"vscode:/vscode.git/clone" did not exist on "998f1785b636b591147f73aef7cf70894771bfd4"
Commit 4e911f3e authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents fa9da1a4 4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_f32_instances<NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
ConvBwdDataDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_f32_instances<NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
ConvBwdDataFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "device_grouped_conv2d_fwd_common.hpp"
namespace ck {
......
......@@ -4,7 +4,7 @@
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 4096, 4096}
....
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
## Profile grouped convolution backward data kernels
```bash
# arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data)
# arg2: data type (0: Output fp32, Weight fp32, Input fp32
# 1: Output fp16, Weight fp16, Input fp16
# 2: Output bf16, Weight bf16, Input bf16
# arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
# 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1
```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192}
in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
....
Best configuration parameters:
name: DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<256, 128, 256, 32, 8, 2, Default, 32, 32, 2, 4, 8, 4, 1, 1>
avg_time: 0.768321
tflops: 86.6679
GB/s: 127.947
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace ck {
namespace profiler {
template <ck::index_t NDimSpatial,
typename OutLayout,
typename WeiLayout,
typename InLayout,
typename OutDataType,
typename WeiDataType,
typename InDataType>
bool profile_grouped_conv_bwd_data_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param)
{
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto out_element_op = OutElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto in_element_op = InElementOp{};
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
Tensor<OutDataType> out(out_g_n_k_wos_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<InDataType> in_host(in_g_n_c_wis_desc);
Tensor<InDataType> in_device(in_g_n_c_wis_desc);
std::cout << "out: " << out.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "in: " << in_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
case 2:
out.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
break;
default:
out.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem in_device_buf(sizeof(InDataType) * in_device.mDesc.GetElementSpaceSize());
out_device_buf.ToDevice(out.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
// reset input to zero
in_device_buf.SetZero();
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>();
auto ref_invoker = ref_conv.MakeInvoker();
in_host.SetZero();
auto ref_argument = ref_conv.MakeArgument(in_host,
wei,
out,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
out_element_op,
wei_element_op,
in_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_avg_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
bool pass = true;
auto run_impl = [&](auto& op_ptr, auto& argument_ptr) {
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init output to zero before profiling next kernel
in_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer();
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
in_device_buf.FromDevice(in_device.mData.data());
pass = pass & ck::utils::check_err(in_device, in_host);
if(do_log)
{
LogRangeAsType<float>(std::cout << "output : ", out.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "weight: ", wei.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in_host : ", in_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "in_device: ", in_device.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
};
// do GEMM
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD<NDimSpatial,
OutLayout,
WeiLayout,
ck::Tuple<>,
InLayout,
OutDataType,
WeiDataType,
ck::Tuple<>,
InDataType,
OutElementOp,
WeiElementOp,
InElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::array<ck::index_t, NDimSpatial + 3> out_lengths{};
std::array<ck::index_t, NDimSpatial + 3> out_strides{};
std::array<ck::index_t, NDimSpatial + 3> wei_lengths{};
std::array<ck::index_t, NDimSpatial + 3> wei_strides{};
std::array<ck::index_t, NDimSpatial + 3> in_lengths{};
std::array<ck::index_t, NDimSpatial + 3> in_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), out_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), out_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), wei_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), wei_strides);
copy(in_g_n_c_wis_desc.GetLengths(), in_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), in_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
{},
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
out_lengths,
out_strides,
wei_lengths,
wei_strides,
{},
{},
in_lengths,
in_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
out_element_op,
wei_element_op,
in_element_op);
run_impl(op_ptr, argument_ptr);
}
std::cout << "Best configuration parameters:"
<< "\nname: " << best_op_name << "\navg_time: " << best_avg_time
<< "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp
profile_grouped_conv_bwd_data.cpp
)
set(PROFILER_EXECUTABLE ckProfiler)
......@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
......@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
{
if(arg_parser.inLengths.size() == 4 && arg_parser.reduceDims.size() == 3)
{
profile_batchnorm_forward_impl<F16, F16, F32, F16, F16, F16, 4, 3>(
profile_batchnorm_forward_impl<F16, F16, F32, F16, F16, F32, 4, 3>(
arg_parser.do_verification,
arg_parser.init_method,
arg_parser.do_dumpout,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
enum struct ConvLayout
{
GNHWC_GKYXC_GNHWK, // 0
NHWGC_GKYXC_NHWGK, // 1
};
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static void print_helper_msg()
{
std::cout
// clang-format off
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Output fp32, Weight fp32, Input fp32\n"
<< " 1: Output fp16, Weight fp16, Input fp16\n"
<< " 2: Output bf16, Weight bf16, Input bf16\n"
<< "arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]\n"
<< " 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
// clang-format on
}
} // namespace
int profile_grouped_conv_bwd_data(int argc, char* argv[])
{
// 8 for control, 1 for num_dim_spatial
if(argc < 9)
{
print_helper_msg();
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ConvLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int num_dim_spatial = std::stoi(argv[8]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
{
print_helper_msg();
return 1;
}
const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
constexpr auto I2 = ck::Number<2>{};
auto profile = [&](auto num_dim_spatial_tmp,
auto out_layout,
auto wei_layout,
auto in_layout,
auto wei_type,
auto out_type,
auto in_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using OutLayout = decltype(out_layout);
using WeiLayout = decltype(wei_layout);
using InLayout = decltype(in_layout);
using OutDataType = decltype(out_type);
using WeiDataType = decltype(wei_type);
using InDataType = decltype(in_type);
bool pass = ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
OutLayout,
WeiLayout,
InLayout,
OutDataType,
WeiDataType,
InDataType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
};
// GNHWC_GKYXC_GNHWK
if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, BF16{}, BF16{}, BF16{});
}
}
// NHWGC_GKYXC_NHWGK
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, BF16{}, BF16{}, BF16{});
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_bwd_data);
#!/bin/bash
current_year=$(date +%Y)
exit_code=0
for file in $@; do
if grep -q "Copyright (c)" $file
then
if ! grep -q "Copyright (c).*$current_year" $file
then
echo "ERROR: File $file has a copyright notice without the current year ($current_year)."
exit_code=1
fi
fi
done
exit $exit_code
#!/bin/bash
run_and_check() {
"$@"
status=$?
if [ $status -ne 0 ]; then
echo "Error with \"$@\": Exited with status $status"
exit $status
fi
return $status
}
echo "I: Installing tools required for pre-commit checks..."
run_and_check apt install clang-format-10
echo "I: Installing pre-commit itself..."
run_and_check pip3 install pre-commit
run_and_check pre-commit install
echo "I: Installation successful."
......@@ -59,6 +59,7 @@ add_subdirectory(batchnorm)
add_subdirectory(contraction)
add_subdirectory(pool_fwd)
add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data)
if(GPU_TARGETS MATCHES "gfx1100")
add_subdirectory(wmma_op)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <gtest/gtest.h>
......
......@@ -2,3 +2,6 @@ if (USE_BITINT_EXTENSION_INT4)
add_gtest_executable(test_int4 int4.cpp)
target_link_libraries(test_int4 PRIVATE utility)
endif()
add_gtest_executable(test_fp8 fp8.cpp)
target_link_libraries(test_fp8 PRIVATE utility)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using ck::f8_convert_sr;
using ck::f8_t;
using ck::half_t;
using ck::type_convert;
TEST(FP8, NumericLimits)
{
EXPECT_EQ(ck::NumericLimits<f8_t>::Min(), 0x08);
EXPECT_EQ(ck::NumericLimits<f8_t>::Max(), 0x77);
EXPECT_EQ(ck::NumericLimits<f8_t>::Lowest(), 0xF7);
EXPECT_EQ(ck::NumericLimits<f8_t>::QuietNaN(), 0x80);
}
TEST(FP8, ConvertFP32Nearest)
{
// fix the tolerance value
float abs_tol = 1e-6;
// convert 0 float to fp8 and back, check if holds
ASSERT_NEAR(0.0f, type_convert<float>(type_convert<f8_t>(0.0f)), abs_tol);
// convert minimal float to fp8 and back, check if holds
ASSERT_NEAR(std::numeric_limits<float>::min(),
type_convert<float>(type_convert<f8_t>(std::numeric_limits<float>::min())),
abs_tol);
// convert maximal f8_t to float and check if equal to 240.0
ASSERT_NEAR(240.0f, type_convert<float>(type_convert<f8_t>(240.0f)), abs_tol);
// convert maximal float to fp8 and back, check if clipped to 240.0
ASSERT_NEAR(240.0f,
type_convert<float>(type_convert<f8_t>(std::numeric_limits<float>::max())),
abs_tol);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR(0x80, type_convert<f8_t>(std::numeric_limits<float>::infinity()), abs_tol);
// positive float value to fp8 and back, check if holds
float pos_float = 0.0078125f;
ASSERT_NEAR(pos_float, type_convert<float>(type_convert<f8_t>(pos_float)), abs_tol);
// negative float value to fp8 and back, check if holds
float neg_float = -0.0156250f;
ASSERT_NEAR(neg_float, type_convert<float>(type_convert<f8_t>(neg_float)), abs_tol);
}
TEST(FP8, ConvertFP32Stochastic)
{
// fix the tolerance value
float abs_tol = 1e-6;
// convert 0 float to fp8 and back, check if holds
ASSERT_NEAR(0.0f, type_convert<float>(f8_convert_sr<f8_t>(0.0f)), abs_tol);
// convert minimal float to fp8 and back, check if holds
ASSERT_NEAR(std::numeric_limits<float>::min(),
type_convert<float>(f8_convert_sr<f8_t>(std::numeric_limits<float>::min())),
abs_tol);
// convert maximal f8_t to float and check if equal to 240.0
ASSERT_NEAR(240.0f, type_convert<float>(f8_convert_sr<f8_t>(240.0f)), abs_tol);
// convert maximal float to fp8 and back, check if clipped to 240.0
ASSERT_NEAR(240.0f,
type_convert<float>(f8_convert_sr<f8_t>(std::numeric_limits<float>::max())),
abs_tol);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR(0x80, f8_convert_sr<f8_t>(std::numeric_limits<float>::infinity()), abs_tol);
// positive float value to fp8 and back, check if holds
float pos_float = 0.0078125f;
ASSERT_NEAR(pos_float, type_convert<float>(f8_convert_sr<f8_t>(pos_float)), abs_tol);
// negative float value to fp8 and back, check if holds
float neg_float = -0.0156250f;
ASSERT_NEAR(neg_float, type_convert<float>(f8_convert_sr<f8_t>(neg_float)), abs_tol);
}
TEST(FP8, ConvertFP16Nearest)
{
// fix the tolerance value
float abs_tol = 1e-3;
// convert 0 fp16 to fp8 and back, check if holds
ASSERT_NEAR(half_t{0.0}, type_convert<half_t>(type_convert<f8_t>(half_t{0.0})), abs_tol);
// convert minimal fp16 to fp8 and back, check if holds
ASSERT_NEAR(ck::NumericLimits<half_t>::Min(),
type_convert<half_t>(type_convert<f8_t>(ck::NumericLimits<half_t>::Min())),
abs_tol);
// convert maximal f8_t to fp16 and check if equal to 240.0
ASSERT_NEAR(half_t{240.0}, type_convert<half_t>(type_convert<f8_t>(half_t{240.0})), abs_tol);
// convert maximal fp16 to fp8 and back, check if clipped to 240.0
ASSERT_NEAR(half_t{240.0},
type_convert<half_t>(type_convert<f8_t>(ck::NumericLimits<half_t>::Max())),
abs_tol);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR(0x80, type_convert<f8_t>(ck::NumericLimits<half_t>::QuietNaN()), abs_tol);
// positive fp16 value to fp8 and back, check if holds
half_t pos_half = half_t{0.0078125};
ASSERT_NEAR(pos_half, type_convert<half_t>(type_convert<f8_t>(pos_half)), abs_tol);
// negative fp16 value to fp8 and back, check if holds
half_t neg_half = half_t{-0.0156250};
ASSERT_NEAR(neg_half, type_convert<half_t>(type_convert<f8_t>(neg_half)), abs_tol);
}
TEST(FP8, ConvertFP16Stochastic)
{
// fix the tolerance value
float abs_tol = 1e-3;
// convert 0 fp16 to fp8 and back, check if holds
ASSERT_NEAR(half_t{0.0}, type_convert<half_t>(f8_convert_sr<f8_t>(half_t{0.0})), abs_tol);
// convert minimal fp16 to fp8 and back, check if holds
ASSERT_NEAR(ck::NumericLimits<half_t>::Min(),
type_convert<half_t>(f8_convert_sr<f8_t>(ck::NumericLimits<half_t>::Min())),
abs_tol);
// convert maximal f8_t to fp16 and check if equal to 240.0
ASSERT_NEAR(half_t{240.0}, type_convert<half_t>(f8_convert_sr<f8_t>(half_t{240.0})), abs_tol);
// convert maximal fp16 to fp8 and back, check if clipped to 240.0
ASSERT_NEAR(half_t{240.0},
type_convert<half_t>(f8_convert_sr<f8_t>(ck::NumericLimits<half_t>::Max())),
abs_tol);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR(0x80, f8_convert_sr<f8_t>(ck::NumericLimits<half_t>::QuietNaN()), abs_tol);
// positive fp16 value to fp8 and back, check if holds
half_t pos_half = half_t{0.0078125};
ASSERT_NEAR(pos_half, type_convert<half_t>(f8_convert_sr<f8_t>(pos_half)), abs_tol);
// negative fp16 value to fp8 and back, check if holds
half_t neg_half = half_t{-0.0156250};
ASSERT_NEAR(neg_half, type_convert<half_t>(f8_convert_sr<f8_t>(neg_half)), abs_tol);
}
......@@ -5,7 +5,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......
if(GPU_TARGETS MATCHES "gfx908" OR GPU_TARGETS MATCHES "gfx90a" OR GPU_TARGETS MATCHES "gfx940")
add_gtest_executable(test_grouped_convnd_bwd_data test_grouped_convnd_bwd_data.cpp)
target_link_libraries(test_grouped_convnd_bwd_data PRIVATE utility device_grouped_conv2d_bwd_data_instance)
add_gtest_executable(test_grouped_convnd_bwd_data_interface test_grouped_convnd_bwd_data_interface.cpp)
target_link_libraries(test_grouped_convnd_bwd_data_interface PRIVATE utility device_grouped_conv2d_bwd_data_instance)
endif()
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
template <typename Tuple>
class TestGroupedConvndBwdData : public ::testing::Test
{
protected:
using DataType = std::tuple_element_t<0, Tuple>;
using OutLayout = std::tuple_element_t<1, Tuple>;
using WeiLayout = std::tuple_element_t<2, Tuple>;
using InLayout = std::tuple_element_t<3, Tuple>;
std::vector<ck::utils::conv::ConvParam> conv_params;
template <ck::index_t NDimSpatial>
void Run()
{
EXPECT_FALSE(conv_params.empty());
bool pass = true;
for(auto& param : conv_params)
{
pass = pass && ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
OutLayout,
WeiLayout,
InLayout,
DataType,
DataType,
DataType>(
true, // do_verification
1, // init_method: integer value
false, // do_log
false, // time_kernel
param);
}
EXPECT_TRUE(pass);
}
};
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using KernelTypes = ::testing::Types<std::tuple<float, GNHWK, GKYXC, GNHWC>,
std::tuple<ck::half_t, GNHWK, GKYXC, GNHWC>,
std::tuple<ck::bhalf_t, GNHWK, GKYXC, GNHWC>,
std::tuple<float, NHWGK, GKYXC, NHWGC>,
std::tuple<ck::half_t, NHWGK, GKYXC, NHWGC>,
std::tuple<ck::bhalf_t, NHWGK, GKYXC, NHWGC>>;
TYPED_TEST_SUITE(TestGroupedConvndBwdData, KernelTypes);
TYPED_TEST(TestGroupedConvndBwdData, Test2D)
{
this->conv_params.clear();
this->conv_params.push_back(
{2, 2, 4, 192, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->template Run<2>();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
using DataType = ck::half_t;
using AccDataType = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ConvBackwardDataSpecialization =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization;
static constexpr auto ConvBwdDataDefault = ConvBackwardDataSpecialization::Default;
static constexpr auto Filter1x1Stride1Pad0 = ConvBackwardDataSpecialization::Filter1x1Stride1Pad0;
template <typename Tuple, ConvBackwardDataSpecialization ConvSpec>
class TestGroupedConvndBwdData : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 2;
using OutLayout = std::tuple_element_t<0, Tuple>;
using WeiLayout = std::tuple_element_t<1, Tuple>;
using InLayout = std::tuple_element_t<2, Tuple>;
// clang-format off
using GroupedConvBwdDataDeviceInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// ######| NDimSpatial| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ######| | | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, OutLayout, WeiLayout, ck::Tuple<>, InLayout, DataType, DataType, AccDataType, DataType, ck::Tuple<>, DataType, Pass, Pass, Pass, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
ck::utils::conv::ConvParam conv_param;
template <ck::index_t NDimSpatial>
bool Run()
{
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> out_lengths{};
std::array<ck::index_t, NDimSpatial + 3> out_strides{};
std::array<ck::index_t, NDimSpatial + 3> wei_lengths{};
std::array<ck::index_t, NDimSpatial + 3> wei_strides{};
std::array<ck::index_t, NDimSpatial + 3> in_lengths{};
std::array<ck::index_t, NDimSpatial + 3> in_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), out_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), out_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), wei_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), wei_strides);
copy(in_g_n_c_wis_desc.GetLengths(), in_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), in_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
auto conv = GroupedConvBwdDataDeviceInstance{};
auto argument = conv.MakeArgument(nullptr,
nullptr,
std::array<const void*, 0>{},
nullptr,
out_lengths,
out_strides,
wei_lengths,
wei_strides,
{},
{},
in_lengths,
in_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
Pass{},
Pass{},
Pass{});
return conv.IsSupportedArgument(argument);
}
};
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using KernelTypes =
::testing::Types<std::tuple<GNHWK, GKYXC, GNHWC>, std::tuple<NHWGK, GKYXC, NHWGC>>;
template <typename Tuple>
class TestGroupedConvndBwdDataDefault : public TestGroupedConvndBwdData<Tuple, ConvBwdDataDefault>
{
};
template <typename Tuple>
class TestGroupedConvndBwdDataFilter1x1
: public TestGroupedConvndBwdData<Tuple, Filter1x1Stride1Pad0>
{
};
TYPED_TEST_SUITE(TestGroupedConvndBwdDataDefault, KernelTypes);
TYPED_TEST_SUITE(TestGroupedConvndBwdDataFilter1x1, KernelTypes);
TYPED_TEST(TestGroupedConvndBwdDataFilter1x1, SpecializationCheck)
{
// Check filter 3,3 instead of 1,1
this->conv_param = {2, 2, 4, 192, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
bool is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Check strides 2,2 instead of 1,1
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Check with pad
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Supported version
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_TRUE(is_supported);
}
TYPED_TEST(TestGroupedConvndBwdDataDefault, VectorLoadCheck)
{
// vector load for A
this->conv_param = {2, 2, 128, 129, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
bool is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// vector load for B, E, Ds
this->conv_param = {2, 2, 128, 128, 257, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment