Commit 522b7aee authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge remote-tracking branch 'origin/develop' into aosewski/ggemm_multi_d2

parents ff936fd6 84832fc4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include "common.hpp"
......@@ -29,3 +27,4 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
#include "run_grouped_conv_fwd_bias_relu_add_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_fwd_bias_relu_add_example(argc, argv); }
#endif
......@@ -9,9 +9,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
Gemm1
*/
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include <iostream>
#include <numeric>
......@@ -144,3 +142,4 @@ static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
int main(int argc, char* argv[]) { return run_batched_gemm_gemm_example(argc, argv) ? 0 : 1; }
#endif
......@@ -157,7 +157,7 @@ bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& con
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 1});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......
......@@ -42,7 +42,7 @@ using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::KPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
// clang-format off
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#include <cstdlib>
#include <iostream>
......@@ -120,3 +118,4 @@ static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
int main(int argc, char* argv[]) { return run_grouped_conv_conv_fwd_example(argc, argv) ? 0 : 1; }
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......@@ -14,8 +17,8 @@
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using ADataType = F32;
using BDataType = F32;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
......@@ -25,10 +28,10 @@ using DeviceElementwisePermuteInstance =
2, // NumDim_m, {N, C}
2, // NumDim_n, {H, W}
1, // NumDim_k, {D}
8, // MPerThread
8, // NPerThread
8, // KPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
4, // MPerThread
4, // NPerThread
4, // KPerThread
ck::Sequence<4>, // InScalarPerVectorSeq
ck::Sequence<4>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include <random>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
......
......@@ -32,6 +32,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
throw std::runtime_error("Pool3d_fwd: problem with layout. ");
return {0, 0, 0, 0, 0};
};
template <typename TensorLayout>
......@@ -53,6 +55,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
throw std::runtime_error("Pool3d_fwd: problem with layout. ");
return HostTensorDescriptor({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
};
template <typename DevicePoolFwdInstance,
......
......@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return {0, 0, 0, 0, 0};
};
template <typename TensorLayout>
......@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return HostTensorDescriptor({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
};
template <typename DevicePoolBwdInstance,
......
......@@ -213,12 +213,12 @@
#define CK_WORKAROUND_SWDEV_388832 1
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 1
#define DEBUG_LOG 0
// denorm test fix, required to work around dissue
#ifndef CK_WORKAROUND_DENORM_FIX
#define CK_WORKAROUND_DENORM_FIX 0
#elif
#else
// enable only on MI200
#define CK_WORKAROUND_DENORM_FIX = CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#endif // CK_WORKAROUND_DENORM_FIX
......
......@@ -12,8 +12,9 @@ inline void hip_check_error(hipError_t x)
if(x != hipSuccess)
{
std::ostringstream ss;
ss << "HIP runtime error: " << hipGetErrorString(x) << ". " << __FILE__ << ": " << __LINE__
<< "in function: " << __func__;
ss << "HIP runtime error: " << hipGetErrorString(x) << ". "
<< "hip_check_error.hpp"
<< ": " << __LINE__ << "in function: " << __func__;
throw std::runtime_error(ss.str());
}
}
......@@ -25,8 +26,9 @@ inline void hip_check_error(hipError_t x)
if(_tmpVal != hipSuccess) \
{ \
std::ostringstream ostr; \
ostr << "HIP Function Failed (" << __FILE__ << "," << __LINE__ << ") " \
<< hipGetErrorString(_tmpVal); \
ostr << "HIP Function Failed (" \
<< "hip_check_error.hpp" \
<< "," << __LINE__ << ") " << hipGetErrorString(_tmpVal); \
throw std::runtime_error(ostr.str()); \
} \
} while(0)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -30,7 +30,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
block_dim.y,
block_dim.z);
printf("Warm up 1 time\n");
printf("Warm up %d times\n", stream_config.cold_niters_);
#endif
// warm up
for(int i = 0; i < stream_config.cold_niters_; ++i)
......
......@@ -11,6 +11,6 @@ struct StreamConfig
hipStream_t stream_id_ = nullptr;
bool time_kernel_ = false;
int log_level_ = 0;
int cold_niters_ = 1;
int nrepeat_ = 10;
int cold_niters_ = 5;
int nrepeat_ = 50;
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/loop_scheduler.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/xdlops_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
// Double LDS buffer
// Prefetech 2 stage
// Local prefetch 1 stage
namespace ck {
template <index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t ABufferLoadWidth,
index_t BBufferLoadWidth,
index_t ALDSWriteWidth,
index_t BLDSWriteWidth,
index_t ALDSReadWidth,
index_t BLDSReadWidth,
index_t MRepeat,
index_t NRepeat,
index_t MPerXDL,
index_t NPerXDL,
index_t KPerXDL>
struct BlockwiseGemmXdlops_pipeline_hotloop_inst
{
static constexpr index_t WaveSize = 64;
static constexpr index_t WaveNumM = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t WaveNumN = NPerBlock / (NRepeat * NPerXDL);
static constexpr index_t A_Buffer_Load_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * ABufferLoadWidth);
static constexpr index_t B_Buffer_Load_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * BBufferLoadWidth);
static constexpr index_t A_LDS_Write_Inst_Num =
MPerBlock * KPerBlock / (BlockSize * ALDSWriteWidth);
static constexpr index_t B_LDS_Write_Inst_Num =
NPerBlock * KPerBlock / (BlockSize * BLDSWriteWidth);
static constexpr index_t A_LDS_Read_Inst_Num =
WaveNumN * MPerBlock * KPerBlock / (BlockSize * ALDSReadWidth);
static constexpr index_t B_LDS_Read_Inst_Num =
WaveNumM * MPerBlock * KPerBlock / (BlockSize * BLDSReadWidth);
static constexpr index_t C_MFMA_Inst_Num =
MPerBlock * NPerBlock * KPerBlock / (BlockSize / WaveSize) / (MPerXDL * NPerXDL * KPerXDL);
static constexpr auto Print()
{
printf(" Blk/Wave Size: %d, %d, M/N/K PerBlk: %d, %d, %d, M/N/K PerXdl: %d, %d, %d\n",
BlockSize,
WaveSize,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
KPerXDL);
printf(" A/B buffer load inst: %d, %d\n A/B LDS write inst: %d, %d\n A/B LDS read inst: "
"%d, %d\n C MFMA inst: %d\n",
A_Buffer_Load_Inst_Num,
B_Buffer_Load_Inst_Num,
A_LDS_Write_Inst_Num,
B_LDS_Write_Inst_Num,
A_LDS_Read_Inst_Num,
B_LDS_Read_Inst_Num,
C_MFMA_Inst_Num);
}
};
template <
index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool TransposeC = false,
index_t AMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, FloatAB, TransposeC>{}.K0PerXdlops,
index_t BMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, FloatAB, TransposeC>{}.K0PerXdlops>
struct BlockwiseGemmXdlops_pipeline_v4
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t WaveSize = get_warp_size();
static constexpr index_t A_K0 = ATileDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BTileDesc{}.GetLength(I0);
static constexpr index_t A_K1 = ATileDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BTileDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm =
XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, FloatAB, TransposeC>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t KRepeat = KPerThread / KPack;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
using HotLoopInstList = BlockwiseGemmXdlops_pipeline_hotloop_inst<BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
A_K1,
B_K1,
A_K1,
B_K1,
KPack,
KPack,
MRepeat,
NRepeat,
MPerXDL,
NPerXDL,
xdlops_gemm.KPerXdlops>;
static_assert(KPerThread % KPack == 0,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack");
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPack * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPack * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex8D(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk4D(xdlops_i, blk_i);
return make_tuple(
m0, n0, waveId_m, waveId_n, blk_idx[I0], blk_idx[I1], blk_idx[I2], blk_idx[I3]);
}
using Tuple4 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__
BlockwiseGemmXdlops_pipeline_v4(Tuple4 a_origin = CalculateAThreadOriginDataIndex(),
Tuple4 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(AMmaTileDesc::IsKnownAtCompileTime() && BMmaTileDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
// HotLoopInstList::Print();
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, N, M0, M1, M2));
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4(c_block_desc_m0_n0_m1_n1_m2_n2);
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
__device__ static constexpr auto HotLoopScheduler()
{
// schedule
constexpr auto num_ds_read_inst =
HotLoopInstList::A_LDS_Read_Inst_Num + HotLoopInstList::B_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst =
HotLoopInstList::A_LDS_Write_Inst_Num + HotLoopInstList::B_LDS_Write_Inst_Num;
;
constexpr auto num_buffer_load_inst =
HotLoopInstList::A_Buffer_Load_Inst_Num + HotLoopInstList::B_Buffer_Load_Inst_Num;
;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto num_issue = num_buffer_load_inst;
static_for<0, num_issue, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(
0x100, num_ds_read_inst / num_buffer_load_inst, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(
0x200, num_ds_write_inst / num_buffer_load_inst, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_inst / num_buffer_load_inst - 3, 0); // MFMA
});
}
template <index_t stage>
__device__ static constexpr auto TailScheduler()
{
}
template <>
__device__ static constexpr auto TailScheduler<1>()
{
// schedule
constexpr auto num_ds_read_inst =
HotLoopInstList::A_LDS_Read_Inst_Num + HotLoopInstList::B_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst =
HotLoopInstList::A_LDS_Write_Inst_Num + HotLoopInstList::B_LDS_Write_Inst_Num;
;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto num_issue = num_ds_write_inst;
static_for<0, num_issue, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(
0x100, num_ds_read_inst / num_ds_write_inst - 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_inst / num_ds_write_inst - 3, 0); // MFMA
});
}
template <>
__device__ static constexpr auto TailScheduler<2>()
{
// schedule
constexpr auto num_ds_read_inst =
HotLoopInstList::A_LDS_Read_Inst_Num + HotLoopInstList::B_LDS_Read_Inst_Num;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto num_issue = num_ds_read_inst;
static_for<0, num_issue, 1>{}([&](auto i) {
ignore = i;
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_inst / num_ds_read_inst, 0); // MFMA
});
}
static constexpr AMmaTileDesc a_block_desc_m0_m1_m2_k;
static constexpr BMmaTileDesc b_block_desc_n0_n1_n2_k;
template <bool HasMainLoop,
index_t TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
StaticallyIndexedArray<decltype(a_thread_buf), Number<2>{}> a_thread_bufs;
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
// Inst List:
// ds_read_b128: 16
// ds_write_b128: 8
// buffer_load_dwordx4: 16
// v_mfma: 0
// -------------------------------------------------------------------------------------------
// Global prefetch 1th, Fill Ping LDS
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I0));
// Local prefetch 1th, Fill Ping Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(I0));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(I0),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(I0));
});
});
});
// Global prefetch 2th, Fill Pong LDS
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I1));
// Global prefetch 3rd
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
// This hot loop has two legacy loopover, to implement the double local buffer strategy
do
{
// -------------------------------------------------------------------------------------------
using PingP1 = Number<0>;
using PongP1 = Number<1>;
// MFMA: Ping Reg
// DS_WRITE: To Ping LDS
// DS_READ: Pong LDS to Pong Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(PongP1{}),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(PongP1{}));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(PongP1{}),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(PongP1{}));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(PingP1{}));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(PingP1{}));
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP1{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP1{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
// -------------------------------------------------------------------------------------------
using PingP2 = Number<1>;
using PongP2 = Number<0>;
// MFMA: Pong Reg
// DS_WRITE: To Pong LDS
// DS_READ: Ping LDS to Ping Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(PongP2{}),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(PongP2{}));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(PongP2{}),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(PongP2{}));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(PingP2{}));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(PingP2{}));
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP2{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP2{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
i += 2;
} while(i < (num_loop - 3));
}
// tail
if constexpr(TailNum == 3)
{
using PingP1 = Number<0>;
using PongP1 = Number<1>;
// MFMA: Ping Reg
// DS_WRITE: To Ping LDS
// DS_READ: Pong LDS to Pong Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(PongP1{}),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(PongP1{}));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(PongP1{}),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(PongP1{}));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(PingP1{}));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(PingP1{}));
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP1{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP1{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
TailScheduler<1>();
__builtin_amdgcn_sched_barrier(0);
// -------------------------------------------------------------------------------------------
using PingP2 = Number<1>;
using PongP2 = Number<0>;
// MFMA: Pong Reg
// DS_WRITE: To Pong LDS
// DS_READ: Ping LDS to Ping Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(PongP2{}),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(PongP2{}));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(PongP2{}),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(PongP2{}));
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP2{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP2{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
TailScheduler<2>();
__builtin_amdgcn_sched_barrier(0);
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PongP2{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PongP2{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
// 64 v_mfma
__builtin_amdgcn_sched_group_barrier(0x008, 64, 0); // MFMA
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(TailNum == 2)
{
using PingP1 = Number<0>;
using PongP1 = Number<1>;
// MFMA: Ping Reg
// DS_WRITE: To Ping LDS
// DS_READ: Pong LDS to Pong Reg
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(PongP1{}),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(PongP1{}));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(PongP1{}),
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(PongP1{}));
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP1{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP1{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
TailScheduler<2>();
__builtin_amdgcn_sched_barrier(0);
// -------------------------------------------------------------------------------------------
using PingP2 = Number<1>;
// MFMA: Pong Reg
// DS_WRITE: To Pong LDS
// DS_READ: Ping LDS to Ping Reg
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_bufs[PingP2{}][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_bufs[PingP2{}][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
// 64 v_mfma
__builtin_amdgcn_sched_group_barrier(0x008, 64, 0); // MFMA
__builtin_amdgcn_sched_barrier(0);
}
}
protected:
// M1, N1 as double buffer index
// Read buffer + Compute buffer
// A[M0, M1, M2, KPack]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<MRepeat>{}, I1, Number<KRepeat>{}, Number<KPack>{}),
make_tuple(
Number<KPack>{}, Number<KPack * MRepeat * KPack>{}, Number<MRepeat * KPack>{}, I1));
// B[N0, N1, N2, KPack]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<NRepeat>{}, I1, Number<KRepeat>{}, Number<KPack>{}),
make_tuple(
Number<KPack>{}, Number<KPack * MRepeat * KPack>{}, Number<MRepeat * KPack>{}, I1));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment