executable(example_convnd_fwd_xdl_dynamic_sigmoid_fp16 convnd_fwd_xdl_dynamic_sigmoid_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_sigmoid_fp16)
# Tanh
add_example_executable(example_convnd_fwd_xdl_dynamic_tanh_fp16 convnd_fwd_xdl_dynamic_tanh_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_tanh_fp16)
# Relu
add_example_executable(example_convnd_fwd_xdl_dynamic_relu_fp16 convnd_fwd_xdl_dynamic_relu_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_relu_fp16)
# SoftRelu
add_example_executable(example_convnd_fwd_xdl_dynamic_softrelu_fp16 convnd_fwd_xdl_dynamic_softrelu_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_softrelu_fp16)
# Abs
add_example_executable(example_convnd_fwd_xdl_dynamic_abs_fp16 convnd_fwd_xdl_dynamic_abs_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_abs_fp16)
# Pow
add_example_executable(example_convnd_fwd_xdl_dynamic_pow_fp16 convnd_fwd_xdl_dynamic_pow_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_pow_fp16)
# Clipped Relu
add_example_executable(example_convnd_fwd_xdl_dynamic_clippedrelu_fp16 convnd_fwd_xdl_dynamic_clippedrelu_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_clippedrelu_fp16)
# Leaky Relu
add_example_executable(example_convnd_fwd_xdl_dynamic_leakyrelu_fp16 convnd_fwd_xdl_dynamic_leakyrelu_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_leakyrelu_fp16)
# Elu
add_example_executable(example_convnd_fwd_xdl_dynamic_elu_fp16 convnd_fwd_xdl_dynamic_elu_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_elu_fp16)
# Swish
add_example_executable(example_convnd_fwd_xdl_dynamic_swish_fp16 convnd_fwd_xdl_dynamic_swish_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_swish_fp16)
# PassThrough
add_example_executable(example_convnd_fwd_xdl_dynamic_passthrough_fp16 convnd_fwd_xdl_dynamic_passthrough_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_passthrough_fp16)
# Logistic
add_example_executable(example_convnd_fwd_xdl_dynamic_logistic_fp16 convnd_fwd_xdl_dynamic_logistic_fp16.cpp)
add_example_dependencies(example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_logistic_fp16)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using DynamicElementOp = ck::tensor_operation::element_wise::DynamicUnaryOp;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceGroupedConvNDActivInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
DynamicElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::UnaryAbs out_element_op;
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::ClippedRelu out_element_op(0.f, 1.f);
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Elu out_element_op(2.f);
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::LeakyRelu out_element_op(0.f);
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Logistic out_element_op(1.0f);
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::PassThrough out_element_op;
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Power out_element_op(4.f, 1.f, 2.f);
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Relu out_element_op;
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Sigmoid out_element_op;
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::SoftRelu out_element_op;
return !run_convnd_example(argc, argv, out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int main(int argc, char* argv[])
{
ck::tensor_operation::element_wise::Swish out_element_op(1.0f);
return !run_convnd_example(argc, argv, out_element_op);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment