Commit 4d914af3 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents 223a2abe 4b798833
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
from dataclasses import asdict, dataclass
from typing import Optional, Tuple
@dataclass
class CKGroupedConvFwdOp:
n_dim_spatial: int
a_layout: str
b_layout: str
ds_layout: Tuple[str]
e_layout: str
a_element_dtype: str
b_element_dtype: str
acc_dtype: str
c_shuffle_dtype: str
ds_element_dtype: Tuple[str]
e_element_dtype: str
a_elementwise_op: str
b_elementwise_op: str
cde_elementwise_op: str
conv_forward_specialization: str
gemm_specialization: str
block_size: int
m_per_block: int
n_per_block: int
k_per_block: int
ak1: int
bk1: int
m_per_xdl: int
n_per_xdl: int
m_xdl_per_wave: int
n_xdl_per_wave: int
a_block_transfer_thread_cluster_lengths_ak0_m_ak1: Tuple[int, int, int]
a_block_transfer_thread_cluster_arrange_order: Tuple[int, int, int]
a_block_transfer_src_access_order: Tuple[int, int, int]
a_block_transfer_src_vector_dim: int
a_block_transfer_src_scalar_per_vector: int
a_block_transfer_dst_scalar_per_vector_ak1: int
a_block_lds_extra_m: bool
b_block_transfer_thread_cluster_lengths_bk0_n_bk1: Tuple[int, int, int]
b_block_transfer_thread_cluster_arrange_order: Tuple[int, int, int]
b_block_transfer_src_access_order: Tuple[int, int, int]
b_block_transfer_src_vector_dim: int
b_block_transfer_src_scalar_per_vector: int
b_block_transfer_dst_scalar_per_vector_bk1: int
b_block_lds_extra_n: bool
c_shuffle_m_xdl_per_wave_per_shuffle: int
c_shuffle_n_xdl_per_wave_per_shuffle: int
cde_block_transfer_cluster_lengths_m_block_m_per_block_n_block_n_per_block: Tuple[ # noqa
int,
int,
int,
int,
]
cde_block_transfer_scalar_per_vector_n_per_block: int
block_gemm_pipeline_scheduler: str
block_gemm_pipeline_version: str
a_compute_dtype: Optional[str] = None
b_compute_dtype: Optional[str] = None
def name(self):
# cpp alias for template instance
return (
f"ck_device_grouped_convolution_fwd_multiple_abd_xdl_c_shuffle_v3_"
f"{self.key_name()}"
)
def key_name(self):
# TBD; must be unique per instance. Intended to use as dict key
return "_".join(
[
"K"
+ field_name.replace("_", "").lower()
+ "V"
+ (
"x".join(map(str, iter(field_value)))
if isinstance(field_value, tuple)
else str(field_value).replace(":", "")
)
for field_name, field_value in self.dict_items()
]
)
def dict_items(self):
return asdict(self).items()
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
import logging
import os
import subprocess
from dataclasses import fields, replace
from dataclasses import replace
from functools import lru_cache, partial
from typing import List
......
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
from dataclasses import asdict, dataclass
from typing import Optional, Tuple
......
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
import functools
import os
@functools.lru_cache(None)
def library_path():
return os.path.join(os.path.dirname(__file__), 'library')
return os.path.join(os.path.dirname(__file__), "library")
......@@ -65,8 +65,9 @@ def parse_data_type(args):
if args.ck_profier_op == "grouped_conv_fwd":
args.data_type = 3
if args.data_type == "bfp16":
if args.ck_profier_op == "grouped_conv_bwd_weight" or \
args.ck_profier_op == "grouped_conv_bwd_data" or \
if args.ck_profier_op == "grouped_conv_bwd_weight":
args.data_type = 5
if args.ck_profier_op == "grouped_conv_bwd_data" or \
args.ck_profier_op == "grouped_conv_fwd":
args.data_type = 2
......
......@@ -210,3 +210,4 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx942" AND CK_HIP_VERSION_MAJOR GREATER_EQUAL
add_subdirectory(smfmac_op)
endif()
add_subdirectory(position_embedding)
add_subdirectory(scatter_gather)
add_subdirectory(image_to_column)
add_subdirectory(gemm)
# Currently ck_tile is only built on gfx9
if(GPU_TARGETS MATCHES "gfx9")
add_gtest_executable(test_ck_tile_gemm_mem_pipeline test_gemm_mem_pipeline.cpp)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "gtest/gtest.h"
#include "ck_tile/host.hpp"
#include "test_gemm_mem_pipeline_util.hpp"
using F16 = ck_tile::half_t;
using F32 = float;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
// clang-format off
using KernelTypes = ::testing::Types<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType
std::tuple< Row, Col, Row, F16, F16, F32, F16>,
std::tuple< Col, Row, Row, F16, F16, F32, F16>,
std::tuple< Row, Row, Row, F16, F16, F32, F16>,
std::tuple< Col, Col, Row, F16, F16, F32, F16>
>;
// clang-format on
TYPED_TEST_SUITE(TestCkTileGemmMemPipeline, KernelTypes);
#include "test_gemm_mem_pipeline_ut_cases.inc"
#pragma once
TYPED_TEST(TestCkTileGemmMemPipeline, SmallM)
{
std::vector<int> Ms{1, 2, 3, 4, 5, 6};
constexpr int N = 1024;
constexpr int K = 320;
for(int M : Ms)
this->Run(M, N, K);
}
TYPED_TEST(TestCkTileGemmMemPipeline, MidLargeM)
{
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 1024;
constexpr int K = 320;
for(int M : Ms)
this->Run(M, N, K);
}
TYPED_TEST(TestCkTileGemmMemPipeline, PaddK)
{
std::vector<int> Ms{127};
constexpr int N = 1024;
constexpr int K = 432;
for(int M : Ms)
this->Run(M, N, K);
}
TYPED_TEST(TestCkTileGemmMemPipeline, Regular)
{
std::vector<int> Ms{512};
constexpr int N = 1024;
constexpr int K = 512;
for(int M : Ms)
this->Run(M, N, K);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <sstream>
#include <gtest/gtest.h>
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
template <typename Tuple>
class TestCkTileGemmMemPipeline : public ::testing::Test
{
protected:
using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>;
using CLayout = std::tuple_element_t<2, Tuple>;
using ADataType = std::tuple_element_t<3, Tuple>;
using BDataType = std::tuple_element_t<4, Tuple>;
using AccDataType = std::tuple_element_t<5, Tuple>;
using CDataType = std::tuple_element_t<6, Tuple>;
// TODO: expose tile size through test t-param ?
struct gemm_basic_args
{
const void* p_a;
const void* p_b;
void* p_c;
ck_tile::index_t kbatch;
ck_tile::index_t M;
ck_tile::index_t N;
ck_tile::index_t K;
ck_tile::index_t stride_A;
ck_tile::index_t stride_B;
ck_tile::index_t stride_C;
};
void invoke_gemm(const gemm_basic_args& args, const ck_tile::stream_config& s)
{
// TODO: This should be parameterized in tests
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2;
constexpr ck_tile::index_t K_Warp = 1;
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kPadC = true;
constexpr int kBlockPerCu = 1;
// ===============================================
using GemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, false, kPadC>>;
using Traits = ck_tile::TileGemmTraits<kPadA, kPadB, kPadC, ALayout, BLayout, CLayout>;
using BaseGemmPipeline = ck_tile::BaseGemmPipelineAgBgCrMem<
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K);
const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop);
const ck_tile::TailNumber tail_num = BaseGemmPipeline::GetBlockLoopTailNum(num_loop);
const auto Run = [&](const auto has_hot_loop_, const auto tail_number_) {
constexpr bool has_hot_loop_v = has_hot_loop_.value;
constexpr auto tail_number_v = tail_number_.value;
using GemmPipeline = ck_tile::GemmPipelineAgBgCrMem<
ck_tile::UniversalGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
GemmShape,
Traits,
ck_tile::GemmPipelineScheduler::Intrawave,
has_hot_loop_v,
tail_number_v>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
args.p_c,
args.M,
args.N,
args.K,
args.stride_A,
args.stride_B,
args.stride_C);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize();
if(s.log_level_ > 0)
{
std::cout << "Lunching kernel with args:"
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z
<< "}" << std::endl;
}
ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
};
if(has_hot_loop)
{
// Tail pipeline One to Seven
if(tail_num == ck_tile::TailNumber::One)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::One>{});
}
else if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
if constexpr(BaseGemmPipeline::PrefetchStages > 2)
{
if(tail_num == ck_tile::TailNumber::Two)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Two>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 3)
{
if(tail_num == ck_tile::TailNumber::Three)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Three>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 4)
{
if(tail_num == ck_tile::TailNumber::Four)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Four>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 5)
{
if(tail_num == ck_tile::TailNumber::Five)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Five>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 6)
{
if(tail_num == ck_tile::TailNumber::Six)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Six>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 7)
{
if(tail_num == ck_tile::TailNumber::Seven)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Seven>{});
}
}
}
else
{
// Tail number always Full - #PrefetchStages
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<false>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "When there's no hot loop, this tail number \"" << tail_num
<< "\" is not supported! " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
}
public:
std::vector<int> k_batches_;
void SetUp() override { k_batches_ = {1}; }
void Run(const int M,
const int N,
const int K,
const int StrideA = 0,
const int StrideB = 0,
const int StrideC = 0)
{
for(auto kb : k_batches_)
{
RunSingle(M, N, K, StrideA, StrideB, StrideC, kb);
}
}
void RunSingle(const int M,
const int N,
const int K,
const int StrideA,
const int StrideB,
const int StrideC,
int kbatch = 1)
{
using namespace ck_tile::literals;
auto f_host_tensor_descriptor = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout),
ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
std::size_t stride_A = f_get_default_stride(M, K, StrideA, ALayout{});
std::size_t stride_B = f_get_default_stride(K, N, StrideB, BLayout{});
std::size_t stride_C = f_get_default_stride(M, N, StrideC, CLayout{});
ck_tile::HostTensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, ALayout{}));
ck_tile::HostTensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, BLayout{}));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
ck_tile::FillUniformDistributionIntegerValue<ADataType>{-5, 5}(a_m_k);
ck_tile::FillUniformDistributionIntegerValue<BDataType>{-5, 5}(b_k_n);
ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes());
ck_tile::DeviceMem c_m_n_dev_buf(c_m_n_dev_result.get_element_space_size_in_bytes());
a_m_k_dev_buf.ToDevice(a_m_k.data());
b_k_n_dev_buf.ToDevice(b_k_n.data());
c_m_n_dev_buf.SetZero();
c_m_n_dev_result.SetZero();
gemm_basic_args args;
args.p_a = a_m_k_dev_buf.GetDeviceBuffer();
args.p_b = b_k_n_dev_buf.GetDeviceBuffer();
args.p_c = c_m_n_dev_buf.GetDeviceBuffer();
args.kbatch = kbatch;
args.M = M;
args.N = N;
args.K = K;
args.stride_A = stride_A;
args.stride_B = stride_B;
args.stride_C = stride_C;
invoke_gemm(args, ck_tile::stream_config{nullptr, false});
c_m_n_dev_buf.FromDevice(c_m_n_dev_result.data());
bool pass = true;
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k, b_k_n, c_m_n_host_ref);
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_host_ref);
EXPECT_TRUE(pass);
}
};
add_test_executable(test_scatter_gather scatter_gather.cpp)
# target_compile_options(test_scatter_gather PRIVATE -v --save-temps -Wno-gnu-line-marker)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>
#include "ck_tile/core.hpp"
#ifndef TEST_SCATTER_GATHER_VERBOSE
#define TEST_SCATTER_GATHER_VERBOSE 1
#endif
#define HIP_CALL(call) \
do \
{ \
hipError_t err = call; \
if(err != hipSuccess) \
{ \
printf("[hiperror](%d) fail to call %s", static_cast<int>(err), #call); \
exit(0); \
} \
} while(0)
/*
TODO:
This is a simple design of scatter/gather through indexing transform, with limitations
We may design a scatter/gather adaptor layer directly inside tile window
*/
template <ck_tile::index_t ROW_TILE_SIZE = 8,
ck_tile::index_t COL_TILE_SIZE = 32 * 8,
ck_tile::index_t BLOCK_SIZE = 256,
ck_tile::index_t ALIGNMENT = 8,
typename INDEX_BUF_TYPE = ck_tile::index_t,
typename DATA_TYPE = ck_tile::fp16_t>
__global__ void row_scatter_gather(const INDEX_BUF_TYPE* src_row_idx_ptr,
const INDEX_BUF_TYPE* dst_row_idx_ptr,
const DATA_TYPE* src_ptr,
DATA_TYPE* dst_ptr,
ck_tile::index_t n_row_total,
ck_tile::index_t /*n_row_select*/,
ck_tile::index_t n_cols)
{
using namespace ck_tile;
// some constexpr vars
constexpr index_t vec = ALIGNMENT;
static_assert(COL_TILE_SIZE % vec == 0);
constexpr index_t col_lanes = COL_TILE_SIZE / vec;
constexpr index_t warp_size = ck_tile::get_warp_size();
static_assert(warp_size % col_lanes == 0);
constexpr index_t row_lanes = warp_size / col_lanes;
constexpr index_t num_warps = BLOCK_SIZE / warp_size;
static_assert(ROW_TILE_SIZE % (num_warps * row_lanes) == 0);
constexpr index_t row_repeat = ROW_TILE_SIZE / (num_warps * row_lanes);
static_assert(
row_repeat == 1,
"currently indexing not support(and would be not performant) if row_repeat has more");
// tile partitioner
index_t tile_col_idx = 0;
index_t tile_row_idx = blockIdx.x * ROW_TILE_SIZE;
// create our tild distribution, which tell us the location of different threads
constexpr auto src_dist = make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<row_repeat, num_warps, row_lanes>, sequence<col_lanes, vec>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
const auto coord = src_dist.calculate_index();
const auto row_coord = coord[number<0>{}] + tile_row_idx;
// load the current row index from the indexing buffer. we do not use ck_tile utility here
INDEX_BUF_TYPE src_row_id = src_row_idx_ptr[row_coord];
INDEX_BUF_TYPE dst_row_id = dst_row_idx_ptr[row_coord];
// printf("-- tid:%d, src_row_id:%d, dst_row_id:%d\n", static_cast<int>(threadIdx.x),
// static_cast<int>(src_row_id), static_cast<int>(dst_row_id));
const auto src_view =
make_naive_tensor_view<address_space_enum::global>(src_ptr,
make_tuple(n_row_total, n_cols),
make_tuple(n_cols, 1),
number<vec>{}, // alignement
number<1>{});
const auto src_gather_view = transform_tensor_view(
src_view,
make_tuple(make_indexing_transform(
n_row_total,
src_row_id), // here we replace row_idx which is loaded from another buffer
make_pass_through_transform(n_cols)),
make_tuple(sequence<0>{}, sequence<1>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
auto src_tile = make_tile_window(src_gather_view,
make_tuple(number<ROW_TILE_SIZE>{}, number<COL_TILE_SIZE>{}),
{tile_row_idx, tile_col_idx},
src_dist);
const auto dst_view =
make_naive_tensor_view<address_space_enum::global>(dst_ptr,
make_tuple(n_row_total, n_cols),
make_tuple(n_cols, 1),
number<vec>{},
number<1>{});
const auto dst_scatter_view = transform_tensor_view(
dst_view,
make_tuple(make_indexing_transform(
n_row_total,
dst_row_id), // here we replace row_idx which is loaded from another buffer
make_pass_through_transform(n_cols)),
make_tuple(sequence<0>{}, sequence<1>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
auto dst_tile = make_tile_window(dst_scatter_view,
make_tuple(number<ROW_TILE_SIZE>{}, number<COL_TILE_SIZE>{}),
{tile_row_idx, tile_col_idx},
src_dist /*reuse distribution*/);
// we finished descriptor construction and index calculation, now start load/store
for(auto i = 0; i < n_cols; i += COL_TILE_SIZE)
{
// note that scatter/gather are just the same API when doing load store as normal memory
// operation
auto data = load_tile(src_tile);
store_tile(dst_tile, data);
move_tile_window(src_tile, {number<0>{}, number<COL_TILE_SIZE>{}});
move_tile_window(dst_tile, {number<0>{}, number<COL_TILE_SIZE>{}});
}
}
union pixel
{
struct __attribute__((packed))
{
unsigned int r : 6;
unsigned int c : 10;
};
ushort data;
};
struct unique_linear_rand
{
unique_linear_rand(int capacity_) : capacity(capacity_) {}
std::unordered_set<int> set;
int gen()
{
if(static_cast<int>(set.size()) >= capacity)
{
printf("overflow, but will give you an number as well\n");
return std::rand() % capacity;
}
while(1)
{
int r = std::rand() % capacity;
if(set.count(r) == 1)
{
continue;
}
set.insert(r);
return r;
}
}
int capacity;
};
int main()
{
int row_total = 64;
int row_select = 8 * 2;
int col = 256 * 2;
using fp16_t = ck_tile::fp16_t;
constexpr int row_tile = 8;
constexpr int col_tile = 256;
fp16_t* src = reinterpret_cast<fp16_t*>(malloc(row_total * col * sizeof(fp16_t)));
for(int i_r = 0; i_r < row_total; i_r++)
{
for(int i_c = 0; i_c < col; i_c++)
{
int i = i_r * col + i_c;
pixel p;
p.r = i_r;
p.c = i_c;
ushort d = p.data;
src[i] = ck_tile::bit_cast<fp16_t>(d); // for simplicity, just cast
}
}
fp16_t* dst = reinterpret_cast<fp16_t*>(malloc(row_total * col * sizeof(fp16_t)));
int* src_idx = reinterpret_cast<int*>(malloc(row_select * sizeof(int)));
int* dst_idx = reinterpret_cast<int*>(malloc(row_select * sizeof(int)));
// std::srand(std::time(std::nullptr));
// std::srand(11935);
std::srand(std::time(nullptr));
auto src_gen = unique_linear_rand(row_total);
auto dst_gen = unique_linear_rand(row_total); // dst index must be unique. src is fine
for(int i_r = 0; i_r < row_select; i_r++)
{
src_idx[i_r] = src_gen.gen();
dst_idx[i_r] = dst_gen.gen();
}
void* dev_src;
void* dev_dst;
void* dev_src_idx;
void* dev_dst_idx;
HIP_CALL(hipMalloc(&dev_src, row_total * col * sizeof(fp16_t)));
HIP_CALL(hipMalloc(&dev_dst, row_total * col * sizeof(fp16_t)));
HIP_CALL(hipMalloc(&dev_src_idx, row_select * sizeof(int)));
HIP_CALL(hipMalloc(&dev_dst_idx, row_select * sizeof(int)));
HIP_CALL(hipMemcpy(dev_src, src, row_total * col * sizeof(fp16_t), hipMemcpyHostToDevice));
HIP_CALL(hipMemcpy(dev_src_idx, src_idx, row_select * sizeof(int), hipMemcpyHostToDevice));
HIP_CALL(hipMemcpy(dev_dst_idx, dst_idx, row_select * sizeof(int), hipMemcpyHostToDevice));
constexpr int bdim = 256;
int gdim = (row_select + row_tile - 1) / row_tile;
row_scatter_gather<row_tile, col_tile><<<gdim, bdim>>>(reinterpret_cast<int*>(dev_src_idx),
reinterpret_cast<int*>(dev_dst_idx),
reinterpret_cast<fp16_t*>(dev_src),
reinterpret_cast<fp16_t*>(dev_dst),
row_total,
row_select,
col);
HIP_CALL(hipMemcpy(dst, dev_dst, row_total * col * sizeof(fp16_t), hipMemcpyDeviceToHost));
#if TEST_SCATTER_GATHER_VERBOSE
printf("select row:");
for(int i_r = 0; i_r < row_select; i_r++)
{
printf("%d->%d->%d ", i_r, src_idx[i_r], dst_idx[i_r]);
}
printf("\n");
#endif
int err_cnt = 0;
for(int i_r = 0; i_r < row_select; i_r++)
{
for(int i_c = 0; i_c < col; i_c++)
{
int i = dst_idx[i_r] * col + i_c;
pixel p = ck_tile::bit_cast<pixel>(dst[i]);
bool is_ok = p.r == src_idx[i_r] && p.c == i_c;
if(!is_ok)
{
if(i_c == 0)
printf("(%d)pixel: %dx%d -> %d\n", i_r, p.r, p.c, dst_idx[i_r]);
err_cnt++;
}
}
}
#if TEST_SCATTER_GATHER_VERBOSE
printf("err:%d\n", err_cnt);
#endif
free(src);
free(dst);
free(src_idx);
free(dst_idx);
return err_cnt == 0 ? 0 : -1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment