Unverified Commit 529bda90 authored by Max Podkorytov's avatar Max Podkorytov
Browse files

fork the kernel

parent 2a198f14
......@@ -9,7 +9,7 @@
#include "ck_tile/ops/fmha/block/block_position_encoding.hpp"
#include "ck_tile/ops/fmha/block/block_rotary_embedding.hpp"
#include "ck_tile/ops/fmha/block/page_block_navigator.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_flex_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include <string>
#include <type_traits>
#include <utility>
#include <variant>
// S[seqlen_q, seqlen_k] = Q[seqlen_q, hdim_q] @ K[seqlen_k, hdim_q]
// S'[seqlen_q, seqlen_k] = S[seqlen_q, seqlen_k] * Scale[1]
// S''[seqlen_q, seqlen_k] = S'[seqlen_q, seqlen_k] + Bias[seqlen_q, seqlen_k]
// P[seqlen_q, seqlen_k] = Softmax(S''[seqlen_q, seqlen_k])
// O[seqlen_q, hdim_v] = P[seqlen_q, seqlen_k] @ V^T[hdim_v, seqlen_k]
namespace ck_tile {
template <typename FmhaPipeline_, typename EpiloguePipeline_>
struct FmhaFwdKernel
{
using FmhaPipeline = ck_tile::remove_cvref_t<FmhaPipeline_>;
using EpiloguePipeline = ck_tile::remove_cvref_t<EpiloguePipeline_>;
static constexpr ck_tile::index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
static constexpr ck_tile::index_t kBlockPerCuInput = FmhaPipeline::Problem::kBlockPerCu;
using QDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::QDataType>;
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using BiasDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::BiasDataType>;
using RandValOutputDataType =
ck_tile::remove_cvref_t<typename FmhaPipeline::RandValOutputDataType>;
using LSEDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::LSEDataType>;
using ODataType = ck_tile::remove_cvref_t<typename FmhaPipeline::ODataType>;
using SaccDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::SaccDataType>;
using VLayout = ck_tile::remove_cvref_t<typename FmhaPipeline::VLayout>;
static constexpr bool kIsGroupMode = FmhaPipeline::kIsGroupMode;
static constexpr bool kPadSeqLenQ = FmhaPipeline::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = FmhaPipeline::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr auto BiasEnum = FmhaPipeline::BiasEnum;
static constexpr bool kStoreLSE = FmhaPipeline::kStoreLSE;
static constexpr bool kHasDropout = FmhaPipeline::kHasDropout;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
using FmhaMask = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaMask>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
// clang-format on
CK_TILE_HOST static std::string GetName()
{
// sync with generate.py
// clang-format off
using bfs = typename FmhaPipeline::BlockFmhaShape;
using g0br = typename bfs::Gemm0BlockWarps;
using g1br = typename bfs::Gemm1BlockWarps;
using g0wt = typename bfs::Gemm0WarpTile;
using g1wt = typename bfs::Gemm1WarpTile;
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadSeqLenK) n += "sk";
if (kPadHeadDimQ) n += "d";
if (kPadHeadDimV) n += "dv";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_d") + _TS_(bfs::kQKHeaddim) + "_" + _SS_(t2s<QDataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_"
"b" + _TS_(bfs::kM0) + "x" + _TS_(bfs::kN0) + "x" + _TS_(bfs::kK0) + "x" +
_TS_(bfs::kN1) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kQKHeaddim) + "_" +
"r" + _TS_(g0br::at(ck_tile::number<0>{})) + "x" + _TS_(g0br::at(ck_tile::number<1>{})) + "x" + _TS_(g0br::at(ck_tile::number<2>{})) + "_" +
"r" + _TS_(g1br::at(ck_tile::number<0>{})) + "x" + _TS_(g1br::at(ck_tile::number<1>{})) + "x" + _TS_(g1br::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g0wt::at(ck_tile::number<0>{})) + "x" + _TS_(g0wt::at(ck_tile::number<1>{})) + "x" + _TS_(g0wt::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g1wt::at(ck_tile::number<0>{})) + "x" + _TS_(g1wt::at(ck_tile::number<1>{})) + "x" + _TS_(g1wt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kHasDropout ? "_dropout" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
// clang-format on
}
template <ck_tile::index_t I> // to avoid duplicated base class prblem, introduce an template
// arg
struct FmhaFwdEmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct FmhaFwdCommonKargs
{
const void* q_ptr;
const void* k_ptr;
const void* v_ptr;
void* o_ptr;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
ck_tile::index_t hdim_q;
ck_tile::index_t hdim_v;
ck_tile::index_t num_head_q;
// for MQA/GQA, nhead could be different. This parameter is nhead_q / nhead_k
// if this param is larger than 1, indicate MQA/GQA case
ck_tile::index_t nhead_ratio_qk;
float scale_s;
ck_tile::index_t stride_q;
ck_tile::index_t stride_k;
ck_tile::index_t stride_v;
ck_tile::index_t stride_o;
ck_tile::index_t nhead_stride_q;
ck_tile::index_t nhead_stride_k;
ck_tile::index_t nhead_stride_v;
ck_tile::index_t nhead_stride_o;
};
struct FmhaFwdCommonBiasKargs
{
const void* bias_ptr = nullptr;
ck_tile::index_t stride_bias = 0;
ck_tile::index_t nhead_stride_bias = 0;
};
struct FmhaFwdBatchModeBiasKargs : FmhaFwdCommonBiasKargs
{
ck_tile::index_t batch_stride_bias = 0;
};
struct FmhaFwdAlibiKargs
{
// alibi is batch*nhead*1, no matter in batch/group mode, they are the same
const void* alibi_slope_ptr;
ck_tile::index_t alibi_slope_stride; // stride in batch, or 0 for all batch share same slope
};
struct FmhaFwdMaskKargs
{
// ck_tile::index_t window_size_left, window_size_right;
ck_tile::index_t window_size_left, window_size_right;
ck_tile::GenericAttentionMaskEnum mask_type;
};
struct FmhaFwdFp8StaticQuantKargs
{
float scale_p;
float scale_o;
};
struct FmhaFwdCommonLSEKargs
{
void* lse_ptr = nullptr;
ck_tile::index_t nhead_stride_lse = 0;
ck_tile::index_t batch_stride_lse = 0;
};
struct FmhaFwdDropoutSeedOffset
{
template <typename T>
union ValueOrPointer
{
T val;
const T* ptr;
};
ValueOrPointer<uint64_t> drop_seed;
ValueOrPointer<uint64_t> drop_offset;
bool is_drop_seed_offset_from_host;
};
struct FmhaFwdCommonDropoutKargs : FmhaFwdDropoutSeedOffset
{
void init_dropout(float p_drop, uint64_t seed, uint64_t offset)
{
float p_undrop = 1.0 - p_drop;
p_undrop_in_uint8_t =
uint8_t(std::floor(p_undrop * std::numeric_limits<uint8_t>::max()));
rp_undrop = 1.0 / p_undrop;
this->drop_seed.val = seed;
this->drop_offset.val = offset;
this->is_drop_seed_offset_from_host = true;
}
void init_dropout(float p_drop, const uint64_t* seed_ptr, const uint64_t* offset_ptr)
{
float p_undrop = 1.0 - p_drop;
p_undrop_in_uint8_t =
uint8_t(std::floor(p_undrop * std::numeric_limits<uint8_t>::max()));
rp_undrop = 1.0 / p_undrop;
this->drop_seed.ptr = seed_ptr;
this->drop_offset.ptr = offset_ptr;
this->is_drop_seed_offset_from_host = false;
}
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
bool is_store_randval = false;
void* rand_val_ptr = nullptr;
ck_tile::index_t stride_randval = 0;
ck_tile::index_t nhead_stride_randval = 0;
};
struct FmhaFwdBatchModeDropoutKargs : FmhaFwdCommonDropoutKargs
{
ck_tile::index_t batch_stride_randval = 0;
};
struct FmhaFwdBatchModeKargs
: FmhaFwdCommonKargs,
std::conditional_t<BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS,
FmhaFwdBatchModeBiasKargs,
std::conditional_t<BiasEnum == BlockAttentionBiasEnum::ALIBI,
FmhaFwdAlibiKargs,
FmhaFwdEmptyKargs<0>>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdCommonLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>,
std::conditional_t<kHasDropout, FmhaFwdBatchModeDropoutKargs, FmhaFwdEmptyKargs<4>>
{
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_o;
};
struct FmhaFwdGroupModeKargs
: FmhaFwdCommonKargs,
std::conditional_t<BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS,
FmhaFwdCommonBiasKargs,
std::conditional_t<BiasEnum == BlockAttentionBiasEnum::ALIBI,
FmhaFwdAlibiKargs,
FmhaFwdEmptyKargs<0>>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdCommonLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>,
std::conditional_t<kHasDropout, FmhaFwdCommonDropoutKargs, FmhaFwdEmptyKargs<4>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
const int32_t* seqlen_k_ptr;
};
using Kargs = std::conditional_t<kIsGroupMode, FmhaFwdGroupModeKargs, FmhaFwdBatchModeKargs>;
template <bool Cond = !kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargsImpl(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset)
{
Kargs kargs{{q_ptr,
k_ptr,
v_ptr,
o_ptr,
seqlen_q,
seqlen_k,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
#else
scale_s,
#endif
stride_q,
stride_k,
stride_v,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_o}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_o};
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
kargs.bias_ptr = bias_ptr;
kargs.stride_bias = stride_bias;
kargs.nhead_stride_bias = nhead_stride_bias;
kargs.batch_stride_bias = batch_stride_bias;
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
kargs.alibi_slope_ptr = bias_ptr;
kargs.alibi_slope_stride = stride_bias;
}
if constexpr(kHasMask)
{
kargs.window_size_left = window_size_left;
kargs.window_size_right = window_size_right;
kargs.mask_type = static_cast<ck_tile::GenericAttentionMaskEnum>(mask_type);
}
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
if constexpr(kHasDropout)
{
if(drop_seed_offset.index() == 0) // seed & offset come from host
{
const auto& [seed, offset] = std::get<0>(drop_seed_offset);
kargs.init_dropout(p_drop, seed, offset);
}
else // seed & offset come from device
{
const auto& [seed_ptr, offset_ptr] = std::get<1>(drop_seed_offset);
kargs.init_dropout(p_drop,
reinterpret_cast<const uint64_t*>(seed_ptr),
reinterpret_cast<const uint64_t*>(offset_ptr));
}
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.batch_stride_randval = batch_stride_randval;
kargs.is_store_randval = s_randval;
}
return kargs;
}
// std::variant<> can't take in a list initializer, overload for backward compatibility
template <bool Cond = !kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
return MakeKargsImpl(
q_ptr,
k_ptr,
v_ptr,
bias_ptr,
rand_val_ptr,
lse_ptr,
o_ptr,
seqlen_q,
seqlen_k,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
scale_s,
scale_p,
scale_o,
stride_q,
stride_k,
stride_v,
stride_bias,
stride_randval,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_bias,
nhead_stride_randval,
nhead_stride_lse,
nhead_stride_o,
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_bias,
batch_stride_randval,
batch_stride_lse,
batch_stride_o,
window_size_left,
window_size_right,
mask_type,
p_drop,
s_randval,
std::make_pair(std::get<0>(drop_seed_offset), std::get<1>(drop_seed_offset)));
}
// std::variant<> can't take in a list initializer, overload for backward compatibility
template <bool Cond = !kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<const void*, const void*>& drop_seed_offset)
{
return MakeKargsImpl(
q_ptr,
k_ptr,
v_ptr,
bias_ptr,
rand_val_ptr,
lse_ptr,
o_ptr,
seqlen_q,
seqlen_k,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
scale_s,
scale_p,
scale_o,
stride_q,
stride_k,
stride_v,
stride_bias,
stride_randval,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_bias,
nhead_stride_randval,
nhead_stride_lse,
nhead_stride_o,
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_bias,
batch_stride_randval,
batch_stride_lse,
batch_stride_o,
window_size_left,
window_size_right,
mask_type,
p_drop,
s_randval,
std::make_pair(std::get<0>(drop_seed_offset), std::get<1>(drop_seed_offset)));
}
template <bool Cond = kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargsImpl(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset)
{
Kargs kargs{{q_ptr,
k_ptr,
v_ptr,
o_ptr,
-1, // seqlen will be updated by another pointer
-1, //
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
#else
scale_s,
#endif
stride_q,
stride_k,
stride_v,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_o}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr),
reinterpret_cast<const int32_t*>(seqlen_k_ptr)};
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
kargs.bias_ptr = bias_ptr;
kargs.stride_bias = stride_bias;
kargs.nhead_stride_bias = nhead_stride_bias;
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
kargs.alibi_slope_ptr = bias_ptr;
kargs.alibi_slope_stride = stride_bias;
}
if constexpr(kHasMask)
{
kargs.window_size_left = window_size_left;
kargs.window_size_right = window_size_right;
kargs.mask_type = static_cast<ck_tile::GenericAttentionMaskEnum>(mask_type);
}
if constexpr(kStoreLSE)
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
if constexpr(kHasDropout)
{
if(drop_seed_offset.index() == 0) // seed & offset come from host
{
const auto& [seed, offset] = std::get<0>(drop_seed_offset);
kargs.init_dropout(p_drop, seed, offset);
}
else // seed & offset come from device
{
const auto& [seed_ptr, offset_ptr] = std::get<1>(drop_seed_offset);
kargs.init_dropout(p_drop,
reinterpret_cast<const uint64_t*>(seed_ptr),
reinterpret_cast<const uint64_t*>(offset_ptr));
}
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.is_store_randval = s_randval;
}
return kargs;
}
// std::variant<> can't take in a list initializer, overload for backward compatibility
template <bool Cond = kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
return MakeKargsImpl(
q_ptr,
k_ptr,
v_ptr,
bias_ptr,
rand_val_ptr,
lse_ptr,
o_ptr,
seqstart_q_ptr,
seqstart_k_ptr,
seqlen_k_ptr,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
scale_s,
scale_p,
scale_o,
stride_q,
stride_k,
stride_v,
stride_bias,
stride_randval,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_bias,
nhead_stride_randval,
nhead_stride_lse,
nhead_stride_o,
window_size_left,
window_size_right,
mask_type,
p_drop,
s_randval,
std::make_pair(std::get<0>(drop_seed_offset), std::get<1>(drop_seed_offset)));
}
// std::variant<> can't take in a list initializer, overload for backward compatibility
template <bool Cond = kIsGroupMode>
CK_TILE_HOST static constexpr std::enable_if_t<Cond, Kargs>
MakeKargs(const void* q_ptr,
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
float scale_o,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<const void*, const void*>& drop_seed_offset)
{
return MakeKargsImpl(
q_ptr,
k_ptr,
v_ptr,
bias_ptr,
rand_val_ptr,
lse_ptr,
o_ptr,
seqstart_q_ptr,
seqstart_k_ptr,
seqlen_k_ptr,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
scale_s,
scale_p,
scale_o,
stride_q,
stride_k,
stride_v,
stride_bias,
stride_randval,
stride_o,
nhead_stride_q,
nhead_stride_k,
nhead_stride_v,
nhead_stride_bias,
nhead_stride_randval,
nhead_stride_lse,
nhead_stride_o,
window_size_left,
window_size_right,
mask_type,
p_drop,
s_randval,
std::make_pair(std::get<0>(drop_seed_offset), std::get<1>(drop_seed_offset)));
}
CK_TILE_HOST static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_,
bool has_padded_seqlen_k = false)
{
// has_padded_seqlen_k is determined by checking (seqlen_k_ptr != nullptr)
if(has_padded_seqlen_k)
{
// TODO: this may need tuning
return dim3(nhead_,
batch_size_,
ck_tile::integer_divide_ceil(seqlen_q_, FmhaPipeline::kM0) *
ck_tile::integer_divide_ceil(hdim_v_, FmhaPipeline::kN1));
}
else
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, FmhaPipeline::kM0) *
ck_tile::integer_divide_ceil(hdim_v_, FmhaPipeline::kN1),
nhead_,
batch_size_);
}
}
CK_TILE_DEVICE static constexpr auto GetTileIndex(const Kargs& kargs)
{
bool has_padded_seqlen_k = false;
if constexpr(kIsGroupMode)
has_padded_seqlen_k = (kargs.seqlen_k_ptr != nullptr);
if(has_padded_seqlen_k)
{
// const index_t num_tile_m0 = seqlen_q / kM0;
const index_t num_tile_n1 =
ck_tile::integer_divide_ceil(kargs.hdim_v, FmhaPipeline::kN1);
const index_t i_block = blockIdx.z;
const index_t i_nhead = blockIdx.x;
const index_t i_batch = blockIdx.y;
const auto f = [](index_t dividend, index_t divisor) {
index_t quotient = dividend / divisor;
index_t modulus = dividend - quotient * divisor;
return ck_tile::make_tuple(quotient, modulus);
};
const auto [i_tile_m, i_tile_n] = f(i_block, num_tile_n1);
return ck_tile::make_tuple(i_tile_m, i_tile_n, i_nhead, i_batch);
}
else
{
// const index_t num_tile_m0 = seqlen_q / kM0;
const index_t num_tile_n1 =
ck_tile::integer_divide_ceil(kargs.hdim_v, FmhaPipeline::kN1);
const index_t i_block = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
const auto f = [](index_t dividend, index_t divisor) {
index_t quotient = dividend / divisor;
index_t modulus = dividend - quotient * divisor;
return ck_tile::make_tuple(quotient, modulus);
};
const auto [i_tile_m, i_tile_n] = f(i_block, num_tile_n1);
return ck_tile::make_tuple(i_tile_m, i_tile_n, i_nhead, i_batch);
}
}
CK_TILE_HOST static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return ck_tile::max(FmhaPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
// divide problem
const auto [i_tile_m, i_tile_n, i_nhead, i_batch] = GetTileIndex(kargs);
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
long_index_t batch_offset_q = 0;
long_index_t batch_offset_k = 0;
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_randval = 0;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kIsGroupMode)
{
// get starting offset for each batch
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
const long_index_t key_start = kargs.seqstart_k_ptr[i_batch];
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
batch_offset_v = key_start * kargs.stride_v;
}
else
{
batch_offset_v = key_start;
}
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
batch_offset_bias = query_start * kargs.stride_bias + key_start;
}
if constexpr(kStoreLSE)
{
batch_offset_lse = query_start;
}
if constexpr(kHasDropout)
{
batch_offset_randval = query_start * kargs.stride_randval;
}
batch_offset_o = query_start * kargs.stride_o;
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
kargs.seqlen_q = adjusted_seqstart_q_ptr[1] - adjusted_seqstart_q_ptr[0];
// # of required blocks is different in each groups, terminate unnecessary blocks
// earlier
if(kargs.seqlen_q <= i_m0)
{
return;
}
if(kargs.seqlen_k_ptr != nullptr)
{
kargs.seqlen_k = kargs.seqlen_k_ptr[i_batch];
}
else
{
const auto adjusted_seqstart_k_ptr = kargs.seqstart_k_ptr + i_batch;
kargs.seqlen_k = adjusted_seqstart_k_ptr[1] - adjusted_seqstart_k_ptr[0];
}
}
else
{
batch_offset_q = static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
batch_offset_k = static_cast<long_index_t>(i_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_batch) * kargs.batch_stride_v;
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
batch_offset_bias = static_cast<long_index_t>(i_batch) * kargs.batch_stride_bias;
}
if constexpr(kStoreLSE)
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
if constexpr(kHasDropout)
{
batch_offset_randval =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_randval;
}
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
}
// for simplicity, batch stride we just modify the pointer
const QDataType* q_ptr = reinterpret_cast<const QDataType*>(kargs.q_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_q +
batch_offset_q;
const KDataType* k_ptr =
reinterpret_cast<const KDataType*>(kargs.k_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_k +
batch_offset_k;
const VDataType* v_ptr =
reinterpret_cast<const VDataType*>(kargs.v_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_v +
batch_offset_v;
ODataType* o_ptr = reinterpret_cast<ODataType*>(kargs.o_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_o +
batch_offset_o;
// Q/K/V DRAM and DRAM window
const auto q_dram = [&]() {
const auto q_dram_naive = make_naive_tensor_view<address_space_enum::global>(
q_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQ>{},
number<1>{});
if constexpr(FmhaPipeline::kQLoadOnce)
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kSubQKHeaddim>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
else
{
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
}();
const auto k_dram = [&]() {
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
k_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_q),
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
const auto v_dram = [&]() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_v),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto v_dram_transposed =
transform_tensor_view(v_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_k)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.hdim_v, kargs.seqlen_k),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
}();
auto q_dram_window = make_tile_window(
q_dram,
[&]() {
if constexpr(FmhaPipeline::kQLoadOnce)
return make_tuple(number<FmhaPipeline::kM0>{},
number<FmhaPipeline::kSubQKHeaddim>{});
else
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{});
}(),
{i_m0, 0});
auto k_dram_window = make_tile_window(
k_dram, make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}), {0, 0});
auto v_dram_window =
make_tile_window(v_dram,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
{i_n1, 0});
/// FIXME: Before C++20, capturing structured binding variables are not supported. Remove
/// following copy capture of the 'i_nhead' if in C++20
const auto bias_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto bias_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
const BiasDataType* bias_ptr =
reinterpret_cast<const BiasDataType*>(kargs.bias_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_bias +
batch_offset_bias;
const auto bias_dram = [&]() {
const auto bias_dram_naive = make_naive_tensor_view<address_space_enum::global>(
bias_ptr,
make_tuple(kargs.seqlen_q, kargs.seqlen_k),
make_tuple(kargs.stride_bias, 1),
number<FmhaPipeline::kAlignmentBias>{},
number<1>{});
return pad_tensor_view(bias_dram_naive,
bias_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
}();
return make_tile_window(bias_dram, bias_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(bias_dram_window_lengths);
}
}();
// lse
auto lse_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto lse_dram_window_lengths = make_tuple(number<FmhaPipeline::kM0>{});
if constexpr(kStoreLSE)
{
LSEDataType* lse_ptr =
reinterpret_cast<LSEDataType*>(kargs.lse_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_lse + batch_offset_lse;
const auto lse_dram = [&]() {
const auto lse_dram_naive = make_naive_tensor_view<address_space_enum::global>(
lse_ptr,
make_tuple(kargs.seqlen_q),
make_tuple(1),
number<1>{},
number<1>{});
return pad_tensor_view(
lse_dram_naive, lse_dram_window_lengths, sequence<kPadSeqLenQ>{});
}();
return make_tile_window(lse_dram, lse_dram_window_lengths, {i_m0});
}
else
{
return make_null_tile_window(lse_dram_window_lengths);
}
}();
auto dropout = [&, i_nhead_ = i_nhead, i_batch_ = i_batch]() {
if constexpr(kHasDropout)
{
return BlockDropout{i_batch_,
i_nhead_,
kargs.num_head_q,
kargs.is_drop_seed_offset_from_host ? kargs.drop_seed.val
: *kargs.drop_seed.ptr,
kargs.is_drop_seed_offset_from_host ? kargs.drop_offset.val
: *kargs.drop_offset.ptr,
kargs.rp_undrop,
kargs.p_undrop_in_uint8_t,
kargs.is_store_randval};
}
else
{
return NullBlockDropout{};
};
}();
auto randval_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto randval_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(kHasDropout)
{
RandValOutputDataType* rand_val_ptr =
reinterpret_cast<RandValOutputDataType*>(kargs.rand_val_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_randval +
batch_offset_randval;
const auto randval_dram = [&]() {
const auto randval_dram_naive =
make_naive_tensor_view<address_space_enum::global>(
rand_val_ptr,
make_tuple(kargs.seqlen_q, kargs.seqlen_k),
make_tuple(kargs.stride_randval, 1),
number<1>{},
number<1>{});
return pad_tensor_view(randval_dram_naive,
randval_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
}();
return make_tile_window(randval_dram, randval_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(randval_dram_window_lengths);
}
}();
FmhaMask mask = [&]() {
if constexpr(kHasMask)
return ck_tile::make_generic_attention_mask_from_lr_window<FmhaMask>(
kargs.window_size_left,
kargs.window_size_right,
kargs.seqlen_q,
kargs.seqlen_k,
kargs.mask_type == GenericAttentionMaskEnum::MASK_FROM_TOP_LEFT);
else
return FmhaMask{kargs.seqlen_q, kargs.seqlen_k};
}();
// WA i_batch capture structure binding before c++20
auto position_encoding = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
// data loading, shared by entire wg
// TODO: how to use s_read?
SaccDataType slope =
*(reinterpret_cast<const SaccDataType*>(kargs.alibi_slope_ptr) +
i_batch_ * kargs.alibi_slope_stride + i_nhead_);
#if CK_TILE_FMHA_FWD_FAST_EXP2
slope *= ck_tile::log2e_v<>;
#endif
if constexpr(kHasMask)
{
return make_alibi_from_lr_mask<SaccDataType, true>(slope,
kargs.window_size_left,
kargs.window_size_right,
kargs.seqlen_q,
kargs.seqlen_k,
kargs.mask_type);
}
else
{
return Alibi<SaccDataType, true>{
slope, kargs.seqlen_q, kargs.seqlen_k, AlibiMode::FROM_BOTTOM_RIGHT};
}
}
else
{
return EmptyPositionEncoding<SaccDataType>{};
}
}();
auto o_acc_tile = [&]() {
if constexpr(kDoFp8StaticQuant)
{
return FmhaPipeline{}(
q_dram_window,
identity{}, // q_element_func
k_dram_window,
identity{}, // k_element_func
v_dram_window,
identity{}, // v_element_func
bias_dram_window,
identity{}, // bias_element_func
randval_dram_window,
lse_dram_window,
identity{}, // lse_element_func
identity{}, // s_acc_element_func
scales{kargs.scale_p}, // p_compute_element_func
composes(saturates<fp8_t>{}, scales{kargs.scale_o}), // o_acc_element_func
mask,
position_encoding,
kargs.scale_s,
smem_ptr,
dropout);
}
else
{
return FmhaPipeline{}(q_dram_window,
k_dram_window,
v_dram_window,
bias_dram_window,
randval_dram_window,
lse_dram_window,
mask,
position_encoding,
kargs.scale_s,
smem_ptr,
dropout);
}
}();
// O DRAM and O DRAM window
auto o_dram = [&]() {
const auto o_dram_naive = make_naive_tensor_view<address_space_enum::global>(
o_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_v),
make_tuple(kargs.stride_o, 1),
number<FmhaPipeline::kAlignmentO>{},
number<1>{});
return pad_tensor_view(
o_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<kPadSeqLenQ, kPadHeadDimV>{});
}();
auto o_dram_window =
make_tile_window(o_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
{i_m0, i_n1});
EpiloguePipeline{}(o_dram_window, o_acc_tile);
}
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment