Commit 4b798833 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 42158813 c3a4800c
set(CMAKE_BUILD_TYPE Debug) add_executable(tile_example_gemm_basic EXCLUDE_FROM_ALL gemm_basic.cpp)
add_executable(tile_example_gemm_basic EXCLUDE_FROM_ALL gemm_basic.cpp) add_executable(tile_example_gemm_mem_pipeline EXCLUDE_FROM_ALL gemm_mem_pipeline.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_basic.hpp"
#include <hip/hip_runtime.h> #include <hip/hip_runtime.h>
#include <cstring> #include <cstring>
...@@ -10,51 +9,48 @@ ...@@ -10,51 +9,48 @@
#include <string> #include <string>
#include <tuple> #include <tuple>
auto create_args(int argc, char* argv[]) #include "ck_tile/ops/epilogue.hpp"
{ #include "ck_tile/ops/gemm.hpp"
ck_tile::ArgParser arg_parser; #include "ck_tile/host.hpp"
arg_parser.insert("b", "1", "batch size") #include "gemm_basic.hpp"
.insert("m", "1024", "m dimension")
.insert("n", "2048", "n dimension")
.insert("k", "64", "k dimension")
.insert("stride_a", "0", "Tensor A stride")
.insert("stride_b", "0", "Tensor B stride")
.insert("stride_c", "0", "Tensor C stride")
.insert("v", "2", "0. No validation, 1. Validation on CPU, 2. Validation on GPU")
.insert("e", "1e-5", "Absolute error tolerance")
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "10", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename LayoutA, template <typename ALayout, typename BLayout, typename CLayout>
typename LayoutB,
typename LayoutC,
typename PipelineProblem,
typename GemmPipeline,
typename GemmShape>
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
{ {
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part. // The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true; constexpr bool kPadA = true;
constexpr bool kPadB = true; constexpr bool kPadB = true;
constexpr bool kPadC = true;
constexpr bool kTilePermute = false; constexpr bool kTilePermute = false;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
constexpr int kBlockPerCu = 1; constexpr int kBlockPerCu = 1;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>; // This part comes from the Codegen
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
// The rank and permutation will also be generate out by the CodeGen part. constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t kOutputRank = 2; constexpr ck_tile::index_t N_Warp = 2;
constexpr ck_tile::index_t K_Warp = 1;
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
// Whether doing the CShuffle (transpose before the global memory), depending on the output // Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout. // layout.
constexpr bool CShuffleEpilogue = constexpr bool CShuffleEpilogue =
std::is_same_v<LayoutC, ck_tile::tensor_layout::gemm::ColumnMajor>; std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>;
using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<CodegenGemmShape>;
using GemmEpilogue = std::conditional_t< using GemmEpilogue = std::conditional_t<
CShuffleEpilogue, CShuffleEpilogue,
...@@ -70,14 +66,21 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) ...@@ -70,14 +66,21 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
TilePartitioner::kN>>, TilePartitioner::kN>>,
ck_tile::Default2DEpilogue< ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>>; ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>>;
using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadA, kPadB, kPadC, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy<ALayout, BLayout, CLayout>;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM. // ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy. // Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>; using Kernel = ck_tile::GemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a, auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b, args.p_b,
args.p_c, args.p_c,
args.epsilon,
args.M, args.M,
args.N, args.N,
args.K, args.K,
...@@ -88,299 +91,20 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) ...@@ -88,299 +91,20 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch); const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize(); constexpr dim3 blocks = Kernel::BlockSize();
float ave_time = ck_tile::launch_kernel( if(s.log_level_ > 0)
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
template <typename DataType,
typename LayoutA,
typename LayoutB,
typename LayoutC,
typename PipelineProblem,
typename GemmPipeline,
typename GemmShape>
float invoke_gemm(ck_tile::DeviceMem& a_buf,
ck_tile::DeviceMem& b_buf,
ck_tile::DeviceMem& c_buf,
const ck_tile::ArgParser& arg_parser)
{
std::string data_type = arg_parser.get_str("prec");
if(data_type != DataTypeTraits<DataType>::name)
{
std::cerr << "Data type mismatch: expected " << DataTypeTraits<DataType>::name << ", got "
<< data_type << std::endl;
return -1; // Or handle the error appropriately
}
float epsilon = arg_parser.get_float("e");
ck_tile::index_t batch_size = arg_parser.get_int("b");
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k");
ck_tile::index_t stride_a = arg_parser.get_int("stride_a");
ck_tile::index_t stride_b = arg_parser.get_int("stride_b");
ck_tile::index_t stride_c = arg_parser.get_int("stride_c");
gemm_basic_args args;
args.p_a = a_buf.GetDeviceBuffer();
args.p_b = b_buf.GetDeviceBuffer();
args.p_c = c_buf.GetDeviceBuffer();
args.epsilon = epsilon;
args.kbatch = batch_size;
args.M = M;
args.N = N;
args.K = K;
// Only set stride_M and stride_N if they are non-zero and not equal to K.
if(stride_a != 0)
{
args.stride_A = stride_a;
}
else
{
args.stride_A = [&]() {
if constexpr(std::is_same_v<LayoutA, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
return M;
}
else
{
return K;
}
}();
}
if(stride_b != 0)
{
args.stride_B = stride_b;
}
else
{ {
args.stride_B = [&]() { std::cout << "Launching kernel with args:"
if constexpr(std::is_same_v<LayoutB, ck_tile::tensor_layout::gemm::RowMajor>) << " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
{ << ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
return N; << std::endl;
}
else
{
return K;
}
}();
} }
if(stride_c != 0) float ave_time = ck_tile::launch_kernel(
{ s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
args.stride_C = stride_c;
}
else
{
args.stride_C = [&]() {
if constexpr(std::is_same_v<LayoutC, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
return M;
}
else
{
return N;
}
}();
}
float ave_time = gemm_calc<LayoutA, LayoutB, LayoutC, PipelineProblem, GemmPipeline, GemmShape>(
args, ck_tile::stream_config{nullptr, true});
std::size_t num_byte =
sizeof(ADataType) * M * K + sizeof(BDataType) * N * K + sizeof(CDataType) * M * N;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "The overall perfomance of the GEMM with "
<< "[" << data_type << "]"
<< "batch size: " << batch_size << ". m:" << M << ", n:" << N << ", k:" << K
<< " is: \n";
std::cout << "Running time: " << ave_time << "ms, Throughput " << gb_per_sec << "GB/s \n"
<< std::flush;
return ave_time; return ave_time;
} }
int main(int argc, char* argv[]) #include "run_gemm_example.inc"
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k");
// The Matrix Multiplication goes with Matrix A (M, K), Matrix B (N, K) = Matrix C (M, N).
using matrix_a_layout = ck_tile::tensor_layout::gemm::RowMajor;
using matrix_b_layout = ck_tile::tensor_layout::gemm::ColumnMajor;
using matrix_c_layout = ck_tile::tensor_layout::gemm::RowMajor;
// host verify
std::vector<int> a_dimensions =
(std::is_same_v<matrix_a_layout, ck_tile::tensor_layout::gemm::RowMajor>)
? std::vector<int>{M, K}
: std::vector<int>{K, M};
std::vector<int> b_dimensions =
(std::is_same_v<matrix_b_layout, ck_tile::tensor_layout::gemm::ColumnMajor>)
? std::vector<int>{N, K}
: std::vector<int>{K, N};
std::vector<int> c_dimensions =
(std::is_same_v<matrix_c_layout, ck_tile::tensor_layout::gemm::RowMajor>)
? std::vector<int>{M, N}
: std::vector<int>{N, M};
ck_tile::HostTensor<ADataType> a_host(a_dimensions);
ck_tile::HostTensor<BDataType> b_host(b_dimensions);
ck_tile::HostTensor<CDataType> c_host_ref(c_dimensions);
ck_tile::HostTensor<CDataType> c_host_dev(c_dimensions);
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_host);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_host);
ck_tile::DeviceMem a_buf(a_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_buf(b_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem c_buf(c_host_dev.get_element_space_size_in_bytes());
a_buf.ToDevice(a_host.data());
b_buf.ToDevice(b_host.data());
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kPadC = true;
// This part comes from the Codegen
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2;
constexpr ck_tile::index_t K_Warp = 1;
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using CodegenGemmTraits = ck_tile::
TileGemmTraits<kPadA, kPadB, kPadC, matrix_a_layout, matrix_b_layout, matrix_c_layout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::
UniversalGemmPipelineAgBgCrPolicy<matrix_a_layout, matrix_b_layout, matrix_c_layout>;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
invoke_gemm<ck_tile::half_t,
matrix_a_layout,
matrix_b_layout,
matrix_c_layout,
CodegenPipelineProblem,
CodegenGemmPipeline,
CodegenGemmShape>(a_buf, b_buf, c_buf, arg_parser);
c_buf.FromDevice(c_host_dev.data());
bool pass_cpu = true;
if(arg_parser.get_int("v") == 1)
{
// ToDo: Will Add the Element Op (bias) verification in the future.
ck_tile::reference_gemm<ADataType,
BDataType,
AccDataType,
CDataType,
matrix_a_layout,
matrix_b_layout,
matrix_c_layout>(a_host, b_host, c_host_ref);
pass_cpu = ck_tile::check_err(c_host_dev, c_host_ref);
std::cout << "The CPU veification result is:" << (pass_cpu ? "correct" : "fail")
<< std::flush;
}
bool pass_gpu = true;
if(arg_parser.get_int("v") == 2)
{
ck_tile::index_t stride_a = arg_parser.get_int("stride_a");
ck_tile::index_t stride_b = arg_parser.get_int("stride_b");
ck_tile::index_t stride_c = arg_parser.get_int("stride_c");
if(stride_a == 0)
{
if constexpr(std::is_same_v<matrix_a_layout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
stride_a = M;
}
else
{
stride_a = K;
}
}
if(stride_b == 0)
{
if constexpr(std::is_same_v<matrix_b_layout, ck_tile::tensor_layout::gemm::RowMajor>)
{
stride_b = N;
}
else
{
stride_b = K;
}
}
if(stride_c == 0)
{
if constexpr(std::is_same_v<matrix_c_layout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
stride_c = M;
}
else
{
stride_c = N;
}
}
ck_tile::HostTensor<CDataType> c_host_gpu_ref(c_dimensions);
ck_tile::DeviceMem c_gpu_buf(c_host_gpu_ref.get_element_space_size_in_bytes());
ck_tile::reference_gemm_gpu<ADataType, int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
BDataType,
AccDataType,
CDataType,
matrix_a_layout,
matrix_b_layout,
matrix_c_layout>(
a_buf, b_buf, c_gpu_buf, M, N, K, stride_a, stride_b, stride_c);
c_buf.FromDevice(c_host_gpu_ref.data());
pass_gpu = ck_tile::check_err(c_host_dev, c_host_gpu_ref);
std::cout << "The GPU veification result is: " << (pass_gpu ? "correct" : "fail")
<< std::flush;
}
std::cout << std::endl << std::flush;
return !pass_gpu;
}
...@@ -4,12 +4,10 @@ ...@@ -4,12 +4,10 @@
#pragma once #pragma once
#include <string>
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp" #include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/host.hpp"
#include <string>
template <typename DataType> template <typename DataType>
struct GemmBasicTypeConfig; struct GemmBasicTypeConfig;
...@@ -20,7 +18,7 @@ struct GemmBasicTypeConfig<ck_tile::half_t> ...@@ -20,7 +18,7 @@ struct GemmBasicTypeConfig<ck_tile::half_t>
using ADataType = ck_tile::half_t; using ADataType = ck_tile::half_t;
using BDataType = ck_tile::half_t; using BDataType = ck_tile::half_t;
using AccDataType = float; using AccDataType = float;
using CDataType = ck_tile::half_t; // type convert using CDataType = ck_tile::half_t;
// ToDo: Add more bias config to support different categories of GEMM. // ToDo: Add more bias config to support different categories of GEMM.
}; };
...@@ -58,7 +56,6 @@ struct gemm_basic_args ...@@ -58,7 +56,6 @@ struct gemm_basic_args
const void* p_a; const void* p_a;
const void* p_b; const void* p_b;
void* p_c; void* p_c;
float epsilon;
ck_tile::index_t kbatch; ck_tile::index_t kbatch;
ck_tile::index_t M; ck_tile::index_t M;
ck_tile::index_t N; ck_tile::index_t N;
...@@ -68,5 +65,28 @@ struct gemm_basic_args ...@@ -68,5 +65,28 @@ struct gemm_basic_args
ck_tile::index_t stride_C; ck_tile::index_t stride_C;
}; };
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("b", "1", "batch size")
.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "2048", "k dimension")
.insert("a_layout", "R", "A tensor data layout - Row by default")
.insert("b_layout", "R", "B tensor data layout - Row by default")
.insert("c_layout", "R", "C tensor data layout - Row by default")
.insert("stride_a", "0", "Tensor A stride")
.insert("stride_b", "0", "Tensor B stride")
.insert("stride_c", "0", "Tensor C stride")
.insert("v", "2", "0. No validation, 1. Validation on CPU, 2. Validation on GPU")
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// host API // host API
float gemm_calc(gemm_basic_args args, const ck_tile::stream_config& s); float gemm_calc(gemm_basic_args args, const ck_tile::stream_config& s);
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <hip/hip_runtime.h>
#include <cstring>
#include <iostream>
#include <sstream>
#include <string>
#include <tuple>
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/host.hpp"
#include "gemm_basic.hpp"
template <typename ALayout, typename BLayout, typename CLayout>
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
{
// ToDo: This will be modified by the codegen code later.
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2;
constexpr ck_tile::index_t K_Warp = 1;
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kPadC = true;
constexpr int kBlockPerCu = 1;
// ===============================================
using GemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, false, kPadC>>;
using Traits = ck_tile::TileGemmTraits<kPadA, kPadB, kPadC, ALayout, BLayout, CLayout>;
using BaseGemmPipeline = ck_tile::BaseGemmPipelineAgBgCrMem<
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K);
const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop);
const ck_tile::TailNumber tail_num = BaseGemmPipeline::GetBlockLoopTailNum(num_loop);
float ave_time{0};
const auto Run = [&](const auto has_hot_loop_, const auto tail_number_) {
constexpr bool has_hot_loop_v = has_hot_loop_.value;
constexpr auto tail_number_v = tail_number_.value;
using GemmPipeline = ck_tile::GemmPipelineAgBgCrMem<
ck_tile::UniversalGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
GemmShape,
Traits,
ck_tile::GemmPipelineScheduler::Intrawave,
has_hot_loop_v,
tail_number_v>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
args.p_c,
args.M,
args.N,
args.K,
args.stride_A,
args.stride_B,
args.stride_C);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize();
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
<< std::endl;
}
ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
};
if(has_hot_loop)
{
// Tail pipeline One to Seven
if(tail_num == ck_tile::TailNumber::One)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::One>{});
}
else if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
if constexpr(BaseGemmPipeline::PrefetchStages > 2)
{
if(tail_num == ck_tile::TailNumber::Two)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Two>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 3)
{
if(tail_num == ck_tile::TailNumber::Three)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Three>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 4)
{
if(tail_num == ck_tile::TailNumber::Four)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Four>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 5)
{
if(tail_num == ck_tile::TailNumber::Five)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Five>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 6)
{
if(tail_num == ck_tile::TailNumber::Six)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Six>{});
}
}
if constexpr(BaseGemmPipeline::PrefetchStages > 7)
{
if(tail_num == ck_tile::TailNumber::Seven)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Seven>{});
}
}
}
else
{
// Tail number always Full - #PrefetchStages
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<false>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "When there's no hot loop, this tail number \"" << tail_num
<< "\" is not supported! " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
return ave_time;
}
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename ALayout, typename BLayout, typename CLayout>
float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::DeviceMem& b_k_n_dev_buf,
ck_tile::DeviceMem& c_m_n_dev_buf,
ck_tile::index_t M,
ck_tile::index_t N,
ck_tile::index_t K,
ck_tile::index_t stride_A,
ck_tile::index_t stride_B,
ck_tile::index_t stride_C,
ck_tile::index_t kbatch,
int n_warmup,
int n_repeat)
{
gemm_basic_args args;
args.p_a = a_m_k_dev_buf.GetDeviceBuffer();
args.p_b = b_k_n_dev_buf.GetDeviceBuffer();
args.p_c = c_m_n_dev_buf.GetDeviceBuffer();
args.kbatch = kbatch;
args.M = M;
args.N = N;
args.K = K;
args.stride_A = stride_A;
args.stride_B = stride_B;
args.stride_C = stride_C;
float ave_time = gemm_calc<ALayout, BLayout, CLayout>(
args, ck_tile::stream_config{nullptr, true, 1, n_warmup, n_repeat});
std::string op_name{"Gemm{MemBoundPipeline}"};
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_byte =
sizeof(ADataType) * M * K + sizeof(BDataType) * N * K + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Run " << op_name << "kernel with M =" << M << " N =" << N << " K =" << K
<< " StrideA =" << stride_A << " StrideB =" << stride_B << " StrideC =" << stride_C
<< " : " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< std::endl;
return ave_time;
}
template <typename ALayout, typename BLayout, typename CLayout>
int run_gemm_example_with_layouts(int argc,
char* argv[],
const ALayout a_layout = ALayout{},
const BLayout b_layout = BLayout{},
[[maybe_unused]] const CLayout c_layout = CLayout{})
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k");
ck_tile::index_t stride_A = arg_parser.get_int("stride_a");
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t batch_size = arg_parser.get_int("b");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
using namespace ck_tile::literals;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
stride_A = f_get_default_stride(M, K, stride_A, a_layout);
stride_B = f_get_default_stride(K, N, stride_B, b_layout);
stride_C = f_get_default_stride(M, N, stride_C, CLayout{});
ck_tile::HostTensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, a_layout));
ck_tile::HostTensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, b_layout));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
// TODO: add different init types
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n);
ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes());
ck_tile::DeviceMem c_m_n_dev_buf(c_m_n_dev_result.get_element_space_size_in_bytes());
a_m_k_dev_buf.ToDevice(a_m_k.data());
b_k_n_dev_buf.ToDevice(b_k_n.data());
c_m_n_dev_buf.SetZero();
c_m_n_dev_result.SetZero();
invoke_gemm<ALayout, BLayout, CLayout>(a_m_k_dev_buf,
b_k_n_dev_buf,
c_m_n_dev_buf,
M,
N,
K,
stride_A,
stride_B,
stride_C,
batch_size,
n_warmup,
n_repeat);
c_m_n_dev_buf.FromDevice(c_m_n_dev_result.data());
bool pass = true;
if(arg_parser.get_int("v") == 1)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k, b_k_n, c_m_n_host_ref);
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_host_ref);
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
}
else if(arg_parser.get_int("v") == 2)
{
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes());
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
ck_tile::reference_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
a_m_k_dev_buf, b_k_n_dev_buf, c_m_n_gpu_buf_ref, M, N, K, stride_A, stride_B, stride_C);
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref);
std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl;
}
return pass;
}
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
set(EXAMPLE_REDUCE "tile_example_reduce")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding example ${EXAMPLE_REDUCE}")
add_executable(${EXAMPLE_REDUCE} EXCLUDE_FROM_ALL reduce.cpp)
target_include_directories(${EXAMPLE_REDUCE} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
set(EXAMPLE_REDUCE_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND EXAMPLE_REDUCE_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
target_compile_options(${EXAMPLE_REDUCE} PRIVATE ${EXAMPLE_REDUCE_COMPILE_OPTIONS})
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property(GLOBAL PROPERTY RULE_MESSAGES OFF)
\ No newline at end of file
#include "ck_tile/host.hpp"
#include "reduce.hpp"
#include <cstring>
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "5", "cold iter")
.insert("repeat", "20", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
using XDataType = DataType;
using ComputeDataType = float;
using YDataType = DataType;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
ck_tile::HostTensor<XDataType> x_host({m, n});
ck_tile::HostTensor<YDataType> y_host_ref({m});
ck_tile::HostTensor<YDataType> y_host_dev({m});
ck_tile::FillUniformDistribution<XDataType>{-5.f, 5.f}(x_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
using ReduceOp = ck_tile::ReduceOp::Add;
using BlockWarps = ck_tile::sequence<4, 1>;
using BlockTile = ck_tile::sequence<128, 128>;
using WarpTile = ck_tile::sequence<32, 128>;
using Vector = ck_tile::sequence<8, 8>;
// cross warp-reduce
// using BlockWarps = ck_tile::sequence<2, 2>;
// using BlockTile = ck_tile::sequence<2, 1024>;
// using WarpTile = ck_tile::sequence<1, 512>;
// using Vector = ck_tile::sequence<1, 8>;
constexpr ck_tile::index_t kBlockSize = 512;
constexpr ck_tile::index_t kBlockPerCu = 1;
ck_tile::index_t kGridSize = (m / BlockTile::at(ck_tile::number<0>{}));
std::cout << "grid size " << kGridSize << std::endl;
using Shape = ck_tile::Reduce2dShape<BlockWarps, BlockTile, WarpTile, Vector>;
using Porblem =
ck_tile::Reduce2dProblem<XDataType, ComputeDataType, YDataType, Shape, ReduceOp>;
using Kernel = ck_tile::Reduce<Porblem>;
float ave_time = launch_kernel(ck_tile::stream_config{nullptr, true, 0, warmup, repeat},
ck_tile::make_kernel<kBlockSize, kBlockPerCu>(
Kernel{},
kGridSize,
kBlockSize,
0,
static_cast<XDataType*>(x_buf.GetDeviceBuffer()),
static_cast<YDataType*>(y_buf.GetDeviceBuffer()),
m,
n));
std::size_t num_btype = sizeof(XDataType) * m * n + sizeof(YDataType) * m;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
bool pass = true;
if(do_validation)
{
// reference
ck_tile::reference_reduce<XDataType, ComputeDataType, YDataType>(
x_host, y_host_ref, ReduceOp{});
y_buf.FromDevice(y_host_dev.mData.data());
pass = ck_tile::check_err(y_host_dev, y_host_ref);
std::cout << "valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
// else if(data_type == "bf16")
// {
// return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
// }
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
#include "ck_tile/ops/reduce/block/block_reduce2d_default_policy.hpp"
namespace ck_tile {
template <typename BlockWarps, // num warps along seq<M, N>
typename BlockTile, // block size, seq<M, N>
typename WarpTile, // warp size, seq<M, N>
typename Vector> // contiguous pixels(vector size) along seq<M, N>
struct Reduce2dShape
{
static constexpr index_t Block_M = BlockTile::at(number<0>{});
static constexpr index_t Block_N = BlockTile::at(number<1>{});
static constexpr index_t Warp_M = WarpTile::at(number<0>{});
static constexpr index_t Warp_N = WarpTile::at(number<1>{});
static constexpr index_t Vector_M = Vector::at(number<0>{});
static constexpr index_t Vector_N = Vector::at(number<1>{});
static constexpr index_t WarpPerBlock_M = BlockWarps::at(number<0>{});
static constexpr index_t WarpPerBlock_N = BlockWarps::at(number<1>{});
static constexpr index_t ThreadPerWarp_M = Warp_M / Vector_M;
static constexpr index_t ThreadPerWarp_N = Warp_N / Vector_N;
static constexpr index_t Repeat_M = Block_M / (WarpPerBlock_M * Warp_M);
static constexpr index_t Repeat_N = Block_N / (WarpPerBlock_N * Warp_N);
static constexpr index_t BlockSize =
warpSize * reduce_on_sequence(BlockWarps{}, multiplies{}, number<1>{});
};
template <typename XDataType_,
typename ComputeDataType_,
typename YDataType_,
typename BlockShape_,
typename ReduceOp_>
struct Reduce2dProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using ReduceOp = ReduceOp_;
static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1;
static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1;
};
template <typename Problem_, typename Policy_ = BlockReduce2dDefaultPolicy>
struct Reduce
{
using Problem = ck_tile::remove_cvref_t<Problem_>;
using Policy = ck_tile::remove_cvref_t<Policy_>;
using XDataType = ck_tile::remove_cvref_t<typename Problem::XDataType>;
using ComputeDataType = ck_tile::remove_cvref_t<typename Problem::ComputeDataType>;
using YDataType = ck_tile::remove_cvref_t<typename Problem::YDataType>;
#if 0
CK_TILE_DEVICE void operator()(const XDataType* p_x, YDataType* p_y, index_t M, index_t N)
const
{
using S = typename Problem::BlockShape;
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<S::Vector_N>{}, number<1>{});
const auto y_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_y, make_tuple(M), number<1>{});
const auto iM = get_block_id() * S::Block_M;
auto x_window = make_tile_window(x_m_n,
make_tuple(number<S::Block_M>{}, number<S::Block_N>{}),
{iM, 0},
Policy::template MakeXBlockTileDistribution<Problem>());
auto y_window = make_tile_window(y_m, make_tuple(number<S::Block_M>{}), {iM});
const auto f_reduce = [](const auto& v0, const auto& v1) { return v0 + v1; };
const XDataType reduce_init_value = 0;
constexpr auto reduce_dims = sequence<1>{};
auto y_compute = decltype(block_tile_reduce<ComputeDataType>(
load_tile(x_window), reduce_dims, f_reduce, reduce_init_value)){};
set_tile(y_compute, reduce_init_value);
index_t num_n_tile_iteration =
__builtin_amdgcn_readfirstlane(integer_divide_ceil(N, S::Block_N));
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{
const auto x = load_tile(x_window);
block_tile_reduce(y_compute, x, reduce_dims, f_reduce);
move_tile_window(x_window, {0, S::Block_N});
}
block_tile_reduce_sync(y_compute, f_reduce);
store_tile(y_window, cast_tile<YDataType>(y_compute));
}
#else
CK_TILE_DEVICE void operator()(const XDataType* p_x, YDataType* p_y, index_t M, index_t N) const
{
using S = typename Problem::BlockShape;
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<S::Vector_N>{}, number<1>{});
const auto y_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_y, make_tuple(M), number<1>{});
const auto iM = get_block_id() * S::Block_M;
auto x_window = make_tile_window(x_m_n,
make_tuple(number<S::Block_M>{}, number<S::Block_N>{}),
{iM, 0},
Policy::template MakeXBlockTileDistribution<Problem>());
auto y_window = make_tile_window(y_m, make_tuple(number<S::Block_M>{}), {iM});
__shared__ char smem[Policy::template GetSmemSize<Problem>()];
index_t num_n_tile_iteration =
__builtin_amdgcn_readfirstlane(integer_divide_ceil(N, S::Block_N));
auto reduce_func = typename Problem::ReduceOp{};
auto block_reduce2d = Policy::template GetBlockReduce2d<Problem>();
auto block_reduce2d_sync = Policy::template GetBlockReduce2dSync<Problem>();
auto block_reduce2d_cross_warp_sync =
Policy::template GetBlockReduce2dCrossWarpSync<Problem>();
using XTensorType = decltype(load_tile(x_window));
auto y_compute = block_reduce2d.template MakeYBlockTile<XTensorType>();
set_tile(y_compute, reduce_func.template GetIdentityValue<ComputeDataType>());
for(int iN = __builtin_amdgcn_readfirstlane(0); iN < num_n_tile_iteration; ++iN)
{
const auto x = load_tile(x_window);
block_reduce2d(x, y_compute, reduce_func);
move_tile_window(x_window, {0, S::Block_N});
}
block_reduce2d_sync(y_compute, reduce_func);
block_reduce2d_cross_warp_sync(y_compute, smem, reduce_func);
store_tile(y_window, cast_tile<YDataType>(y_compute));
}
#endif
};
} // namespace ck_tile
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
add_executable(tile_example_permute EXCLUDE_FROM_ALL permute.cpp)
if(NOT DEFINED PERMUTE_USE_ALTERNATIVE_IMPL)
# set(PERMUTE_USE_ALTERNATIVE_IMPL false)
set(PERMUTE_USE_ALTERNATIVE_IMPL true)
endif()
if(PERMUTE_USE_ALTERNATIVE_IMPL)
target_compile_options(tile_example_permute PRIVATE -DPERMUTE_USE_ALTERNATIVE_IMPL)
target_sources(tile_example_permute PRIVATE alternative_impl/matrix_core_swizzle.cpp)
endif()
# target_compile_options(tile_example_permute PRIVATE -v --save-temps -Wno-gnu-line-marker)
# permute
This folder contains example for permute kernel, which is similiar to [torch.permute](https://pytorch.org/docs/stable/generated/torch.permute.html) (combined with [torch.contiguous](https://pytorch.org/docs/stable/generated/torch.Tensor.contiguous.html)). Currently we implement a generic permute kernel that support up to rank 8 arbitrary permutation with a single kernel instance. Performance is not the first consideration, we prefer a simple and general kernel implementation using `ck_tile` in this example.
```
args:
-v weather do CPU validation or not (default:1)
-prec data type. fp16/bf16/fp32 (default:fp16)
-shape the shape of the input tensor (default:2,3,4)
-perm permute perm (default:2,1,0)
```
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_permute -j
```
This will result in an executable `build/bin/tile_example_permute`
## some examples
```
# torch
x=torch.randn(2,3,4,6)
y=x.permute(0,3,2,1).contiguous()
# ck_tile
./build/bin/tile_example_permute -shape=2,3,4,6 -perm=0,3,2,1
```
or you can try the smoke_test
```
# in the root of ck_tile, after you build this example
sh example/ck_tile/06_permute/script/smoke_test.sh
```
### alternative implementation
we have an alternative implementation under `alternative_impl/` folder, that can swizzle the tensor to be more friendly for data loading for matrix core layout. This can be enabled when dealing with a `rank-7` tensor, with a fixed pattern of either `0,1,4,2,5,3,6` or `0,1,2,4,5,3,6`. There are other shape limitation of this implementation, check the source code of `permute.cpp` for detail.
```
# example
./build/bin/tile_example_permute -shape=3,6,4,32,16,2,8 -perm=0,1,4,2,5,3,6 # b_n0_k0_n1_k1_n2_k2
./build/bin/tile_example_permute -shape=3,8,4,16,16,4,8 -perm=0,1,2,4,5,3,6 # b_n0_n1_k0_k1_n2_k2
```
#include "matrix_core_swizzle.hpp"
#include "matrix_core_swizzle_kernel.hpp"
float matrix_core_swizzle(matrix_core_swizzle_traits t,
matrix_core_swizzle_args a,
const ck_tile::stream_config& s)
{
if(t.data_type.compare("fp16") == 0)
{
if(t.inst.compare("32x32x8") == 0)
{
constexpr int BLOCK_SIZE = 256;
constexpr int NPerBlock = 256;
constexpr int KPerBlock = 128;
constexpr matrix_core_inst_enum Inst = matrix_core_inst_enum::MFMA_32x32x8_F16;
if(t.permute.compare("0,1,4,2,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,2,4,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,3,4,2,5") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_nr_kr_kw_nw_kv;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
}
else if(t.inst.compare("16x16x16") == 0)
{
constexpr int BLOCK_SIZE = 256;
constexpr int NPerBlock = 256;
constexpr int KPerBlock = 128;
constexpr matrix_core_inst_enum Inst = matrix_core_inst_enum::MFMA_16x16x16_F16;
if(t.permute.compare("0,1,4,2,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,2,4,5,3,6") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
else if(t.permute.compare("0,1,3,4,2,5") == 0)
{
constexpr matrix_core_permute_style pstyle =
matrix_core_permute_style::permute_b_nr_kr_kw_nw_kv;
using Kernel =
matrix_core_swizzle_kernel<BLOCK_SIZE, NPerBlock, KPerBlock, pstyle, Inst>;
auto k = Kernel(a);
float ave_time = ck_tile::launch_kernel(s, k);
return ave_time;
}
}
}
return -1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "matrix_core_swizzle_kernel.hpp"
#include <string>
struct matrix_core_swizzle_traits
{
std::string data_type; // fp16 only
std::string inst; // 32x32x8, 16x16x16
std::string permute; //
};
using matrix_core_swizzle_args = matrix_core_swizzle_host_args;
// host API
float matrix_core_swizzle(matrix_core_swizzle_traits,
matrix_core_swizzle_args,
const ck_tile::stream_config&);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/ops/gemm.hpp"
// if set to 1, slightly more instructions generated to calculate address
#ifndef MERGE_2D_013425
#define MERGE_2D_013425 0
#endif
enum class matrix_core_inst_enum
{
MFMA_32x32x8_F16 = 0,
MFMA_16x16x16_F16 = 1,
};
namespace detail {
template <matrix_core_inst_enum>
struct to_warp_gemm;
template <>
struct to_warp_gemm<matrix_core_inst_enum::MFMA_32x32x8_F16>
{
using type = ck_tile::WarpGemmMfmaF16F16F32M32N32K8;
};
template <>
struct to_warp_gemm<matrix_core_inst_enum::MFMA_16x16x16_F16>
{
using type = ck_tile::WarpGemmMfmaF16F16F32M16N16K16;
};
} // namespace detail
template <matrix_core_inst_enum Inst>
using to_warp_gemm_t = typename detail::to_warp_gemm<Inst>::type;
// TODO: in below permute pattern, the last 3 dim is within wave
enum class matrix_core_permute_style
{
permute_b_n0_k0_n1_k1_n2_k2 = 0, // 0,1,4,2,5,3,6
permute_b_n0_n1_k0_k1_n2_k2 = 1, // 0,1,2,4,5,3,6
permute_b_nr_kr_kw_nw_kv = 2, // 0,1,3,4,2,5
permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv,
};
// assume this is B matrix, originally we have batch*n*k
// now batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2
// assume using 32x32x8-f16, 4 waves and extend the KPerLane to 8xfp16(dwordx4)
//
// 4(waves) 32(mfma_m lane)
// | |
// batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2 -> 8(thread loading)
// nr kr |
// nr 4 32 kr 2 8 2(klane)
//
// permute: 0,1,4,2,5,3,6
// or
// batch* n0*n1*n2*k0*k1*k2 -> batch* n0*n1*k0*k1*n2*k2 -> 8(thread loading)
// permute: 0,1,2,4,5,3,6
//
// this kernel only deal with fp16/bf16 data(16bit), and use 2d block size to do the swizzling
// for simplicity, only consider n/k is multiple of block-size
// independend host arg with no template
struct matrix_core_swizzle_host_args
{
const void* p_src;
void* p_dst;
int32_t batch;
int32_t n;
int32_t k;
};
// NOTE: this kernel could follow the style of generic permute kernel
// but here we pass in fixed layout as template arg and generate different kernel instance
// purposely
template <int BLOCK_SIZE_ = 256,
int NPerBlock_ = 256,
int KPerBlock_ = 128,
matrix_core_permute_style pstyle_ =
matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2,
matrix_core_inst_enum Inst_ = matrix_core_inst_enum::MFMA_32x32x8_F16>
struct matrix_core_swizzle_kernel
{
using karg = matrix_core_swizzle_host_args;
using harg = matrix_core_swizzle_host_args;
static constexpr int BLOCK_SIZE = BLOCK_SIZE_;
static constexpr int WavesPerBlock_N = 4;
static constexpr int WavesPerBlock_K = 1;
static_assert(WavesPerBlock_N * WavesPerBlock_K * 64 == BLOCK_SIZE);
static constexpr int NPerBlock = NPerBlock_;
static constexpr int KPerBlock = KPerBlock_;
static constexpr matrix_core_permute_style pstyle = pstyle_;
static constexpr matrix_core_inst_enum Inst = Inst_;
static constexpr ck_tile::index_t Alignment = 8;
karg a;
dim3 grids;
using WarpGemm = to_warp_gemm_t<Inst>;
__host__ matrix_core_swizzle_kernel(harg h)
{
a = h;
ck_tile::index_t ns = (h.n + NPerBlock - 1) / NPerBlock;
ck_tile::index_t ks = (h.k + KPerBlock - 1) / KPerBlock;
grids = dim3(ks, ns, h.batch);
}
__host__ bool is_applicable(harg h) { return h.n % NPerBlock == 0 && h.k % KPerBlock == 0; }
__host__ void operator()(const ck_tile::stream_config& s) const
{
ck_tile::kentry<BLOCK_SIZE, 1, kernel><<<grids, BLOCK_SIZE, 0, s.stream_id_>>>(a);
}
struct kernel
{
__device__ static constexpr auto get_src_dist()
{
using namespace ck_tile;
constexpr index_t K2 = Alignment;
constexpr index_t N2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t K1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t N1 = BLOCK_SIZE / get_warp_size();
static_assert(NPerBlock % (N1 * N2) == 0);
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t K0 = KPerBlock / (K1 * K2);
constexpr index_t N0 = NPerBlock / (N1 * N2);
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<N1>, sequence<N2>, sequence<K0>, sequence<K1>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<2>, sequence<5, 3>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 4, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
__device__ static constexpr auto get_dst_dist()
{
using namespace ck_tile;
constexpr index_t K2 = Alignment;
constexpr index_t N2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t K1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t N1 = BLOCK_SIZE / get_warp_size();
static_assert(NPerBlock % (N1 * N2) == 0);
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t K0 = KPerBlock / (K1 * K2);
constexpr index_t N0 = NPerBlock / (N1 * N2);
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<K0>, sequence<N1>, sequence<K1>, sequence<N2>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<3>, sequence<4, 5>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 2, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
// clang-format off
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,// 0
// 1 2 3 4 5 6
tuple<sequence<N0>, sequence<N1>, sequence<K0>, sequence<K1>, sequence<N2>, sequence<K2>>,
// N1 K1 N2
tuple<sequence<2>, sequence<4, 5>>,
tuple<sequence<0>, sequence<0, 0>>,
// N0 K0 K2
sequence<1, 3, 6>,
sequence<0, 0, 0>>{});
// clang-format on
}
else
{
// clang-format off
// permute_b_nr_kr_kw_nw_kv or permute_b_nr_kr_waveflatten
constexpr index_t Kv = Alignment;
constexpr index_t Nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t Kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
static_assert(KPerBlock % (K1 * K2) == 0);
constexpr index_t Nr = NPerBlock / Nw;
constexpr index_t Kr = KPerBlock / (Kv * Kw);
constexpr index_t Nr_p = WavesPerBlock_N;
constexpr index_t Kr_p = WavesPerBlock_K;
constexpr index_t Nr_y = Nr / Nr_p;
constexpr index_t Kr_y = Kr / Kr_p;
return make_static_tile_distribution(
#if MERGE_2D_013425
tile_distribution_encoding<
sequence<1>,// 0 R
// major 1 2
// minor 0 1 2 0 1 2 3
tuple<sequence<Nr_y, Nr_p, Nw>, sequence<Kr_y, Kr_p, Kw, Kv>>, // H
// Nr_p, Kr_p Kw Nw
tuple<sequence<1 , 2>, sequence<2, 1>>, // p major
tuple<sequence<1 , 1>, sequence<2, 2>>, // p minor
// Nr_y Kr_y Kv
sequence<1, 2, 2>, // Y major
sequence<0, 0, 3>>{}); // y minor
#else
tile_distribution_encoding<
sequence<1>,// 0 R
// major 1 2 3
// minor 0 1 0 1 0 1 2
tuple<sequence<Nr_y, Nr_p>, sequence<Kr_y, Kr_p>, sequence<Kw, Nw, Kv>>, // H
// Nr_p, Kr_p Kw Nw
tuple<sequence<1 , 2>, sequence<3, 3>>, // p major
tuple<sequence<1 , 1>, sequence<0, 1>>, // p minor
// Nr_y Kr_y Kv
sequence<1, 2, 3>, // Y major
sequence<0, 0, 2>>{}); // y minor
#endif
// clang-format on
}
}
__device__ void operator()(karg a_)
{
using namespace ck_tile;
index_t i_k = blockIdx.x;
index_t i_n = blockIdx.y;
index_t i_b = blockIdx.z;
constexpr index_t k2 = Alignment;
constexpr index_t n2 = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t k1 = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t n1 = BLOCK_SIZE / get_warp_size();
const index_t k0 = a_.k / (k1 * k2);
const index_t n0 = a_.n / (n1 * n2);
constexpr index_t k2_tile = Alignment;
constexpr index_t n2_tile = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t k1_tile = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t n1_tile = BLOCK_SIZE / get_warp_size();
constexpr index_t k0_tile = KPerBlock / (k1_tile * k2_tile);
constexpr index_t n0_tile = NPerBlock / (n1_tile * n2_tile);
const fp16_t* p_src = reinterpret_cast<const fp16_t*>(a_.p_src) + i_b * a_.k * a_.n;
fp16_t* p_dst = reinterpret_cast<fp16_t*>(a_.p_dst) + i_b * a_.k * a_.n;
const auto src_view = [&]() {
const auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_src,
make_tuple(n0, n1, n2, k0, k1, k2),
number<Alignment>{}); // control vector load
return tmp;
}();
const auto src_window = make_tile_window(src_view,
make_tuple(number<n0_tile>{},
number<n1_tile>{},
number<n2_tile>{},
number<k0_tile>{},
number<k1_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, 0, 0, i_k * k0_tile, 0, 0},
get_src_dist());
auto dst_view = [&]() {
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(n0, k0, n1, k1, n2, k2),
number<Alignment>{}); // control vector load
return tmp;
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(n0, n1, k0, k1, n2, k2),
number<Alignment>{}); // control vector load
return tmp;
}
else
{
#if MERGE_2D_013425
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
// constexpr index_t waveflatten = kw*nw*kv;
const index_t kr = a_.k / (k1 * k2);
const index_t nr = a_.n / nw;
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(nr, kr, number<kw>{}, number<nw>{}, number<kv>{}),
number<Alignment>{}); // control vector load
auto tmp_1 = transform_tensor_view(
tmp,
make_tuple(
make_merge_transform(make_tuple(nr, number<nw>{})),
make_merge_transform(make_tuple(kr, number<kw>{}, number<kv>{}))),
make_tuple(sequence<0, 3>{}, sequence<1, 2, 4>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return tmp_1;
#else
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv,
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t waveflatten = kw * nw * kv;
const index_t kr = a_.k / (k1 * k2);
const index_t nr = a_.n / nw;
auto tmp = make_naive_tensor_view_packed<address_space_enum::global>(
p_dst,
make_tuple(nr, kr, waveflatten),
number<Alignment>{}); // control vector load
return tmp;
#endif
}
}();
auto dst_window = [&]() {
if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_k0_n1_k1_n2_k2)
{
return make_tile_window(dst_view,
make_tuple(number<n0_tile>{},
number<k0_tile>{},
number<n1_tile>{},
number<k1_tile>{},
number<n2_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, i_k * k0_tile, 0, 0, 0, 0},
get_dst_dist());
}
else if constexpr(pstyle == matrix_core_permute_style::permute_b_n0_n1_k0_k1_n2_k2)
{
return make_tile_window(dst_view,
make_tuple(number<n0_tile>{},
number<n1_tile>{},
number<k0_tile>{},
number<k1_tile>{},
number<n2_tile>{},
number<k2_tile>{}),
{i_n * n0_tile, 0, i_k * k0_tile, 0, 0, 0},
get_dst_dist());
}
else
{
#if MERGE_2D_013425
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv
return make_tile_window(dst_view,
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
{i_n * NPerBlock, i_k * KPerBlock},
get_dst_dist());
#else
// permute_b_nr_kr_waveflatten = permute_b_nr_kr_kw_nw_kv
constexpr index_t kv = Alignment;
constexpr index_t nw = WarpGemm::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t kw = WarpGemm::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t waveflatten_tile = kw * nw * kv;
constexpr index_t nr_tile = NPerBlock / nw;
constexpr index_t kr_tile = KPerBlock / (kw * kv);
return make_tile_window(dst_view,
make_tuple(number<nr_tile>{},
number<kr_tile>{},
number<waveflatten_tile>{}),
{i_n * nr_tile, i_k * kr_tile, 0},
get_dst_dist());
#endif
}
}();
// actual load store
auto src_tile = load_tile(src_window);
// now we only swap the distribution from src to dst, no extra movement occurs
auto dst_tile = make_static_distributed_tensor<fp16_t>(get_dst_dist());
dst_tile.get_thread_buffer() = src_tile.get_thread_buffer();
// final store
store_tile(dst_window, dst_tile);
}
};
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "permute.hpp"
#include "ck_tile/host.hpp"
#include <array>
#include <cstring>
#include <functional>
#include <numeric>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#ifdef PERMUTE_USE_ALTERNATIVE_IMPL
#include "alternative_impl/matrix_core_swizzle.hpp"
#endif
namespace detail {
template <int bytes>
struct to_integer_type;
template <>
struct to_integer_type<4>
{
using type = int32_t;
};
template <>
struct to_integer_type<2>
{
using type = int16_t;
};
template <>
struct to_integer_type<1>
{
using type = int8_t;
};
} // namespace detail
template <int bytes>
using to_integer_type = typename detail::to_integer_type<bytes>::type;
// host API (shoule come from codegen)
float permute(permute_traits t, permute_args a, const ck_tile::stream_config& s)
{
if(t.data_type.compare("fp8") == 0)
{
using DataType = ck_tile::fp8_t;
using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
using Kernel = ck_tile::GenericPermute<PipelineProblem>;
auto kargs = Kernel::MakeKargs(a);
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
else if(t.data_type.compare("fp16") == 0)
{
using DataType = ck_tile::half_t;
using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
using Kernel = ck_tile::GenericPermute<PipelineProblem>;
auto kargs = Kernel::MakeKargs(a);
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
else if(t.data_type.compare("fp32") == 0)
{
using DataType = float;
using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
using Kernel = ck_tile::GenericPermute<PipelineProblem>;
auto kargs = Kernel::MakeKargs(a);
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
return 0;
}
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
using size_type = typename std::vector<T>::size_type;
os << "[";
for(size_type idx = 0; idx < v.size(); ++idx)
{
if(0 < idx)
{
os << ", ";
}
os << v[idx];
}
return os << "]";
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("v", "1", "weather do CPU validation or not")
.insert("prec", "fp16", "data type. fp8/fp16/fp32 (representing 8/16/32 bit data)")
.insert("shape", "2,3,4", "the shape of the input tensor")
.insert("perm", "2,1,0", "permute perm")
.insert("kname", "0", "t to 1 will print kernel name")
.insert("seed",
"11939",
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed")
.insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// different threshold for different dtype
template <typename DataType>
auto get_elimit(std::string /*init_method*/)
{
double rtol = 1e-3;
double atol = 1e-3;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
{
double rtol = 1e-2;
double atol = 1e-2;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
{
if(init_method == "ui" || init_method == "ni")
{
unsigned max_rounding_point_distance = 0;
double atol = 2e-3;
return ck_tile::make_tuple(max_rounding_point_distance, atol);
}
else
{
unsigned max_rounding_point_distance = 1;
double atol = 0.0625;
return ck_tile::make_tuple(max_rounding_point_distance, atol);
}
}
// "1,2,3,4" -> vector{1,2,3,4}
std::vector<ck_tile::index_t> decode_vec(std::string q_val)
{
#define _S2I_(str_) static_cast<ck_tile::index_t>(std::atoi((str_).c_str()))
std::string::size_type pos = 0;
std::vector<ck_tile::index_t> v;
while(true)
{
auto found = q_val.find(',', pos);
ck_tile::index_t n =
_S2I_(q_val.substr(pos, found == std::string::npos ? found : found - pos));
v.push_back(n);
if(found == std::string::npos)
{
break;
}
pos = found + 1;
}
return v;
#undef _S2I_
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
std::string data_type = arg_parser.get_str("prec");
int do_validation = arg_parser.get_int("v");
auto shape = decode_vec(arg_parser.get_str("shape"));
auto perm = decode_vec(arg_parser.get_str("perm"));
int stream_warmup = arg_parser.get_int("warmup");
int stream_repeat = arg_parser.get_int("repeat");
bool kname = arg_parser.get_bool("kname");
int seed = arg_parser.get_int("seed");
assert(shape.size() == perm.size());
ck_tile::index_t rank = perm.size();
if(rank > ck_tile::GenericPermuteHostArgs::kMaxRanks)
{
printf("rank %d permute is not support yet\n", rank);
return false;
}
ck_tile::HostTensor<DataType> x(shape);
ck_tile::FillUniformDistributionIntegerValue<DataType>{-15, 15, seed}(x);
std::vector<ck_tile::index_t> y_shape = [&]() {
std::vector<ck_tile::index_t> tmp(rank, 0);
// std::cout << "@@@@" << tmp << std::endl;
for(int i = 0; i < static_cast<int>(rank); i++)
{
// std::cout << " i:" << i << ", perm:" << perm[i] << ", rak:" <<
// static_cast<int>(rank)
// << std::endl;
tmp[i] = shape[perm[i]];
}
// std::cout << "@@@" << tmp << std::endl;
return tmp;
}();
ck_tile::HostTensor<DataType> y(y_shape);
ck_tile::DeviceMem x_buf(x.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y.get_element_space_size_in_bytes());
x_buf.ToDevice(x.data());
std::cout << "[" << data_type << "] shape:" << shape << "->" << y_shape << ", permute:" << perm
<< std::flush;
ck_tile::stream_config stream_config{nullptr,
true,
/* log_level = */ (kname ? 1 : 0),
stream_warmup,
stream_repeat};
float ave_time = 0.f;
auto run_permute = [&]() {
permute_traits t;
t.data_type = data_type;
permute_args a;
a.p_src = x_buf.GetDeviceBuffer();
a.p_dst = y_buf.GetDeviceBuffer();
a.rank = rank;
std::copy(shape.begin(), shape.end(), a.shape);
std::copy(perm.begin(), perm.end(), a.perm);
return permute(t, a, stream_config);
};
#ifdef PERMUTE_USE_ALTERNATIVE_IMPL
// batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2
if((arg_parser.get_str("perm") == std::string("0,1,4,2,5,3,6") ||
arg_parser.get_str("perm") == std::string("0,1,2,4,5,3,6") ||
arg_parser.get_str("perm") == std::string("0,1,3,4,2,5")))
{
if(arg_parser.get_str("perm") == std::string("0,1,3,4,2,5"))
{
// permute_b_nr_kr_kw_nw_kv = 2, // 0,1,3,4,2,5
matrix_core_swizzle_traits t;
t.data_type = data_type;
t.permute = arg_parser.get_str("perm");
matrix_core_swizzle_args a;
a.p_src = x_buf.GetDeviceBuffer();
a.p_dst = y_buf.GetDeviceBuffer();
a.batch = shape[0];
auto nr = shape[1];
auto nw = shape[2];
auto kr = shape[3];
auto kw = shape[4];
auto kv = shape[5];
a.n = nr * nw;
a.k = kr * kw * kv;
if(kv == 8 && kw == 4 && nw == 16 && nr % 4 == 0 && kr % 8 == 0)
{
t.inst = "16x16x16";
std::cout << ", matrix_core_swizzle_waveflatten_" << t.inst << std::flush;
ave_time = matrix_core_swizzle(t, a, stream_config);
}
else if(kv == 8 && kw == 2 && nw == 32 && nr % 4 == 0 && kr % 8 == 0)
{
t.inst = "32x32x8";
std::cout << ", matrix_core_swizzle_waveflatten_" << t.inst << std::flush;
ave_time = matrix_core_swizzle(t, a, stream_config);
}
else
{
ave_time = run_permute();
}
}
else
{
matrix_core_swizzle_traits t;
t.data_type = data_type;
t.permute = arg_parser.get_str("perm");
matrix_core_swizzle_args a;
a.p_src = x_buf.GetDeviceBuffer();
a.p_dst = y_buf.GetDeviceBuffer();
a.batch = shape[0];
a.n = shape[1] * shape[2] * shape[3];
a.k = shape[4] * shape[5] * shape[6];
if(shape[6] == 8 && shape[3] == 32 && shape[5] == 2 && shape[2] == 4 &&
shape[4] % 8 == 0 && shape[1] % 2 == 0)
{
// 32x32x8 inst
// perm=0,1,4,2,5,3,6
// y_shape=*,2x,8x,4,2,32,8 (3,6,16,4,2,32,8)
// shape = *,2x,4,32,8x,2,8 (3,6,4,32,16,2,8)
t.inst = "32x32x8";
std::cout << ", matrix_core_swizzle_" << t.inst << std::flush;
ave_time = matrix_core_swizzle(t, a, stream_config);
}
else if(shape[6] == 8 && shape[3] == 16 && shape[5] == 4 && shape[2] == 4 &&
shape[4] % 4 == 0 && shape[1] % 4 == 0)
{
// 16x16x16 inst
// perm=0,1,4,2,5,3,6
// y_shape=*,4x,4x,4,4,16,8
// shape = *,4x,4,16,4x,4,8 (3,8,4,16,16,4,8)
t.inst = "16x16x16";
std::cout << ", matrix_core_swizzle_" << t.inst << std::flush;
ave_time = matrix_core_swizzle(t, a, stream_config);
}
else
{
ave_time = run_permute();
}
}
}
else
#endif
{
ave_time = run_permute();
}
std::cout << ", time:" << ave_time << "ms" << std::flush;
bool pass = true;
if(do_validation)
{
reference_permute(x, y, perm);
#if 0
if constexpr (std::is_same_v<float, DataType>){
// using itype = to_integer_type<sizeof(DataType)>;
fflush(stdout);
for(int zz = 0; zz < static_cast<int>(x.get_element_size()); zz++ ) {
printf("%3.0f ", x.mData[zz]);
}
printf("->\n");
for(int zz = 0; zz < static_cast<int>(x.get_element_size()); zz++ ) {
printf("%3.0f ", y.mData[zz]);
}
fflush(stdout);
}
#endif
ck_tile::HostTensor<DataType> y_dev(y.get_lengths());
y_buf.FromDevice(y_dev.data());
pass = std::equal(
y_dev.begin(), y_dev.end(), y.begin(), [&](const DataType& d, const DataType& h) {
using itype = to_integer_type<sizeof(DataType)>;
itype i_d = ck_tile::bit_cast<itype>(d);
itype i_h = ck_tile::bit_cast<itype>(h);
return i_d == i_h;
});
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush;
}
std::cout << std::endl;
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp8")
{
return run<ck_tile::fp8_t>(arg_parser) ? 0 : -2;
}
else if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
else if(data_type == "fp32")
{
return run<float>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/permute.hpp"
#include <string>
struct permute_traits
{
std::string data_type;
};
using permute_args = ck_tile::GenericPermuteHostArgs;
// host API
float permute(permute_traits, permute_args, const ck_tile::stream_config&);
#!/bin/sh
# TODO: run this script from CK root
BUILD=build
EXE=$BUILD/bin/tile_example_permute
COMMON_ARGS='-v=1 -warmup=0 -repeat=1'
# mode=0
# export HIP_VISIBLE_DEVICES=4
if [ $# -ge 1 ] ; then
set -x
fi
$EXE -prec=fp16 -shape=3,6,4,32,16,2,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=5,10,4,32,8,2,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,8,4,16,16,4,8 -perm=0,1,4,2,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,6,4,32,16,2,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=5,10,4,32,8,2,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=3,8,4,16,16,4,8 -perm=0,1,2,4,5,3,6 $COMMON_ARGS
$EXE -prec=fp16 -shape=2,8,16,8,4,8 -perm=0,1,3,4,2,5 $COMMON_ARGS
$EXE -prec=fp16 -shape=1,24,32,16,2,8 -perm=0,1,3,4,2,5 $COMMON_ARGS
echo "------------------------------------------------------------------"
for prec in "fp8" "fp16" "fp32" ; do
$EXE -prec=$prec -shape=3,8 -perm=1,0 $COMMON_ARGS
$EXE -prec=$prec -shape=48,6,8 -perm=2,1,0 $COMMON_ARGS
$EXE -prec=$prec -shape=24,128,3 -perm=0,2,1 $COMMON_ARGS
$EXE -prec=$prec -shape=4,10,7,6 -perm=0,2,3,1 $COMMON_ARGS
$EXE -prec=$prec -shape=8,24,36,10 -perm=3,1,2,0 $COMMON_ARGS
$EXE -prec=$prec -shape=8,1,36,4 -perm=2,1,0,3 $COMMON_ARGS
$EXE -prec=$prec -shape=5,10,16,2,36,4 -perm=4,5,2,1,0,3 $COMMON_ARGS
$EXE -prec=$prec -shape=2,32,8,3,6,2,5,4 -perm=5,2,4,7,1,6,3,0 $COMMON_ARGS
echo "------------------------------------------------------------------"
done
add_executable(tile_example_topk_softmax EXCLUDE_FROM_ALL topk_softmax.cpp topk_softmax_api.cpp)
target_include_directories(tile_example_topk_softmax PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/)
set(EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
# list(APPEND EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS -v --save-temps -Wno-gnu-line-marker)
target_compile_options(tile_example_topk_softmax PRIVATE ${EXAMPLE_TOPK_SOFTMAX_COMPILE_OPTIONS})
# topk-softmax
This folder contains example for topk-softmax kernel using ck_tile tile-programming implementation. This kernel is often used in Moe model, before launching the fused-moe-gemm block. The input is a `token*expert` 2d matrix. The op will do a softmax per row(`expert`), then find the `topk` value for each row. Output is a `token*topk` weight(usually fp32) and index(int32) 2d tensor.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_topk_softmax -j
```
This will result in an executable `build/bin/tile_example_topk_softmax`
## example
```
args:
-v weather do CPU validation or not (default:1)
-pr_i input data type. fp16/fp32 (representing 8/16/32 bit data) (default:fp16)
-pr_w output weight data type(currently only fp32 supported now) (default:fp32)
-t number of input tokens (default:32)
-e number of experts (default:8)
-k topk (default:2)
-st_i row stride of input, -1 means same as experts (default:-1)
-st_o row stride of output/indices, -1 means same as topk (default:-1)
-seed seed to be used, -1 means random every time (default:-1)
-kname when set to 1 it will print kernel name (default:0)
```
#!/bin/sh
EXE=./build/bin/tile_example_topk_softmax
for pr_i in "fp16" "bf16" ; do
$EXE -pr_i=$pr_i -t=80 -e=17
$EXE -pr_i=$pr_i -t=111 -e=117
$EXE -pr_i=$pr_i -t=1000 -e=55
$EXE -pr_i=$pr_i -t=99 -e=180
$EXE -pr_i=$pr_i -t=175 -e=64 -k=8
$EXE -pr_i=$pr_i -t=65 -e=8 -k=2
$EXE -pr_i=$pr_i -t=1 -e=25
$EXE -pr_i=$pr_i -t=31 -e=19 -k=15
$EXE -pr_i=$pr_i -t=81 -e=37 -k=7
$EXE -pr_i=$pr_i -t=199 -e=128 -k=13
$EXE -pr_i=$pr_i -t=23 -e=1 -k=1
$EXE -pr_i=$pr_i -t=127 -e=99 -k=19 -st_i=233 -st_o=31
$EXE -pr_i=$pr_i -t=71 -e=11 -k=11 -st_i=30 -st_o=12
$EXE -pr_i=$pr_i -t=1 -e=1 -k=1
$EXE -pr_i=$pr_i -t=99 -e=2 -k=1 -st_i=11 -st_o=5
$EXE -pr_i=$pr_i -t=333 -e=99 -k=13 -st_i=191 -st_o=17
done
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>
#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"
#include "topk_softmax_api.hpp"
#if 0
template <typename T>
void dump_host_tensor_2d(const ck_tile::HostTensor<T>& x)
{
auto len = x.get_lengths();
assert(len.size() == 2);
std::cout << "[";
for(size_t i = 0; i < len[0]; i++)
{
std::cout << i << ": [";
for(size_t j = 0; j < len[1]; j++)
{
if constexpr(std::is_same_v<T, ck_tile::fp16_t>)
{
auto v = ck_tile::type_convert<float>(x(i, j));
std::cout << v;
if(j != len[1] - 1)
std::cout << ",";
}
else
{
std::cout << x(i, j) << " ";
}
}
std::cout << "]";
if(i != len[0] - 1)
std::cout << ",";
else
std::cout << "]";
std::cout << std::endl;
}
std::cout << "--------------------" << std::endl;
}
#endif
// CPU reference
template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
auto reference_topk_softmax(const ck_tile::HostTensor<InputType>& x,
ck_tile::index_t k,
ck_tile::index_t dim = -1,
bool largest = true,
bool sorted = true)
{
using namespace ck_tile;
auto y = reference_softmax<InputType, WeightType, WeightType>(x, dim);
auto [y_values, y_indices] = reference_topk(y, k, dim, largest, sorted);
return ck_tile::make_tuple(y_values, y_indices);
}
template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
auto reference_topk_softmax(const ck_tile::HostTensor<InputType>& x,
ck_tile::HostTensor<WeightType>& y_values,
ck_tile::HostTensor<IndexType>& y_indices,
ck_tile::index_t k,
ck_tile::index_t dim = -1,
bool largest = true,
bool sorted = true)
{
using namespace ck_tile;
auto y = reference_softmax<InputType, WeightType, WeightType>(x, dim);
reference_topk(y, y_values, y_indices, k, dim, largest, sorted);
}
// different threshold for different dtype
template <typename DataType>
auto get_elimit(std::string /*init_method*/)
{
double rtol = 1e-3;
double atol = 1e-3;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
{
double rtol = 1e-2;
double atol = 1e-2;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
{
if(init_method == "ui" || init_method == "ni")
{
unsigned max_rounding_point_distance = 0;
double atol = 2e-3;
return ck_tile::make_tuple(max_rounding_point_distance, atol);
}
else
{
unsigned max_rounding_point_distance = 1;
double atol = 0.0625;
return ck_tile::make_tuple(max_rounding_point_distance, atol);
}
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("v", "1", "weather do CPU validation or not")
.insert("pr_i", "fp16", "input data type. fp16/fp32 (representing 8/16/32 bit data)")
.insert("pr_w", "fp32", "output weight data type(currently only fp32 supported now)")
.insert("t", "32", "number of input tokens")
.insert("e", "8", "number of experts")
.insert("k", "2", "topk")
.insert("st_i", "-1", "row stride of input, -1 means same as experts")
.insert("st_o", "-1", "row stride of output/indices, -1 means same as topk")
.insert("seed", "-1", "seed to be used, -1 means random every time")
.insert("kname", "0", "when set to 1 it will print kernel name")
.insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
bool test_topk_softmax(ck_tile::ArgParser args)
{
int validate = args.get_int("v");
std::string input_prec = args.get_str("pr_i");
std::string weight_prec = args.get_str("pr_w");
int tokens = args.get_int("t");
int experts = args.get_int("e");
int topk = args.get_int("k");
int seed = args.get_int("seed");
int stride_input = args.get_int("st_i");
int stride_output = args.get_int("st_o");
int kname = args.get_int("kname");
int warmup = args.get_int("warmup");
int repeat = args.get_int("repeat");
if(stride_input < 0)
{
stride_input = experts;
}
if(stride_output < 0)
{
stride_output = topk;
}
assert(stride_input >= experts);
assert(stride_output >= topk);
if(seed < 0)
{
seed = std::time(nullptr);
}
if(topk > experts)
{
printf("topk:%d value should be smaller than, or equal to number of experts:%d\n",
topk,
experts);
return false;
}
// tokens already considered batch size
ck_tile::HostTensor<InputType> x_host({tokens, experts}, {stride_input, 1});
ck_tile::HostTensor<WeightType> value_host({tokens, topk}, {stride_output, 1});
ck_tile::HostTensor<IndexType> index_host({tokens, topk}, {stride_output, 1});
{
// random require per-row unique
auto rand_gen = ck_tile::FillUniformDistribution_Unique<InputType>{
-5.f, 5.f, static_cast<uint32_t>(seed)};
for(int i_t = 0; i_t < tokens; i_t++)
{
ck_tile::HostTensor<InputType> x_row({experts});
rand_gen(x_row);
std::copy(x_row.begin(), x_row.end(), x_host.begin() + i_t * stride_input);
rand_gen.clear();
}
}
ck_tile::DeviceMem x_dev(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem value_dev(value_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem index_dev(index_host.get_element_space_size_in_bytes());
x_dev.ToDevice(x_host.data());
topk_softmax_trait trait{input_prec, weight_prec, experts};
topk_softmax_kargs karg{x_dev.GetDeviceBuffer(),
value_dev.GetDeviceBuffer(),
index_dev.GetDeviceBuffer(),
tokens,
experts,
topk,
stride_input,
stride_output};
ck_tile::stream_config sc{nullptr,
true,
/* log_level = */ (kname ? 1 : 0),
warmup,
repeat};
auto ms = topk_softmax(trait, karg, sc);
printf("[%s|%s]tokens:%d, experts:%d, topk:%d, st_i:%d, st_o:%d, ms:%f, ",
input_prec.c_str(),
weight_prec.c_str(),
tokens,
experts,
topk,
stride_input,
stride_output,
ms);
if(ms < 0)
printf("not supported\n");
fflush(stdout);
if(ms < 0)
{
return false;
}
value_dev.FromDevice(value_host.data());
index_dev.FromDevice(index_host.data());
bool rtn = true;
if(validate)
{
ck_tile::HostTensor<WeightType> value_ref({tokens, topk}, {stride_output, 1});
ck_tile::HostTensor<IndexType> index_ref({tokens, topk}, {stride_output, 1});
reference_topk_softmax<InputType, WeightType, IndexType>(
x_host, value_ref, index_ref, topk);
auto [rtol, atol] = get_elimit<InputType>("");
for(int i_t = 0; i_t < tokens; i_t++)
{
auto s_begin = std::vector<size_t>{static_cast<size_t>(i_t), static_cast<size_t>(0)};
auto s_end =
std::vector<size_t>{static_cast<size_t>(i_t + 1), static_cast<size_t>(topk)};
auto s_value_host = value_host.slice(s_begin, s_end);
auto s_value_ref = value_ref.slice(s_begin, s_end);
rtn &= ck_tile::check_err(s_value_host,
s_value_ref,
std::string("[") + std::to_string(i_t) +
std::string("] Value Error:"),
rtol,
atol);
auto s_index_host = index_host.slice(s_begin, s_end);
auto s_index_ref = index_ref.slice(s_begin, s_end);
rtn &= ck_tile::check_err(s_index_host,
s_index_ref,
std::string("[") + std::to_string(i_t) +
std::string("] Index Error:"),
rtol,
atol);
}
}
printf("valid:%s\n", rtn ? "y" : "n");
fflush(stdout);
return rtn;
}
int main(int argc, char** argv)
{
auto [result, args] = create_args(argc, argv);
if(!result)
return -1;
std::string input_prec = args.get_str("pr_i");
std::string weight_prec = args.get_str("pr_w");
bool r = true;
if(input_prec.compare("fp16") == 0 && weight_prec.compare("fp32") == 0)
{
r &= test_topk_softmax<ck_tile::fp16_t, float, ck_tile::index_t>(args);
}
else if(input_prec.compare("bf16") == 0 && weight_prec.compare("fp32") == 0)
{
r &= test_topk_softmax<ck_tile::bf16_t, float, ck_tile::index_t>(args);
}
return r ? 0 : -1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment