Unverified Commit 52f64967 authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merge pull request #3 from ROCmSoftwarePlatform/downstream-internal

Downstream from public to internal
parents dda3a0a1 246ceee4
add_executable(client_elementwise_layernorm2d elementwise_layernorm2d.cpp)
target_link_libraries(client_elementwise_layernorm2d PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp"
using ADataType = ck::half_t; // Input 1
using BDataType = ck::half_t; // Input 2
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using XElementwiseOperation = ck::tensor_operation::element_wise::Add;
using YElementwiseOperation = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
bool time_kernel = true;
ck::index_t M = 48 * 256;
ck::index_t N = 1024;
ck::index_t Stride = N;
auto mn_size = (M - 1) * Stride + N;
SimpleDeviceMem a_dev_buf(sizeof(ADataType) * mn_size);
SimpleDeviceMem b_dev_buf(sizeof(BDataType) * mn_size);
SimpleDeviceMem gamma_dev_buf(sizeof(GammaDataType) * N);
SimpleDeviceMem beta_dev_buf(sizeof(BetaDataType) * N);
SimpleDeviceMem y_dev_buf(sizeof(YDataType) * mn_size);
std::array<const void*, 2> ab_input = {a_dev_buf.GetDeviceBuffer(),
b_dev_buf.GetDeviceBuffer()};
std::vector<ck::index_t> abStride = {Stride, 1};
std::array<std::vector<ck::index_t>, 2> abStrides = {abStride, abStride};
using DeviceOp = ck::tensor_operation::device::DeviceElementwiseNormalization<
ck::Tuple<ADataType, BDataType>,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
XElementwiseOperation,
YElementwiseOperation,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
abStrides,
{0, 1}, // gammaStrides
{0, 1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
ab_input,
gamma_dev_buf.GetDeviceBuffer(),
beta_dev_buf.GetDeviceBuffer(),
y_dev_buf.GetDeviceBuffer(),
XElementwiseOperation{},
YElementwiseOperation{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte = sizeof(ADataType) * M * N + sizeof(BDataType) * M * N +
sizeof(GammaDataType) * N + sizeof(BetaDataType) * N +
sizeof(YDataType) * M * N;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
abStrides,
{1}, // gammaStrides
{1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
ab_input,
gamma_dev_buf.GetDeviceBuffer(),
beta_dev_buf.GetDeviceBuffer(),
y_dev_buf.GetDeviceBuffer(),
XElementwiseOperation{},
YElementwiseOperation{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp)
add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp)
add_executable(client_batchnorm_infer_nhwc batchnorm_infer_nhwc.cpp)
target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations)
target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations)
target_link_libraries(client_batchnorm_infer_nhwc PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp"
using XDataType = ck::half_t;
using DxDataType = float;
using DyDataType = float;
using AccDataType = float;
using ScaleDataType = ck::half_t;
using DscaleDbiasDataType = float;
using MeanVarDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 4;
constexpr int NumBatchNormReduceDim = 3;
const double epsilon = std::numeric_limits<float>::epsilon();
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> xyLengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> xyStrides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarLengths{256};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarStrides{1};
std::array<int, NumBatchNormReduceDim> reduceDims{0, 1, 2};
ck::index_t numXYElement =
std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
1,
std::multiplies<ck::index_t>());
SimpleDeviceMem x(sizeof(XDataType) * numXYElement);
SimpleDeviceMem dy(sizeof(DyDataType) * numXYElement);
SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem invVariance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem dx(sizeof(DxDataType) * numXYElement);
SimpleDeviceMem dscale(sizeof(DscaleDbiasDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem dbias(sizeof(DscaleDbiasDataType) * numScaleBiasMeanVarElement);
using DeviceOp = ck::tensor_operation::device::DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
PassThrough,
Rank,
NumBatchNormReduceDim>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
dy.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
epsilon,
PassThrough{},
dx.GetDeviceBuffer(),
dscale.GetDeviceBuffer(),
dbias.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
numXYElement * (sizeof(XDataType) + sizeof(DyDataType) + sizeof(DxDataType)) +
numScaleBiasMeanVarElement *
(sizeof(ScaleDataType) + sizeof(DscaleDbiasDataType) * 2 +
sizeof(MeanVarDataType) * 2);
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
dy.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
epsilon,
PassThrough{},
dx.GetDeviceBuffer(),
dscale.GetDeviceBuffer(),
dbias.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp"
using XDataType = float;
using YDataType = float;
using AccDataType = float;
using ScaleDataType = AccDataType;
using BiasDataType = AccDataType;
using MeanVarDataType = AccDataType;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 4;
constexpr int NumBatchNormReduceDim = 3;
const double epsilon = std::numeric_limits<float>::epsilon();
const double averageFactor = 0.1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> xyLengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> xyStrides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarLengths{256};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarStrides{1};
std::array<int, NumBatchNormReduceDim> reduceDims{0, 1, 2};
ck::index_t numXYElement =
std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
1,
std::multiplies<ck::index_t>());
SimpleDeviceMem x(sizeof(XDataType) * numXYElement);
SimpleDeviceMem y(sizeof(YDataType) * numXYElement);
SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem bias(sizeof(BiasDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem invVariance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
using DeviceOp = ck::tensor_operation::device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
PassThrough,
Rank,
NumBatchNormReduceDim>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer(),
epsilon,
PassThrough{},
y.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
averageFactor,
nullptr,
nullptr);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
numXYElement * (sizeof(XDataType) + sizeof(YDataType)) +
numScaleBiasMeanVarElement * (sizeof(ScaleDataType) + sizeof(BiasDataType) +
sizeof(MeanVarDataType) + sizeof(MeanVarDataType));
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer(),
epsilon,
PassThrough{},
y.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
averageFactor,
nullptr,
nullptr);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp"
using XDataType = float;
using YDataType = float;
using ScaleDataType = float;
using BiasDataType = float;
using MeanVarDataType = float;
constexpr int Rank = 4;
constexpr int NumBatchNormReduceDim = 3;
using Normalize = ck::tensor_operation::element_wise::NormalizeInInfer;
const double epsilon = std::numeric_limits<float>::epsilon();
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> xyLengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> xyStrides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarLengths{256};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarStrides{1};
std::array<int, NumBatchNormReduceDim> reduceDims{0, 1, 2};
std::array<int, Rank - NumBatchNormReduceDim> invariantDims{3};
ck::index_t numXYElement =
std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
1,
std::multiplies<ck::index_t>());
SimpleDeviceMem x(sizeof(XDataType) * numXYElement);
SimpleDeviceMem y(sizeof(YDataType) * numXYElement);
SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem bias(sizeof(BiasDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem variance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
// values in variance need be non-negative
(void)hipMemset(
variance.GetDeviceBuffer(), 0, sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
std::array<ck::index_t, Rank> aligned_scaleBiasMeanVarStrides{0};
int i = 0;
for(auto dim : invariantDims)
{
assert(xyLengths[dim] == scaleBiasMeanVarLengths[i]);
aligned_scaleBiasMeanVarStrides[dim] = scaleBiasMeanVarStrides[i];
i++;
};
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<XDataType, MeanVarDataType, MeanVarDataType, ScaleDataType, BiasDataType>,
ck::Tuple<YDataType>,
Normalize,
Rank>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
{xyStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{xyStrides},
{x.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
variance.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer()},
{y.GetDeviceBuffer()},
Normalize{epsilon});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
numXYElement * (sizeof(XDataType) + sizeof(YDataType)) +
numScaleBiasMeanVarElement * (sizeof(ScaleDataType) + sizeof(BiasDataType) +
sizeof(MeanVarDataType) + sizeof(MeanVarDataType));
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
{xyStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{xyStrides},
{x.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
variance.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer()},
{y.GetDeviceBuffer()},
Normalize{epsilon});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_batchnorm_fwd_instance_id batchnorm_fwd_instance_id.cpp)
target_link_libraries(client_batchnorm_fwd_instance_id PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp"
using XDataType = float;
using YDataType = float;
using AccDataType = float;
using ScaleDataType = AccDataType;
using BiasDataType = AccDataType;
using MeanVarDataType = AccDataType;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 4;
constexpr int NumBatchNormReduceDim = 3;
const double epsilon = std::numeric_limits<float>::epsilon();
const double averageFactor = 0.1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// In the actual application, the instance index and name are usually from the perf db
static int instance_index = -1;
static std::string instance_name;
int main(int argc, char* argv[])
{
std::array<ck::index_t, Rank> xyLengths{16, 8, 128, 256};
std::array<ck::index_t, Rank> xyStrides{8 * 128 * 256, 128 * 256, 256, 1};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarLengths{256};
std::array<ck::index_t, Rank - NumBatchNormReduceDim> scaleBiasMeanVarStrides{1};
std::array<int, NumBatchNormReduceDim> reduceDims{0, 1, 2};
ck::index_t numXYElement =
std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies<ck::index_t>());
ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
1,
std::multiplies<ck::index_t>());
SimpleDeviceMem x(sizeof(XDataType) * numXYElement);
SimpleDeviceMem y(sizeof(YDataType) * numXYElement);
SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem bias(sizeof(BiasDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
SimpleDeviceMem invVariance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement);
using DeviceOp = ck::tensor_operation::device::DeviceBatchNormFwd<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
PassThrough,
Rank,
NumBatchNormReduceDim>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
bool found = false;
int best_op_index = -1;
float best_ave_time = std::numeric_limits<float>::max();
// profile device operation instances and save the best performant instance index and instance
// name
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer(),
epsilon,
PassThrough{},
y.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
averageFactor,
nullptr,
nullptr);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
if(ave_time < best_ave_time)
{
found = true;
best_op_index = i;
best_ave_time = ave_time;
}
}
}
if(found)
{
instance_index = best_op_index;
instance_name = op_ptrs[instance_index]->GetTypeIdHashCode();
};
// simulate the execution of the operation when the instance index and name are available
const auto op_ptrs_2 = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(instance_index >= 0 && instance_index < op_ptrs_2.size())
{
auto& op_ptr = op_ptrs_2[instance_index];
if(op_ptr->GetTypeIdHashCode() == instance_name)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths,
xyStrides,
xyStrides,
reduceDims,
scaleBiasMeanVarLengths,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
scaleBiasMeanVarStrides,
x.GetDeviceBuffer(),
scale.GetDeviceBuffer(),
bias.GetDeviceBuffer(),
epsilon,
PassThrough{},
y.GetDeviceBuffer(),
mean.GetDeviceBuffer(),
invVariance.GetDeviceBuffer(),
averageFactor,
nullptr,
nullptr);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float exec_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
size_t num_bytes = numXYElement * (sizeof(XDataType) + sizeof(YDataType)) +
numScaleBiasMeanVarElement *
(sizeof(ScaleDataType) + sizeof(BiasDataType) +
sizeof(MeanVarDataType) + sizeof(MeanVarDataType));
float gb_per_sec = num_bytes / 1.E6 / exec_time;
std::cout << "Kernel execution time: " << std::setw(10) << exec_time
<< " ms, effective data transfer bandwidth: " << gb_per_sec << " GB/s"
<< std::endl;
}
};
}
return 0;
}
add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp)
add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp)
target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip> #include <iomanip>
#include <iostream> #include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector> #include <vector>
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_forward.hpp" #include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t N = 16;
static constexpr ck::index_t K = 32;
static constexpr ck::index_t C = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 224;
static constexpr ck::index_t Wi = 224;
static constexpr ck::index_t Ho = 113;
static constexpr ck::index_t Wo = 113;
struct SimpleDeviceMem struct SimpleDeviceMem
{ {
SimpleDeviceMem() = delete; SimpleDeviceMem() = delete;
...@@ -47,30 +32,98 @@ struct SimpleDeviceMem ...@@ -47,30 +32,98 @@ struct SimpleDeviceMem
void* p_mem_; void* p_mem_;
}; };
int main(int argc, char* argv[]) std::size_t GetFlops(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& weights_spatial_lengths)
{
// 2 * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return static_cast<std::size_t>(2) * N * K * C *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename InDataType>
std::size_t
GetInputByte(ck::index_t N, ck::index_t C, const std::vector<ck::index_t>& input_spatial_lengths)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
return sizeof(InDataType) * N * C *
std::accumulate(std::begin(input_spatial_lengths),
std::end(input_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType>
std::size_t
GetWeightByte(ck::index_t K, ck::index_t C, const std::vector<ck::index_t>& weights_spatial_lengths)
{
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * K * C *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType>
std::size_t
GetOutputByte(ck::index_t N, ck::index_t K, const std::vector<ck::index_t>& output_spatial_lengths)
{
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return sizeof(OutDataType) * N * K *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool run_conv_bwd_data(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& in_spatial_lengths,
const std::vector<ck::index_t>& wei_spatial_lengths,
const std::vector<ck::index_t>& out_spatial_lengths)
{ {
std::vector<ck::index_t> in_spatial_lengths{Hi, Wi}; std::size_t in_mem_size = GetInputByte<InDataType>(N, C, in_spatial_lengths);
std::vector<ck::index_t> filter_spatial_lengths{Y, X}; std::size_t wei_mem_size = GetWeightByte<WeiDataType>(K, C, wei_spatial_lengths);
std::vector<ck::index_t> out_spatial_lengths{Ho, Wo}; std::size_t out_mem_size = GetOutputByte<OutDataType>(N, K, out_spatial_lengths);
std::vector<ck::index_t> filter_strides{2, 2};
std::vector<ck::index_t> filter_dilations{1, 1}; SimpleDeviceMem in(in_mem_size);
std::vector<ck::index_t> input_left_pads{2, 2}; SimpleDeviceMem wei(wei_mem_size);
std::vector<ck::index_t> input_right_pads{2, 2}; SimpleDeviceMem out(out_mem_size);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C); std::vector<ck::index_t> filter_strides(NumDimSpatial, 1);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C); std::vector<ck::index_t> filter_dilations(NumDimSpatial, 1);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K); std::vector<ck::index_t> input_left_pads(NumDimSpatial, 1);
std::vector<ck::index_t> input_right_pads(NumDimSpatial, 1);
using DeviceOp = ck::tensor_operation::device::DeviceConvFwd<NumDimSpatial,
InLayout, using DeviceOp = ck::tensor_operation::device::DeviceConvBwdData<NumDimSpatial,
WeiLayout, InLayout,
OutLayout, WeiLayout,
InDataType, OutLayout,
WeiDataType, InDataType,
OutDataType, WeiDataType,
PassThrough, OutDataType,
PassThrough, PassThrough,
PassThrough>; PassThrough,
PassThrough>;
// get device op instances // get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances(); DeviceOp>::GetInstances();
...@@ -83,6 +136,9 @@ int main(int argc, char* argv[]) ...@@ -83,6 +136,9 @@ int main(int argc, char* argv[])
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
float best_tflops = 0; float best_tflops = 0;
std::size_t flop = GetFlops(N, K, C, out_spatial_lengths, wei_spatial_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
// profile device operation instances // profile device operation instances
std::cout << "Run all instances and do timing" << std::endl; std::cout << "Run all instances and do timing" << std::endl;
...@@ -96,7 +152,7 @@ int main(int argc, char* argv[]) ...@@ -96,7 +152,7 @@ int main(int argc, char* argv[])
K, K,
C, C,
in_spatial_lengths, in_spatial_lengths,
filter_spatial_lengths, wei_spatial_lengths,
out_spatial_lengths, out_spatial_lengths,
filter_strides, filter_strides,
filter_dilations, filter_dilations,
...@@ -112,11 +168,6 @@ int main(int argc, char* argv[]) ...@@ -112,11 +168,6 @@ int main(int argc, char* argv[])
{ {
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * C +
sizeof(WeiDataType) * K * Y * X * C +
sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time; float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time;
...@@ -134,10 +185,16 @@ int main(int argc, char* argv[]) ...@@ -134,10 +185,16 @@ int main(int argc, char* argv[])
} }
else else
{ {
std::cout << op_name << " does not support this problem" << std::endl; std::cerr << op_name << " does not support this problem" << std::endl;
} }
} }
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
...@@ -153,7 +210,7 @@ int main(int argc, char* argv[]) ...@@ -153,7 +210,7 @@ int main(int argc, char* argv[])
K, K,
C, C,
in_spatial_lengths, in_spatial_lengths,
filter_spatial_lengths, wei_spatial_lengths,
out_spatial_lengths, out_spatial_lengths,
filter_strides, filter_strides,
filter_dilations, filter_dilations,
...@@ -172,6 +229,5 @@ int main(int argc, char* argv[]) ...@@ -172,6 +229,5 @@ int main(int argc, char* argv[])
std::cout << "Done" << std::endl; std::cout << "Done" << std::endl;
} }
return true;
return 0; }
}
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_gemm_add_multiply gemm_add_multiply.cpp)
target_link_libraries(client_gemm_add_multiply PRIVATE composable_kernel::device_operations)
\ No newline at end of file
This diff is collapsed.
add_executable(client_reduce_nhwc_c reduce_nhwc_c.cpp)
target_link_libraries(client_reduce_nhwc_c PRIVATE composable_kernel::device_operations)
This diff is collapsed.
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations)
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment