"vscode:/vscode.git/clone" did not exist on "4b45a7185a77318a2e36658e6f73cdc66f288272"
Commit 4f65f7b3 authored by aska-0096's avatar aska-0096
Browse files

tempsave

parent c8b6b642
......@@ -28,6 +28,7 @@ add_example_executable(example_gemm_xdl_fp16_v3 gemm_xdl_fp16_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_v3)
add_example_executable(example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_v3)
target_compile_options(example_gemm_xdl_fp8_v3 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_xdl_fp16_fp8_v3 gemm_xdl_fp16_fp8_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8_v3)
add_example_executable(example_gemm_xdl_bf16_v3 gemm_xdl_bf16_v3.cpp)
......
......@@ -8,8 +8,8 @@
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using CShuffleDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
......@@ -28,10 +28,10 @@ using DeviceGemmV2Instance =
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
224, 256,
256, 256,
128, 16, 16,
16, 16,
7, 8,
8, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
......@@ -40,8 +40,14 @@ using DeviceGemmV2Instance =
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3, ck::f8_t>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp,
ck::f8_t>;
#include "run_gemm_example_v2.inc"
......
add_example_executable(example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp)
target_compile_options(example_gemm_multiply_multiply_xdl_fp8 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp)
add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
......@@ -24,7 +24,7 @@
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using FP8 = ck::f8_t;
using F32 = float;
......@@ -38,7 +38,7 @@ using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using EDataType = BF16;
using A0Layout = Row;
using B0Layout = Col;
......@@ -54,12 +54,12 @@ struct MultiplyMultiply
operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, float, float>(
ck::half_t& e, const float& c, const float& d0, const float& d1) const
__host__ __device__ constexpr void operator()<ck::bhalf_t, float, float, float>(
ck::bhalf_t& e, const float& c, const float& d0, const float& d1) const
{
const float x0_f = c * d0 * d1;
e = ck::type_convert<ck::half_t>(x0_f);
e = ck::type_convert<ck::bhalf_t>(x0_f);
}
};
......@@ -69,7 +69,7 @@ using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyMultiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
......@@ -80,7 +80,16 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
///###### RRR
///< Row, Row, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
///###### RCR
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
< Row, Col, DsLayout, ELayout,
A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec, 256,
256, 256, 128,
16, 16,
16, 16,
8, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
// clang-format on
int main(int argc, char* argv[])
......@@ -256,7 +265,8 @@ int main(int argc, char* argv[])
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
PassThrough,
FP8>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......
......@@ -276,7 +276,9 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
typename CThreadBuffer,
typename AThreadBuffer,
typename BThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
......@@ -290,6 +292,8 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
AThreadBuffer& a_thread_buf_tail,
BThreadBuffer& b_thread_buf_tail,
index_t num_loop) const
{
__builtin_amdgcn_sched_barrier(0);
......@@ -419,6 +423,9 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
// tail
if constexpr(TailNum == TailNumber::Full)
{
a_thread_buf_tail = a_thread_buf;
b_thread_buf_tail = b_thread_buf;
#if 0
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
......@@ -446,11 +453,12 @@ struct BlockwiseGemmXdlops_pipeline_v3<BlockGemmPipelineScheduler::Intrawave,
});
});
});
__builtin_amdgcn_sched_barrier(0);
#endif
// __builtin_amdgcn_sched_barrier(0);
}
}
protected:
// protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
......
......@@ -1392,6 +1392,14 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
constexpr auto a_thread_desc = blockwise_gemm_pipeline.a_thread_desc_;
constexpr auto b_thread_desc = blockwise_gemm_pipeline.b_thread_desc_;
constexpr auto c_thread_desc = blockwise_gemm_pipeline.c_thread_desc_;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
a_thread_desc.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeTypeA>(
b_thread_desc.GetElementSpaceSize());
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
......@@ -1410,14 +1418,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
b_block_buf,
b_block_slice_copy_step,
c_thread_buf,
a_thread_buf,
b_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
#if 0
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
......@@ -1604,71 +1611,110 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_m_id, 0, block_n_id, 0)),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
#endif
// copy multipled from global to vgpr
auto d_threadwise_copy;
// copy c from vgpr to lds
auto c_threadwise_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
I1,
I1,
M2,
1,
I1,
M4,
1>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// copy c from lds to vgpr
auto c_threadwise_copy_lds_to_vgpr;
// copy e from vgpr to vgpr
auto e_threadwise_copy;
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
auto xdlops_gemm = blockwise_gemm_pipeline.xdlops_gemm;
constexpr auto MRepeat = MXdlPerWave;
constexpr auto NRepeat = NXdlPerWave;
constexpr auto KRepeat = blockwise_gemm_pipeline.KRepeat;
// make sure it's safe to read from LDS
block_sync_lds();
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
static_for<0, MRepeat / CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto shuffle_m0) {
static_for<0, NRepeat / CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto shuffle_n0) {
// MutilpeD bufferload
d_threadwise_copy.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(c_grid_buf));
// Tail MFMA
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, CShuffleMXdlPerWavePerShuffle, 1>{}([&](auto m0) {
static_for<0, CShuffleNXdlPerWavePerShuffle, 1>{}([&](auto n0) {
vector_type<ComputeTypeA, KPack> a_thread_vec;
vector_type<ComputeTypeA, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeTypeA>()(ik) = a_thread_buf
[Number<a_thread_desc.CalculateOffset(make_tuple(
shuffle_m0 * CShuffleMXdlPerWavePerShuffle + m0,
I0,
k0,
ik))>{}];
b_thread_vec.template AsType<ComputeTypeA>()(ik) = b_thread_buf
[Number<b_thread_desc.CalculateOffset(make_tuple(
shuffle_n0 * CShuffleNXdlPerWavePerShuffle + n0,
I0,
k0,
ik))>{}];
});
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
using mfma_input_type =
typename vector_type<ComputeTypeA,
xdlops_gemm.K1PerXdlops>::type;
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
constexpr index_t c_offset = c_thread_desc.CalculateOffset(
make_tuple(shuffle_m0 * CShuffleMXdlPerWavePerShuffle + m0,
shuffle_n0 * CShuffleNXdlPerWavePerShuffle + n0,
0));
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
// Shuffle: DS_WRITE
c_thread_copy_vgpr_to_lds.Run();
block_sync_lds();
// Shuffle: DS_READ
e_blockwise_copy.RunRead();
cde_element();
e_blockwise_copy.RunWrite();
});
});
}
}
......
......@@ -389,6 +389,220 @@ struct ThreadwiseTensorSliceTransfer_v2
SrcCoord src_coord_;
}; // namespace ck
// Multiple DynamicBuffer to multiple StaticBuffer
// Assume:
// 1. src:
// 1. SrcDesc is not known at compile-time
// 2. SrcBuffer is DynamicBuffer
// 3. src_slice_origin_idx is not known at compile-time
// 2. dst:
// 1. DstDesc is known at compile-time
// 2. DstBuffer is StaticBuffer
// 3. dst_slice_origin_idx is known at compile-time
template <typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename SliceLengths,
typename DimAccessOrder,
index_t SrcVectorDim,
index_t SrcScalarPerVector,
index_t SrcScalarStrideInVector,
bool SrcResetCoordinateAfterRun,
bool InvalidElementAsNaN = false,
typename enable_if<DstDesc::IsKnownAtCompileTime(), bool>::type = false>
struct ThreadwiseTensorSliceTransfer_v2r1
{
static_assert((InvalidElementAsNaN && !std::is_integral<DstData>::value) ||
(!InvalidElementAsNaN),
"Filling invalid element as NaN is only for floating point types");
static constexpr index_t nDim = SliceLengths::Size();
static constexpr index_t nSrc = SrcDescs::Size();
static constexpr index_t nSrc = SrcDescs::Size();
using Index = MultiIndex<nDim>;
// return a tuple of coordiantes for a tuple of tensor
template <typename Descs,
typename Indices,
enable_if_t<Descs::Size() == Indices::Size(), bool> = false>
static constexpr auto MakeCoordinates(const Descs& descs, const Indices& indices)
{
return generate_tuple([&](auto i) { return make_tensor_coordinate(descs[i], indices[i]); },
Number<Descs::Size()>{});
}
using SrcCoords = decltype(MakeCoordinates(SrcDescs{}, StaticallyIndexedArray<Index, nSrc>{}));
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v2(const SrcDesc& src_desc,
const Index& src_slice_origin_idx)
: src_coord_(make_tensor_coordinate(src_desc, src_slice_origin_idx))
{
static_assert(DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc need to known at compile-time");
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! Not divisible");
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
{
src_coord_ = make_tensor_coordinate(src_desc, src_slice_origin_idx);
}
template <typename SrcBuffer, typename DstBuffer, typename DstSliceOriginIdx>
__device__ void Run(const SrcDesc& src_desc,
const SrcBuffer& src_buf,
const DstDesc&,
const DstSliceOriginIdx&,
DstBuffer& dst_buf)
{
static_assert(DstDesc::IsKnownAtCompileTime(),
"wrong! DstDesc need to known at compile-time");
static_assert(is_known_at_compile_time<remove_cvref_t<DstSliceOriginIdx>>::value,
"wrong! DstSliceOrigin need to known at compile-time");
static_assert(
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value &&
"wrong! inconsistent type");
// DstDesc and dst_slice_origin_idx are known at compile-time
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
constexpr auto dst_slice_origin_idx = DstSliceOriginIdx{};
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_scalar_step_in_vector =
generate_sequence(detail::lambda_scalar_step_in_vector<SrcVectorDim>{}, Number<nDim>{});
using SpaceFillingCurve = SpaceFillingCurve<SliceLengths,
DimAccessOrder,
remove_cv_t<decltype(src_scalar_per_access)>>;
// loop over tensor and copy
constexpr auto num_access = SpaceFillingCurve::GetNumOfAccess();
static_for<0, num_access, 1>{}([&](auto idx_1d) {
typename vector_type_maker<SrcData, SrcScalarPerVector>::type src_vector;
using src_vector_t =
typename vector_type_maker<SrcData, SrcScalarPerVector>::type::type;
constexpr auto src_data_idx = SpaceFillingCurve::GetIndex(idx_1d);
const bool is_src_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(src_desc, src_coord_);
// copy data from src_buf into src_vector
src_vector.template AsType<src_vector_t>()(Number<0>{}) =
src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), is_src_valid);
// copy data from src_vector into dst_buf
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
constexpr index_t dst_offset =
dst_desc.CalculateOffset(to_multi_index(dst_slice_origin_idx) + src_data_idx +
i * src_scalar_step_in_vector);
if constexpr(InvalidElementAsNaN)
{
dst_buf(Number<dst_offset>{}) =
is_src_valid
? type_convert<DstData>(src_vector.template AsType<SrcData>()[i])
: NumericLimits<DstData>::QuietNaN();
}
else
{
dst_buf(Number<dst_offset>{}) =
type_convert<DstData>(src_vector.template AsType<SrcData>()[i]);
}
});
if constexpr(idx_1d.value != num_access - 1)
{
constexpr auto forward_step = SpaceFillingCurve::GetForwardStep(idx_1d);
move_tensor_coordinate(
src_desc, src_coord_, make_tensor_coordinate_step(src_desc, forward_step));
}
});
// move src coordinate back to slice origin (or not)
if constexpr(SrcResetCoordinateAfterRun)
{
const auto src_reset_step =
make_tensor_coordinate_step(src_desc, GetSrcCoordinateResetStep());
move_tensor_coordinate(src_desc, src_coord_, src_reset_step);
}
}
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
using SpaceFillingCurve = SpaceFillingCurve<SliceLengths,
DimAccessOrder,
remove_cv_t<decltype(src_scalar_per_access)>>;
constexpr auto num_access = SpaceFillingCurve::GetNumOfAccess();
if constexpr(num_access == 0)
{
return typename SpaceFillingCurve::Index{};
}
else
{
constexpr auto reset_step =
SpaceFillingCurve::GetStepBetween(Number<num_access - 1>{}, Number<0>{});
return reset_step;
}
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__ void MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx)
{
// if src coord was not reset by Run(), then need to adjust the step here
const auto adjusted_step_idx =
SrcResetCoordinateAfterRun ? src_slice_origin_step_idx
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(src_desc, adjusted_step_idx);
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template <typename SrcMoveSliceWindowStepHack>
__device__ void
MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx,
const SrcMoveSliceWindowStepHack& src_move_slice_window_step_hack)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const auto adjusted_step_idx =
SrcResetCoordinateAfterRun ? src_slice_origin_step_idx
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(
src_desc, adjusted_step_idx, src_move_slice_window_step_hack);
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
private:
SrcCoord src_coord_;
}; // namespace ck
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
......
......@@ -66,7 +66,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach()
# Do not build mha instances if gfx94 targets are not on the target list
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx94" AND source MATCHES "mha")
if(NOT INST_TARGETS MATCHES "gfx9400" AND source MATCHES "mha")
message("removing mha instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -318,7 +318,7 @@ if(CK_DEVICE_CONV_INSTANCES)
endif()
if(CK_DEVICE_MHA_INSTANCES)
set(gpu_list ${INST_TARGETS})
list(FILTER gpu_list INCLUDE REGEX "^gfx94")
list(FILTER gpu_list INCLUDE REGEX "^gfx9400")
if(gpu_list)
add_library(device_mha_operations STATIC ${CK_DEVICE_MHA_INSTANCES})
add_library(composablekernels::device_mha_operations ALIAS device_mha_operations)
......
# ckProfiler
set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_reduce.cpp
profile_groupnorm_bwd_data.cpp
profile_groupnorm_fwd.cpp
profile_layernorm_bwd_data.cpp
profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_conv_tensor_rearrange.cpp
profile_transpose.cpp
profile_permute_scale.cpp
# profile_gemm.cpp
# profile_reduce.cpp
# profile_groupnorm_bwd_data.cpp
# profile_groupnorm_fwd.cpp
# profile_layernorm_bwd_data.cpp
# profile_layernorm_bwd_gamma_beta.cpp
# profile_groupnorm_bwd_gamma_beta.cpp
# profile_layernorm_fwd.cpp
# profile_max_pool3d_fwd.cpp
# profile_avg_pool3d_bwd.cpp
# profile_max_pool3d_bwd.cpp
# profile_softmax.cpp
# profile_batchnorm_fwd.cpp
# profile_batchnorm_bwd.cpp
# profile_batchnorm_infer.cpp
# profile_conv_tensor_rearrange.cpp
# profile_transpose.cpp
# profile_permute_scale.cpp
)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
if(GPU_TARGETS MATCHES "gfx94")
# if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
# list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
# list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
# endif()
# if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
# list(APPEND PROFILER_SOURCES profile_gemm_reduce.cpp)
# list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
# list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
# endif()
# list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
# if(GPU_TARGETS MATCHES "gfx94")
list(APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp)
# endif()
# list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
# list(APPEND PROFILER_SOURCES profile_batched_gemm_reduce.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_add_multiply.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_splitk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd_outelementop.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp)
# list(APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp)
# list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp)
# list(APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp)
# list(APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp)
# list(APPEND PROFILER_SOURCES profile_conv_fwd.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd_outelementop.cpp)
endif()
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
# if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
# if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
# list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
# endif()
# list(APPEND PROFILER_SOURCES profile_grouped_conv_fwd.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_data.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
# endif()
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
endif()
# if(DL_KERNELS)
# list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
# list(APPEND PROFILER_SOURCES profile_grouped_conv_bwd_weight.cpp)
# endif()
set(PROFILER_EXECUTABLE ckProfiler)
......@@ -91,85 +91,85 @@ if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 600241132)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility getopt::getopt)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_tile_loop_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
if(GPU_TARGETS MATCHES "gfx94")
# if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
# endif()
# if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_tile_loop_instance)
# endif()
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
# if(GPU_TARGETS MATCHES "gfx94")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_ab_scale_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_ab_scale_instance)
# endif()
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convscale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convinvscale_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_reduce_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_universal_streamk_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convscale_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convinvscale_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
# if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
# if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
# endif()
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
# endif()
if(DL_KERNELS)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
endif()
# if(DL_KERNELS)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
# target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
# endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment