Commit 4947639c authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents 17cf8179 d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -9,11 +9,11 @@
#include <string>
#include <type_traits>
// S[seqlen_q, seqlen_k] = Q[seqlen_q, hdim_q] * K[seqlen_k, hdim_q]
// S[seqlen_q, seqlen_k] = Q[seqlen_q, hdim_q] @ K[seqlen_k, hdim_q]
// S'[seqlen_q, seqlen_k] = S[seqlen_q, seqlen_k] * Scale[1]
// S''[seqlen_q, seqlen_k] = S'[seqlen_q, seqlen_k] + Bias[seqlen_q, seqlen_k]
// P[seqlen_q, seqlen_k] = Softmax(S[seqlen_q, seqlen_k])
// O[seqlen_q, hdim_v] = P[seqlen_q, seqlen_k] * V[hdim_v, seqlen_k]
// P[seqlen_q, seqlen_k] = Softmax(S''[seqlen_q, seqlen_k])
// O[seqlen_q, hdim_v] = P[seqlen_q, seqlen_k] @ V^T[hdim_v, seqlen_k]
namespace ck_tile {
......@@ -32,6 +32,8 @@ struct FmhaFwdKernel
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using BiasDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::BiasDataType>;
using RandValOutputDataType =
ck_tile::remove_cvref_t<typename FmhaPipeline::RandValOutputDataType>;
using LSEDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::LSEDataType>;
using ODataType = ck_tile::remove_cvref_t<typename FmhaPipeline::ODataType>;
using SaccDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::SaccDataType>;
......@@ -45,6 +47,7 @@ struct FmhaFwdKernel
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr auto BiasEnum = FmhaPipeline::BiasEnum;
static constexpr bool kStoreLSE = FmhaPipeline::kStoreLSE;
static constexpr bool kHasDropout = FmhaPipeline::kHasDropout;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
using FmhaMask = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaMask>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
......@@ -76,7 +79,7 @@ struct FmhaFwdKernel
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_d") + _TS_(bfs::kK0BlockLength) + "_" + _SS_(t2s<QDataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_" +
"_" + (kIsGroupMode ? "group" : "batch") + "_" + _SS_(TilePartitioner::name) + "_"
"b" + _TS_(bfs::kM0) + "x" + _TS_(bfs::kN0) + "x" + _TS_(bfs::kK0) + "x" +
_TS_(bfs::kN1) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kK0BlockLength) + "_" +
"r" + _TS_(gbr::at(ck_tile::number<0>{})) + "x" + _TS_(gbr::at(ck_tile::number<1>{})) + "x" + _TS_(gbr::at(ck_tile::number<2>{})) + "_" +
......@@ -84,7 +87,7 @@ struct FmhaFwdKernel
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kHasDropout ? "_dropout" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
#undef _SS_
#undef _TS_
// clang-format on
......@@ -111,6 +114,7 @@ struct FmhaFwdKernel
ck_tile::index_t hdim_q;
ck_tile::index_t hdim_v;
ck_tile::index_t num_head_q;
// for MQA/GQA, nhead could be different. This parameter is nhead_q / nhead_k
// if this param is larger than 1, indicate MQA/GQA case
ck_tile::index_t nhead_ratio_qk;
......@@ -163,11 +167,35 @@ struct FmhaFwdKernel
{
void* lse_ptr = nullptr;
ck_tile::index_t nhead_stride_lse = 0;
ck_tile::index_t batch_stride_lse = 0;
};
struct FmhaFwdBatchModeLSEKargs : FmhaFwdCommonLSEKargs
struct FmhaFwdCommonDropoutKargs
{
ck_tile::index_t batch_stride_lse = 0;
void init_dropout(const float p_drop,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
float p_undrop = 1.0 - p_drop;
p_undrop_in_uint8_t =
uint8_t(std::floor(p_undrop * std::numeric_limits<uint8_t>::max()));
rp_undrop = 1.0 / p_undrop;
drop_seed = std::get<0>(drop_seed_offset);
drop_offset = std::get<1>(drop_seed_offset);
}
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
bool is_store_randval = false;
uint64_t drop_seed = 1;
uint64_t drop_offset = 0;
void* rand_val_ptr = nullptr;
ck_tile::index_t stride_randval = 0;
ck_tile::index_t nhead_stride_randval = 0;
};
struct FmhaFwdBatchModeDropoutKargs : FmhaFwdCommonDropoutKargs
{
ck_tile::index_t batch_stride_randval = 0;
};
struct FmhaFwdBatchModeKargs
......@@ -178,8 +206,9 @@ struct FmhaFwdKernel
FmhaFwdAlibiKargs,
FmhaFwdEmptyKargs<0>>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdBatchModeLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>
std::conditional_t<kStoreLSE, FmhaFwdCommonLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>,
std::conditional_t<kHasDropout, FmhaFwdBatchModeDropoutKargs, FmhaFwdEmptyKargs<4>>
{
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
......@@ -196,7 +225,8 @@ struct FmhaFwdKernel
FmhaFwdEmptyKargs<0>>>,
std::conditional_t<kHasMask, FmhaFwdMaskKargs, FmhaFwdEmptyKargs<1>>,
std::conditional_t<kStoreLSE, FmhaFwdCommonLSEKargs, FmhaFwdEmptyKargs<2>>,
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>
std::conditional_t<kDoFp8StaticQuant, FmhaFwdFp8StaticQuantKargs, FmhaFwdEmptyKargs<3>>,
std::conditional_t<kHasDropout, FmhaFwdCommonDropoutKargs, FmhaFwdEmptyKargs<4>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
......@@ -211,12 +241,14 @@ struct FmhaFwdKernel
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
......@@ -225,22 +257,28 @@ struct FmhaFwdKernel
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t batch_stride_o,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type)
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
Kargs kargs{{q_ptr,
k_ptr,
......@@ -250,6 +288,7 @@ struct FmhaFwdKernel
seqlen_k,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
......@@ -268,6 +307,7 @@ struct FmhaFwdKernel
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
batch_stride_q,
batch_stride_k,
batch_stride_v,
......@@ -302,6 +342,15 @@ struct FmhaFwdKernel
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
if constexpr(kHasDropout)
{
kargs.init_dropout(p_drop, drop_seed_offset);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.batch_stride_randval = batch_stride_randval;
kargs.is_store_randval = s_randval;
}
return kargs;
}
......@@ -312,6 +361,7 @@ struct FmhaFwdKernel
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_ptr,
void* o_ptr,
const void* seqstart_q_ptr,
......@@ -319,6 +369,7 @@ struct FmhaFwdKernel
const void* seqlen_k_ptr,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
float scale_s,
float scale_p,
......@@ -327,16 +378,22 @@ struct FmhaFwdKernel
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse,
ck_tile::index_t nhead_stride_o,
ck_tile::index_t batch_stride_lse,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type)
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
Kargs kargs{{q_ptr,
k_ptr,
......@@ -346,6 +403,7 @@ struct FmhaFwdKernel
-1, //
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
#if CK_TILE_FMHA_FWD_FAST_EXP2
static_cast<float>(scale_s * ck_tile::log2e_v<>),
......@@ -364,6 +422,7 @@ struct FmhaFwdKernel
{}, // placeholder for mask
{}, // placeholder for lse
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr),
reinterpret_cast<const int32_t*>(seqlen_k_ptr)};
......@@ -389,12 +448,21 @@ struct FmhaFwdKernel
{
kargs.lse_ptr = lse_ptr;
kargs.nhead_stride_lse = nhead_stride_lse;
kargs.batch_stride_lse = batch_stride_lse;
}
if constexpr(kDoFp8StaticQuant)
{
kargs.scale_p = scale_p;
kargs.scale_o = scale_o;
}
if constexpr(kHasDropout)
{
kargs.init_dropout(p_drop, drop_seed_offset);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.is_store_randval = s_randval;
}
return kargs;
}
......@@ -426,12 +494,13 @@ struct FmhaFwdKernel
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
long_index_t batch_offset_q = 0;
long_index_t batch_offset_k = 0;
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
long_index_t batch_offset_q = 0;
long_index_t batch_offset_k = 0;
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_randval = 0;
long_index_t batch_offset_lse = 0;
long_index_t batch_offset_o = 0;
if constexpr(kIsGroupMode)
{
......@@ -455,7 +524,11 @@ struct FmhaFwdKernel
}
if constexpr(kStoreLSE)
{
batch_offset_lse = query_start;
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
if constexpr(kHasDropout)
{
batch_offset_randval = query_start * kargs.stride_randval;
}
batch_offset_o = query_start * kargs.stride_o;
......@@ -493,6 +566,11 @@ struct FmhaFwdKernel
{
batch_offset_lse = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse;
}
if constexpr(kHasDropout)
{
batch_offset_randval =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_randval;
}
batch_offset_o = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o;
}
......@@ -666,6 +744,62 @@ struct FmhaFwdKernel
}
}();
// dropout
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
uint64_t drop_seed = 0;
uint64_t drop_offset = 0;
bool is_store_randval = false;
if constexpr(kHasDropout)
{
rp_undrop = kargs.rp_undrop;
p_undrop_in_uint8_t = kargs.p_undrop_in_uint8_t;
drop_seed = kargs.drop_seed;
drop_offset = kargs.drop_offset;
is_store_randval = kargs.is_store_randval;
}
BlockDropout dropout(i_batch,
i_nhead,
kargs.num_head_q,
drop_seed,
drop_offset,
rp_undrop,
p_undrop_in_uint8_t,
is_store_randval);
auto randval_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto randval_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(kHasDropout)
{
RandValOutputDataType* rand_val_ptr =
reinterpret_cast<RandValOutputDataType*>(kargs.rand_val_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_randval +
batch_offset_randval;
const auto randval_dram = [&]() {
const auto randval_dram_naive =
make_naive_tensor_view<address_space_enum::global>(
rand_val_ptr,
make_tuple(kargs.seqlen_q, kargs.seqlen_k),
make_tuple(kargs.stride_randval, 1),
number<1>{},
number<1>{});
return pad_tensor_view(randval_dram_naive,
randval_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
}();
return make_tile_window(randval_dram, randval_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(randval_dram_window_lengths);
}
}();
FmhaMask mask = [&]() {
if constexpr(kHasMask)
return ck_tile::make_generic_attention_mask_from_lr_window<FmhaMask>(
......@@ -702,7 +836,7 @@ struct FmhaFwdKernel
else
{
return Alibi<SaccDataType, true>{
slope, kargs.seqlen_q, kargs.seqlen_k, AlibiMode::VERTICAL};
slope, kargs.seqlen_q, kargs.seqlen_k, AlibiMode::FROM_BOTTOM_RIGHT};
}
}
else
......@@ -723,6 +857,7 @@ struct FmhaFwdKernel
identity{}, // v_element_func
bias_dram_window,
identity{}, // bias_element_func
randval_dram_window,
lse_dram_window,
identity{}, // lse_element_func
identity{}, // s_acc_element_func
......@@ -731,7 +866,8 @@ struct FmhaFwdKernel
mask,
position_encoding,
kargs.scale_s,
smem_ptr);
smem_ptr,
dropout);
}
else
{
......@@ -739,11 +875,13 @@ struct FmhaFwdKernel
k_dram_window,
v_dram_window,
bias_dram_window,
randval_dram_window,
lse_dram_window,
mask,
position_encoding,
kargs.scale_s,
smem_ptr);
smem_ptr,
dropout);
}
}();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -18,10 +18,12 @@ struct FmhaFwdTilePartitioner
static constexpr ck_tile::index_t kN1 = BlockFmhaShape::kN1;
static constexpr ck_tile::index_t kK1 = BlockFmhaShape::kK1;
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
static constexpr const char* name = "shb";
CK_TILE_HOST static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_q_, kM0) *
......@@ -51,4 +53,53 @@ struct FmhaFwdTilePartitioner
}
};
template <typename BlockFmhaShape_>
using FmhaFwdTilePartitioner_SHB = FmhaFwdTilePartitioner<BlockFmhaShape_>;
template <typename BlockFmhaShape_>
struct FmhaFwdTilePartitioner_HBS
{
using BlockFmhaShape = ck_tile::remove_cvref_t<BlockFmhaShape_>;
static constexpr ck_tile::index_t kM0 = BlockFmhaShape::kM0;
static constexpr ck_tile::index_t kN0 = BlockFmhaShape::kN0;
static constexpr ck_tile::index_t kK0 = BlockFmhaShape::kK0;
static constexpr ck_tile::index_t kN1 = BlockFmhaShape::kN1;
static constexpr ck_tile::index_t kK1 = BlockFmhaShape::kK1;
static constexpr const char* name = "hbs";
CK_TILE_HOST static constexpr auto GridSize(ck_tile::index_t batch_size_,
ck_tile::index_t nhead_,
ck_tile::index_t seqlen_q_,
ck_tile::index_t hdim_v_)
{
// TODO: this may need tuning
return dim3(nhead_,
batch_size_,
ck_tile::integer_divide_ceil(seqlen_q_, kM0) *
ck_tile::integer_divide_ceil(hdim_v_, kN1));
}
CK_TILE_DEVICE auto operator()(ck_tile::index_t /*seqlen_q*/, ck_tile::index_t hdim_v)
{
// const index_t num_tile_m0 = seqlen_q / kM0;
const index_t num_tile_n1 = ck_tile::integer_divide_ceil(hdim_v, kN1);
const index_t i_block = blockIdx.z;
const index_t i_nhead = blockIdx.x;
const index_t i_batch = blockIdx.y;
const auto f = [](index_t dividend, index_t divisor) {
index_t quotient = dividend / divisor;
index_t modulus = dividend - quotient * divisor;
return ck_tile::make_tuple(quotient, modulus);
};
const auto [i_tile_m, i_tile_n] = f(i_block, num_tile_n1);
return ck_tile::make_tuple(i_tile_m, i_tile_n, i_nhead, i_batch);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o_default_policy.hpp"
namespace ck_tile {
template <typename Problem, typename Policy = BlockFmhaBwdOGradDotODefaultPolicy>
struct BlockFmhaBwdOGradDotO
{
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
using DDataType = remove_cvref_t<typename Problem::DDataType>;
static constexpr index_t kBlockPerCu = Problem::kBlockPerCu;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kVHeaddim = Problem::kVHeaddim;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentOGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentOGrad<Problem>();
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize() { return 0; }
template <typename ODramBlockWindowTmp,
typename OGradDramBlockWindowTmp,
typename DDramBlockWindowTmp>
CK_TILE_HOST_DEVICE void operator()(const ODramBlockWindowTmp& o_dram_block_window_tmp,
const OGradDramBlockWindowTmp& do_dram_block_window_tmp,
DDramBlockWindowTmp& d_dram_block_window_tmp,
float p_undrop) const
{
static_assert(
std::is_same_v<ODataType, remove_cvref_t<typename ODramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradDramBlockWindowTmp::DataType>> &&
std::is_same_v<DDataType, remove_cvref_t<typename DDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kBlockSize == ODramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kBlockSize ==
OGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kBlockSize == DDramBlockWindowTmp{}.get_window_lengths()[number<0>{}],
"wrong!");
auto o_dram_window =
make_tile_window(o_dram_block_window_tmp.get_bottom_tensor_view(),
o_dram_block_window_tmp.get_window_lengths(),
o_dram_block_window_tmp.get_window_origin(),
Policy::template MakePreODramTileDistribution<Problem>());
auto o = load_tile(o_dram_window);
auto do_dram_window =
make_tile_window(do_dram_block_window_tmp.get_bottom_tensor_view(),
do_dram_block_window_tmp.get_window_lengths(),
do_dram_block_window_tmp.get_window_origin(),
Policy::template MakePreOGradDramTileDistribution<Problem>());
auto do_ = load_tile(do_dram_window);
// declare d
constexpr auto d_dstr =
make_static_tile_distribution(detail::make_reduce_tile_distribution_encoding(
o.get_tile_distribution().get_static_tile_distribution_encoding(), sequence<1>{}));
auto d = make_static_distributed_tensor<DDataType>(d_dstr);
clear_tile(d); // Initialize D
constexpr auto o_spans = decltype(o)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
d(i_idx) +=
(type_convert<DDataType>(o[i_j_idx]) * type_convert<DDataType>(do_[i_j_idx]));
});
});
tile_elementwise_inout([&p_undrop](auto& x) { x = x * p_undrop; }, d);
store_tile(d_dram_block_window_tmp, d);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
namespace ck_tile {
// These templates are not used here.
using BlockFmhaBwdOGradDotODefaultPolicy =
BlockFmhaBwdPipelineDefaultPolicy</* QLoadOnce_ = */ false,
/* QTLoadOnce_ = */ false,
/* KLoadOnce_ = */ false,
/* KTLoadOnce_ = */ false,
/* VLoadOnce_ = */ false,
/* OGradLoadOnce_ = */ false,
/* OGradTLoadOnce_ = */ false>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_kts_vr_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
template <typename Problem, typename Policy = BlockFmhaBwdDQDKDVPipelineKSKTSVRDefaultPolicy>
struct BlockFmhaBwdDQDKDVPipelineKSKTSVR
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using GemmDataType = remove_cvref_t<typename Problem::GemmDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using AccDataType = remove_cvref_t<typename Problem::AccDataType>;
using DDataType = remove_cvref_t<typename Problem::DDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
using QGradDataType = remove_cvref_t<typename Problem::QGradDataType>;
using KGradDataType = remove_cvref_t<typename Problem::KGradDataType>;
using VGradDataType = remove_cvref_t<typename Problem::VGradDataType>;
using BiasGradDataType = remove_cvref_t<typename Problem::BiasGradDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
static constexpr index_t kBlockPerCu = Problem::kBlockPerCu;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK2 = BlockFmhaShape::kK2;
static constexpr index_t kK3 = BlockFmhaShape::kK3;
static constexpr index_t kK4 = BlockFmhaShape::kK4;
static constexpr index_t kQKHeaddim = BlockFmhaShape::kQKHeaddim;
static constexpr index_t kVHeaddim = BlockFmhaShape::kVHeaddim;
static constexpr bool kQLoadOnce = false;
static constexpr bool kQTLoadOnce = false;
static constexpr bool kKLoadOnce = true;
static constexpr bool kKTLoadOnce = true;
static constexpr bool kVLoadOnce = true;
static constexpr bool kOGradLoadOnce = false;
static constexpr bool kOGradTLoadOnce = false;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kHasBiasGrad = Problem::kHasBiasGrad;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV =
kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentOGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentOGrad<Problem>();
static constexpr index_t kAlignmentQGrad =
kPadHeadDimQ ? 2 : Policy::template GetAlignmentQGrad<Problem>();
static constexpr index_t kAlignmentKGrad =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentKGrad<Problem>();
static constexpr index_t kAlignmentVGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentVGrad<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetTransposedAlignmentBias<Problem>();
static constexpr const char* name = "ks_kts_vr";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename QTDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename KTDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename OGradDramBlockWindowTmp,
typename OGradTDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename DDramBlockWindowTmp,
typename QGradDramBlockWindowTmp,
typename BiasGradDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp,
const QTDramBlockWindowTmp& qt_dram_block_window_tmp,
const KDramBlockWindowTmp& k_dram_block_window_tmp,
const KTDramBlockWindowTmp& kt_dram_block_window_tmp,
const VDramBlockWindowTmp& v_dram_block_window_tmp,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp,
const RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
const OGradDramBlockWindowTmp& do_dram_block_window_tmp,
const OGradTDramBlockWindowTmp& dot_dram_block_window_tmp,
const LSEDramBlockWindowTmp& lse_dram_block_window_tmp,
const DDramBlockWindowTmp& d_dram_block_window_tmp,
const QGradDramBlockWindowTmp& dq_dram_block_window_tmp,
const BiasGradDramBlockWindowTmp& dbias_dram_block_window_tmp,
FmhaMask mask,
PositionEncoding position_encoding,
float raw_scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
float scale,
#endif
float rp_undrop,
float scale_rp_undrop,
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<QDataType,
remove_cvref_t<typename QTDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType,
remove_cvref_t<typename KTDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradDramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradTDramBlockWindowTmp::DataType>> &&
std::is_same_v<LSEDataType,
remove_cvref_t<typename LSEDramBlockWindowTmp::DataType>> &&
std::is_same_v<DDataType, remove_cvref_t<typename DDramBlockWindowTmp::DataType>> &&
std::is_same_v<QGradDataType,
remove_cvref_t<typename QGradDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kQKHeaddim == QTDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kQKHeaddim == KTDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == OGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kVHeaddim ==
OGradTDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == LSEDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == DDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == QGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// Q tile in LDS
QDataType* q_lds_ptr = static_cast<QDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto q_lds = make_tensor_view<address_space_enum::lds>(
q_lds_ptr, Policy::template MakeQLdsBlockDescriptor<Problem>());
auto q_lds_window =
make_tile_window(q_lds, make_tuple(number<kM0>{}, number<kK0>{}), {0, 0});
// QT tile in LDS
QDataType* qt_lds_ptr = static_cast<QDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto qt_lds = make_tensor_view<address_space_enum::lds>(
qt_lds_ptr, Policy::template MakeQTLdsBlockDescriptor<Problem>());
auto qt_lds_window =
make_tile_window(qt_lds, make_tuple(number<kQKHeaddim>{}, number<kK3>{}), {0, 0});
// K tile in LDS
auto k_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<KDataType*>(smem_ptr),
Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kQKHeaddim>{}), {0, 0});
// KT tile in LDS
KDataType* kt_lds_ptr = static_cast<KDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto kt_lds = make_tensor_view<address_space_enum::lds>(
kt_lds_ptr, Policy::template MakeKTLdsBlockDescriptor<Problem>());
auto kt_lds_window =
make_tile_window(kt_lds, make_tuple(number<kQKHeaddim>{}, number<kN0>{}), {0, 0});
// OGrad tile in LDS
OGradDataType* do_lds_ptr = static_cast<OGradDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto do_lds = make_tensor_view<address_space_enum::lds>(
do_lds_ptr, Policy::template MakeOGradLdsBlockDescriptor<Problem>());
auto do_lds_window =
make_tile_window(do_lds, make_tuple(number<kM0>{}, number<kK2>{}), {0, 0});
// OGradT tile in LDS
OGradDataType* dot_lds_ptr = static_cast<OGradDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto dot_lds = make_tensor_view<address_space_enum::lds>(
dot_lds_ptr, Policy::template MakeOGradTLdsBlockDescriptor<Problem>());
auto dot_lds_window =
make_tile_window(dot_lds, make_tuple(number<kVHeaddim>{}, number<kK1>{}), {0, 0});
// SGrad tile in LDS
GemmDataType* ds_lds_ptr = static_cast<GemmDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto ds_lds = make_tensor_view<address_space_enum::lds>(
ds_lds_ptr, Policy::template MakeSGradLdsBlockDescriptor<Problem>());
auto ds_lds_window =
make_tile_window(ds_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
// BiasT/BiasGradT tile in LDS, use the same size and layout
BiasDataType* biast_lds_ptr = static_cast<BiasDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeKT<Problem>()));
auto biast_lds = make_tensor_view<address_space_enum::lds>(
biast_lds_ptr, Policy::template MakeBiasTLdsBlockDescriptor<Problem>());
auto biast_lds_shuffle_window =
make_tile_window(biast_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
auto dbiast_lds_shuffle_window =
make_tile_window(biast_lds,
make_tuple(number<kM0>{}, number<kN0>{}),
{0, 0},
Policy::template MakeShuffledBiasTileDistribution<Problem>());
static_assert(std::is_same_v<BiasDataType, BiasGradDataType>,
"BiasDataType and BiasGradDataType should be the same!");
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetPTOGradTBlockGemm<Problem>();
constexpr auto gemm_2 = Policy::template GetOGradVBlockGemm<Problem>();
constexpr auto gemm_3 = Policy::template GetSGradTQTBlockGemm<Problem>();
constexpr auto gemm_4 = Policy::template GetSGradKTBlockGemm<Problem>();
auto v_dram_window = make_tile_window(
v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
v_dram_block_window_tmp.get_window_origin(),
Policy::template MakeVInRegDramTileDistribution<Problem, decltype(gemm_2)>());
auto v = load_tile(v_dram_window); // persistent V register tile
using SPTBlockTileType = decltype(gemm_0.MakeCBlockTile());
using SPGradTBlockTileType = decltype(gemm_2.MakeCBlockTile());
using QGradBlockTileType = decltype(gemm_4.MakeCBlockTile());
// init VGrad & KGrad
auto dv_acc = decltype(gemm_1.MakeCBlockTile()){};
auto dk_acc = decltype(gemm_3.MakeCBlockTile()){};
clear_tile(dv_acc);
clear_tile(dk_acc);
auto k_dram_window = make_tile_window(
k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
k_dram_block_window_tmp.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
__builtin_amdgcn_sched_barrier(0);
const auto k_origin = k_dram_window.get_window_origin();
const auto [seqlen_q_start, seqlen_q_end] =
mask.GetTileRangeAlongY(k_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_q_end - seqlen_q_start, kM0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
// Note: here dk_acc&dv_acc are all cleard, return it
// Note: v loaded but no fence, ignore it.
return ck_tile::make_tuple(dk_acc, dv_acc);
}
}
auto k_block_tile = load_tile(k_dram_window);
store_tile(k_lds_window, k_block_tile); // // persistent K in LDS
auto kt_dram_block_window = kt_dram_block_window_tmp;
auto kt_dram_window = make_tile_window(
kt_dram_block_window.get_bottom_tensor_view(),
kt_dram_block_window.get_window_lengths(),
kt_dram_block_window.get_window_origin(),
Policy::template MakeKTDramTileDistribution<Problem>()); // K^T DRAM tile window for
// load
auto kt_block_tile = load_tile(kt_dram_window);
auto kt_shuffle_tmp = make_static_distributed_tensor<KDataType>(
Policy::template MakeShuffledKTRegBlockDescriptor<Problem>());
shuffle_tile(kt_shuffle_tmp, kt_block_tile);
store_tile(kt_lds_window, kt_shuffle_tmp); // persistent K^T in LDS
auto q_dram_block_window =
make_tile_window(q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto qt_dram_block_window =
make_tile_window(qt_dram_block_window_tmp.get_bottom_tensor_view(),
qt_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_q_start});
auto do_dram_block_window =
make_tile_window(do_dram_block_window_tmp.get_bottom_tensor_view(),
do_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto dot_dram_block_window =
make_tile_window(dot_dram_block_window_tmp.get_bottom_tensor_view(),
dot_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_q_start});
auto dq_dram_block_window =
make_tile_window(dq_dram_block_window_tmp.get_bottom_tensor_view(),
dq_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto lse_dram_block_window =
make_tile_window(lse_dram_block_window_tmp.get_bottom_tensor_view(),
lse_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
auto d_dram_block_window =
make_tile_window(d_dram_block_window_tmp.get_bottom_tensor_view(),
d_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_block_window =
make_tile_window(bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, bias_origin.at(number<1>{})}); // M/N
const auto dbias_origin = dbias_dram_block_window_tmp.get_window_origin();
auto dbias_dram_block_window =
make_tile_window(dbias_dram_block_window_tmp.get_bottom_tensor_view(),
dbias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, dbias_origin.at(number<1>{})}); // M/N
auto qt_dram_window =
make_tile_window(qt_dram_block_window.get_bottom_tensor_view(),
qt_dram_block_window.get_window_lengths(),
qt_dram_block_window.get_window_origin(),
Policy::template MakeQTDramTileDistribution<Problem>());
auto dot_dram_window =
make_tile_window(dot_dram_block_window.get_bottom_tensor_view(),
dot_dram_block_window.get_window_lengths(),
dot_dram_block_window.get_window_origin(),
Policy::template MakeOGradTDramTileDistribution<Problem>());
auto lse_dram_window = make_tile_window(
lse_dram_block_window.get_bottom_tensor_view(),
lse_dram_block_window.get_window_lengths(),
lse_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto d_dram_window = make_tile_window(
d_dram_block_window.get_bottom_tensor_view(),
d_dram_block_window.get_window_lengths(),
d_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto bias_dram_window =
make_tile_window(bias_dram_block_window.get_bottom_tensor_view(),
bias_dram_block_window.get_window_lengths(),
bias_dram_block_window.get_window_origin(),
Policy::template MakeBiasTileDistribution<Problem>());
auto biast_lds_window =
make_tile_window(biast_lds_shuffle_window.get_bottom_tensor_view(),
biast_lds_shuffle_window.get_window_lengths(),
biast_lds_shuffle_window.get_window_origin(),
Policy::template MakeBiasTTileDistribution<decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0), false>(
randval_dram_block_window_tmp, seqlen_q_start);
index_t i_total_loops = 0;
constexpr index_t k0_loops = kQKHeaddim / kK0;
constexpr index_t k1_loops = kM0 / kK1;
constexpr index_t k2_loops = kVHeaddim / kK2;
constexpr index_t k3_loops = kM0 / kK3;
constexpr index_t k4_loops = kN0 / kK4;
do
{
auto q_dram_window = make_tile_window(
q_dram_block_window.get_bottom_tensor_view(),
q_dram_block_window.get_window_lengths(),
q_dram_block_window.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem>()); // Q DRAM tile window for
// load
auto do_dram_window = make_tile_window(
do_dram_block_window.get_bottom_tensor_view(),
do_dram_block_window.get_window_lengths(),
do_dram_block_window.get_window_origin(),
Policy::template MakeOGradDramTileDistribution<Problem>()); // OGrad DRAM tile
// window for load
// STAGE 1, Q@K Gemm0
auto st_acc = SPTBlockTileType{};
auto q_block_tile = load_tile(q_dram_window);
{
move_tile_window(q_dram_window, {0, kK0});
clear_tile(st_acc); // Initialize S^T
store_tile(q_lds_window, q_block_tile); // LDS write 0
q_block_tile = load_tile(q_dram_window); // global read 1
}
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 2)
{
static_for<0, k0_loops - 2, 1>{}([&](auto i_k0) {
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, i_k0 * kK0>{},
sequence<kN0, (i_k0 + 1) * kK0>{}));
block_sync_lds();
move_tile_window(q_dram_window, {0, kK0});
store_tile(q_lds_window,
q_block_tile); // LDS write i + 1
q_block_tile = load_tile(q_dram_window); // global read i + 2
});
}
const auto dot_prefetch = load_tile(dot_dram_window); // prefetch load OGrad^T tile
{ // tail
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, (k0_loops - 2) * kK0>{},
sequence<kN0, (k0_loops - 1) * kK0>{}));
block_sync_lds();
store_tile(q_lds_window, q_block_tile);
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kN0, k0_loops * kK0>{}));
}
// STAGE 2, Scale, Add bias, Mask, Softmax, Dropout
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
block_sync_lds();
auto bias_shuffle_tmp = make_static_distributed_tensor<BiasDataType>(
Policy::template MakeShuffledBiasTileDistribution<Problem>());
shuffle_tile(bias_shuffle_tmp, bias_tile);
store_tile(biast_lds_shuffle_window, bias_shuffle_tmp);
block_sync_lds();
auto biast_tile = load_tile(biast_lds_window);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x = raw_scale * x + type_convert<AccDataType>(y);
#else
x = scale * x + log2e_v<AccDataType> * type_convert<AccDataType>(y);
#endif
},
st_acc,
biast_tile);
move_tile_window(bias_dram_window, {kM0, 0});
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
const auto q_origin = q_dram_block_window.get_window_origin();
constexpr auto st_spans = decltype(st_acc)::get_distributed_spans();
sweep_tile_span(st_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(st_spans[number<1>{}], [&](auto idx1) {
const auto tile_idx = get_x_indices_from_distributed_indices(
st_acc.get_tile_distribution(), make_tuple(idx0, idx1));
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
st_acc(i_j_idx) *= raw_scale;
#else
st_acc(i_j_idx) *= scale;
#endif
position_encoding.update(st_acc(i_j_idx), row, col);
});
});
}
else
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, st_acc);
#endif
}
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto q_origin = q_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(st_acc, -numeric<AccDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto lse = load_tile(lse_dram_window);
static const auto get_validated_lse = [](LSEDataType raw_lse) {
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
FmhaMask::IsMasking)
{
return raw_lse == -numeric<LSEDataType>::infinity()
? type_convert<LSEDataType>(0.f)
: raw_lse;
}
else
{
return raw_lse;
}
};
auto pt = SPTBlockTileType{};
constexpr auto pt_spans = decltype(pt)::get_distributed_spans();
sweep_tile_span(pt_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_lse = log2e_v<LSEDataType> * get_validated_lse(lse[i_idx]);
#endif
sweep_tile_span(pt_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
pt(i_j_idx) = exp2(st_acc[i_j_idx] - row_lse);
}
else
{
pt(i_j_idx) = exp2(scale * st_acc[i_j_idx] - row_lse);
}
#else
pt(i_j_idx) = exp(st_acc[i_j_idx] - get_validated_lse(lse[i_idx]));
#endif
});
});
auto dot_shuffle_tmp = make_static_distributed_tensor<OGradDataType>(
Policy::template MakeShuffledOGradTRegBlockDescriptor<Problem>());
block_sync_lds();
{
shuffle_tile(dot_shuffle_tmp, dot_prefetch);
store_tile(dot_lds_window,
dot_shuffle_tmp); // store the prefetch
}
move_tile_window(dot_dram_window, {0, kK1});
if constexpr(kHasDropout)
{
dropout.Run<decltype(gemm_0), RandValOutputDataType>(
seqlen_q_start + i_total_loops * kM0, pt, randval_dram_window);
}
// STAGE 3, P^T@OGrad^T Gemm1
const auto pt_gemm = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[](const auto& x) { return type_convert<GemmDataType>(x > 0.f ? x : 0.f); },
pt);
}
else
{
return cast_tile<GemmDataType>(pt);
}
}();
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto dot = load_tile(dot_dram_window); // load next OGrad^T
block_sync_lds();
gemm_1(dv_acc,
get_slice_tile(pt_gemm,
sequence<i_k1 * kK1, 0>{},
sequence<(i_k1 + 1) * kK1, kN0>{}),
dot_lds_window);
block_sync_lds();
shuffle_tile(dot_shuffle_tmp, dot);
store_tile(dot_lds_window,
dot_shuffle_tmp); // store the prefetch
move_tile_window(dot_dram_window, {0, kK1});
});
}
auto do_block_tile = load_tile(do_dram_window); // prefetch load OGrad tile
// tail
{
block_sync_lds();
gemm_1(dv_acc,
get_slice_tile(
pt_gemm, sequence<(k1_loops - 1) * kK1, 0>{}, sequence<kM0, kN0>{}),
dot_lds_window);
block_sync_lds();
}
// STAGE 4, OGrad@V Gemm2
auto dpt_acc = SPGradTBlockTileType{};
{
move_tile_window(do_dram_window, {0, kK2});
clear_tile(dpt_acc); // Initialize PGrad^T
store_tile(do_lds_window, do_block_tile); // LDS write 0
do_block_tile = load_tile(do_dram_window); // global read 1
}
if constexpr(k2_loops > 2)
{
static_for<0, k2_loops - 2, 1>{}([&](auto i_k2) {
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(
v, sequence<0, i_k2 * kK2>{}, sequence<kN0, (i_k2 + 1) * kK2>{}));
block_sync_lds();
move_tile_window(do_dram_window, {0, kK2});
store_tile(do_lds_window,
do_block_tile); // LDS write i + 1
do_block_tile = load_tile(do_dram_window); // global read i + 2
});
}
const auto qt_prefetch = load_tile(qt_dram_window); // prefetch load Q^T tile
{ // tail
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(v,
sequence<0, (k2_loops - 2) * kK2>{},
sequence<kN0, (k2_loops - 1) * kK2>{}));
block_sync_lds();
store_tile(do_lds_window, do_block_tile);
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(v,
sequence<0, (k2_loops - 1) * kK2>{},
sequence<kN0, k2_loops * kK2>{}));
}
// STAGE 5, P^T(PGrad^T - D)
const auto d = load_tile(d_dram_window);
auto dst = SPGradTBlockTileType{};
constexpr auto dst_spans = decltype(dst)::get_distributed_spans();
sweep_tile_span(dst_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(dst_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
bool undrop_flag = pt[i_j_idx] >= 0;
dst(i_j_idx) =
pt[i_j_idx] *
(!kHasDropout || undrop_flag ? (dpt_acc[i_j_idx] - d[i_idx]) : d[i_idx]);
});
});
if constexpr(kHasBiasGrad)
{
const auto dbiast = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[&rp_undrop](const auto& x) {
return type_convert<BiasGradDataType>(x * rp_undrop);
},
dst);
}
else
{
return cast_tile<BiasGradDataType>(dst);
}
}();
store_tile(biast_lds_shuffle_window, dbiast);
block_sync_lds();
auto dbiast_tile = load_tile(dbiast_lds_shuffle_window);
auto dbiast_shuffle_tmp = make_static_distributed_tensor<BiasGradDataType>(
Policy::template MakeBiasTileDistribution<Problem>());
shuffle_tile(dbiast_shuffle_tmp, dbiast_tile);
store_tile(dbias_dram_block_window, dbiast_shuffle_tmp);
move_tile_window(dbias_dram_block_window, {kM0, 0});
}
// STAGE 6, SGrad^T@Q^T Gemm3
auto qt_shuffle_tmp = make_static_distributed_tensor<QDataType>(
Policy::template MakeShuffledQTRegBlockDescriptor<Problem>());
block_sync_lds();
{
shuffle_tile(qt_shuffle_tmp, qt_prefetch);
store_tile(qt_lds_window,
qt_shuffle_tmp); // store the prefetch
}
move_tile_window(qt_dram_window, {0, kK3});
const auto dst_gemm = cast_tile<GemmDataType>(dst);
if constexpr(k3_loops > 1)
{
static_for<0, k3_loops - 1, 1>{}([&](auto i_k3) {
const auto qt = load_tile(qt_dram_window); // load next Q^T
block_sync_lds();
gemm_3(dk_acc,
get_slice_tile(dst_gemm,
sequence<i_k3 * kK3, 0>{},
sequence<(i_k3 + 1) * kK3, kN0>{}),
qt_lds_window);
block_sync_lds();
shuffle_tile(qt_shuffle_tmp, qt);
store_tile(qt_lds_window,
qt_shuffle_tmp); // store the prefetch
move_tile_window(qt_dram_window, {0, kK3});
});
}
// tail
{
block_sync_lds();
gemm_3(dk_acc,
get_slice_tile(
dst_gemm, sequence<(k3_loops - 1) * kK3, 0>{}, sequence<kM0, kN0>{}),
qt_lds_window);
block_sync_lds();
}
// STAGE 7, SGrad@K^T Gemm4
store_tile(ds_lds_window, dst_gemm);
auto dq_acc = QGradBlockTileType{};
clear_tile(dq_acc); // Initialize QGrad
block_sync_lds();
static_for<0, k4_loops, 1>{}([&](auto i_k4) {
gemm_4(dq_acc,
get_slice_tile(ds_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kM0, (i_k4 + 1) * kK4>{}),
get_slice_tile(kt_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kQKHeaddim, (i_k4 + 1) * kK4>{}));
});
// QGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dq_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dq_acc);
}
const auto dq = cast_tile<QGradDataType>(dq_acc);
update_tile(dq_dram_block_window, dq);
// move tile windows
move_tile_window(q_dram_block_window, {kM0, 0});
move_tile_window(dq_dram_block_window, {kM0, 0});
move_tile_window(do_dram_block_window, {kM0, 0});
move_tile_window(lse_dram_window, {kM0});
move_tile_window(d_dram_window, {kM0});
} while(++i_total_loops < num_total_loop);
// KGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dk_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dk_acc);
}
// VGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&rp_undrop](auto& x) { x = x * rp_undrop; }, dv_acc);
}
return ck_tile::make_tuple(dk_acc, dv_acc);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
namespace ck_tile {
// This pipeline is v located in regs, k & k^t located in lds.
using BlockFmhaBwdDQDKDVPipelineKSKTSVRDefaultPolicy =
BlockFmhaBwdPipelineDefaultPolicy</* QLoadOnce_ = */ false,
/* QTLoadOnce_ = */ false,
/* KLoadOnce_ = */ true,
/* KTLoadOnce_ = */ true,
/* VLoadOnce_ = */ true,
/* OGradLoadOnce_ = */ false,
/* OGradTLoadOnce_ = */ false>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_ks_vr_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
template <typename Problem, typename Policy = BlockFmhaBwdDQDKDVPipelineKSVRDefaultPolicy>
struct BlockFmhaBwdDQDKDVPipelineKSVR
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using GemmDataType = remove_cvref_t<typename Problem::GemmDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using AccDataType = remove_cvref_t<typename Problem::AccDataType>;
using DDataType = remove_cvref_t<typename Problem::DDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
using QGradDataType = remove_cvref_t<typename Problem::QGradDataType>;
using KGradDataType = remove_cvref_t<typename Problem::KGradDataType>;
using VGradDataType = remove_cvref_t<typename Problem::VGradDataType>;
using BiasGradDataType = remove_cvref_t<typename Problem::BiasGradDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
static constexpr index_t kBlockPerCu = Problem::kBlockPerCu;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK2 = BlockFmhaShape::kK2;
static constexpr index_t kK3 = BlockFmhaShape::kK3;
static constexpr index_t kK4 = BlockFmhaShape::kK4;
static constexpr index_t kQKHeaddim = BlockFmhaShape::kQKHeaddim;
static constexpr index_t kVHeaddim = BlockFmhaShape::kVHeaddim;
static constexpr bool kQLoadOnce = false;
static constexpr bool kQTLoadOnce = false;
static constexpr bool kKLoadOnce = true;
static constexpr bool kKTLoadOnce = false;
static constexpr bool kVLoadOnce = true;
static constexpr bool kOGradLoadOnce = false;
static constexpr bool kOGradTLoadOnce = false;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kHasBiasGrad = Problem::kHasBiasGrad;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV =
kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentOGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentOGrad<Problem>();
static constexpr index_t kAlignmentQGrad =
kPadHeadDimQ ? 2 : Policy::template GetAlignmentQGrad<Problem>();
static constexpr index_t kAlignmentKGrad =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentKGrad<Problem>();
static constexpr index_t kAlignmentVGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentVGrad<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetTransposedAlignmentBias<Problem>();
static constexpr const char* name = "ks_vr";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename QTDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename KTDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename OGradDramBlockWindowTmp,
typename OGradTDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename DDramBlockWindowTmp,
typename QGradDramBlockWindowTmp,
typename BiasGradDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp,
const QTDramBlockWindowTmp& qt_dram_block_window_tmp,
const KDramBlockWindowTmp& k_dram_block_window_tmp,
const KTDramBlockWindowTmp& /*kt_dram_block_window_tmp*/,
const VDramBlockWindowTmp& v_dram_block_window_tmp,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp,
const RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
const OGradDramBlockWindowTmp& do_dram_block_window_tmp,
const OGradTDramBlockWindowTmp& dot_dram_block_window_tmp,
const LSEDramBlockWindowTmp& lse_dram_block_window_tmp,
const DDramBlockWindowTmp& d_dram_block_window_tmp,
const QGradDramBlockWindowTmp& dq_dram_block_window_tmp,
const BiasGradDramBlockWindowTmp& dbias_dram_block_window_tmp,
FmhaMask mask,
PositionEncoding position_encoding,
float raw_scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
float scale,
#endif
float rp_undrop,
float scale_rp_undrop,
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<QDataType,
remove_cvref_t<typename QTDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradDramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradTDramBlockWindowTmp::DataType>> &&
std::is_same_v<LSEDataType,
remove_cvref_t<typename LSEDramBlockWindowTmp::DataType>> &&
std::is_same_v<DDataType, remove_cvref_t<typename DDramBlockWindowTmp::DataType>> &&
std::is_same_v<QGradDataType,
remove_cvref_t<typename QGradDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kQKHeaddim == QTDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == OGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kVHeaddim ==
OGradTDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == LSEDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == DDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == QGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// Q tile in LDS
QDataType* q_lds_ptr = static_cast<QDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto q_lds = make_tensor_view<address_space_enum::lds>(
q_lds_ptr, Policy::template MakeQLdsBlockDescriptor<Problem>());
auto q_lds_window =
make_tile_window(q_lds, make_tuple(number<kM0>{}, number<kK0>{}), {0, 0});
// QT tile in LDS
QDataType* qt_lds_ptr = static_cast<QDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto qt_lds = make_tensor_view<address_space_enum::lds>(
qt_lds_ptr, Policy::template MakeQTLdsBlockDescriptor<Problem>());
auto qt_lds_window =
make_tile_window(qt_lds, make_tuple(number<kQKHeaddim>{}, number<kK3>{}), {0, 0});
// K tile in LDS
auto k_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<KDataType*>(smem_ptr),
Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kQKHeaddim>{}), {0, 0});
// KT tile in LDS
auto kt_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<KDataType*>(smem_ptr),
Policy::template MakeKLdsBlockDescriptorAsKT<Problem>());
auto kt_lds_window =
make_tile_window(kt_lds, make_tuple(number<kQKHeaddim>{}, number<kN0>{}), {0, 0});
// OGrad tile in LDS
OGradDataType* do_lds_ptr = static_cast<OGradDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto do_lds = make_tensor_view<address_space_enum::lds>(
do_lds_ptr, Policy::template MakeOGradLdsBlockDescriptor<Problem>());
auto do_lds_window =
make_tile_window(do_lds, make_tuple(number<kM0>{}, number<kK2>{}), {0, 0});
// OGradT tile in LDS
OGradDataType* dot_lds_ptr = static_cast<OGradDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto dot_lds = make_tensor_view<address_space_enum::lds>(
dot_lds_ptr, Policy::template MakeOGradTLdsBlockDescriptor<Problem>());
auto dot_lds_window =
make_tile_window(dot_lds, make_tuple(number<kVHeaddim>{}, number<kK1>{}), {0, 0});
// SGrad tile in LDS
GemmDataType* ds_lds_ptr = static_cast<GemmDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto ds_lds = make_tensor_view<address_space_enum::lds>(
ds_lds_ptr, Policy::template MakeSGradLdsBlockDescriptor<Problem>());
auto ds_lds_window =
make_tile_window(ds_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
// BiasT/BiasGradT tile in LDS, use the same size and layout
BiasDataType* biast_lds_ptr = static_cast<BiasDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto biast_lds = make_tensor_view<address_space_enum::lds>(
biast_lds_ptr, Policy::template MakeBiasTLdsBlockDescriptor<Problem>());
auto biast_lds_shuffle_window =
make_tile_window(biast_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
auto dbiast_lds_shuffle_window =
make_tile_window(biast_lds,
make_tuple(number<kM0>{}, number<kN0>{}),
{0, 0},
Policy::template MakeShuffledBiasTileDistribution<Problem>());
static_assert(std::is_same_v<BiasDataType, BiasGradDataType>,
"BiasDataType and BiasGradDataType should be the same!");
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetPTOGradTBlockGemm<Problem>();
constexpr auto gemm_2 = Policy::template GetOGradVBlockGemm<Problem>();
constexpr auto gemm_3 = Policy::template GetSGradTQTBlockGemm<Problem>();
constexpr auto gemm_4 = Policy::template GetSGradKTBlockGemm<Problem>();
auto v_dram_window = make_tile_window(
v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
v_dram_block_window_tmp.get_window_origin(),
Policy::template MakeVInRegDramTileDistribution<Problem, decltype(gemm_2)>());
auto v = load_tile(v_dram_window); // persistent V register tile
using SPTBlockTileType = decltype(gemm_0.MakeCBlockTile());
using SPGradTBlockTileType = decltype(gemm_2.MakeCBlockTile());
using QGradBlockTileType = decltype(gemm_4.MakeCBlockTile());
// init VGrad & KGrad
auto dv_acc = decltype(gemm_1.MakeCBlockTile()){};
auto dk_acc = decltype(gemm_3.MakeCBlockTile()){};
clear_tile(dv_acc);
clear_tile(dk_acc);
auto k_dram_window = make_tile_window(
k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
k_dram_block_window_tmp.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
__builtin_amdgcn_sched_barrier(0);
const auto k_origin = k_dram_window.get_window_origin();
const auto [seqlen_q_start, seqlen_q_end] =
mask.GetTileRangeAlongY(k_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_q_end - seqlen_q_start, kM0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
// Note: here dk_acc&dv_acc are all cleard, return it
// Note: v loaded but no fence, ignore it.
return ck_tile::make_tuple(dk_acc, dv_acc);
}
}
auto k_block_tile = load_tile(k_dram_window);
store_tile(k_lds_window, k_block_tile); // // persistent K in LDS
auto q_dram_block_window =
make_tile_window(q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto qt_dram_block_window =
make_tile_window(qt_dram_block_window_tmp.get_bottom_tensor_view(),
qt_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_q_start});
auto do_dram_block_window =
make_tile_window(do_dram_block_window_tmp.get_bottom_tensor_view(),
do_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto dot_dram_block_window =
make_tile_window(dot_dram_block_window_tmp.get_bottom_tensor_view(),
dot_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_q_start});
auto dq_dram_block_window =
make_tile_window(dq_dram_block_window_tmp.get_bottom_tensor_view(),
dq_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto lse_dram_block_window =
make_tile_window(lse_dram_block_window_tmp.get_bottom_tensor_view(),
lse_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
auto d_dram_block_window =
make_tile_window(d_dram_block_window_tmp.get_bottom_tensor_view(),
d_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_block_window =
make_tile_window(bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, bias_origin.at(number<1>{})}); // M/N
const auto dbias_origin = dbias_dram_block_window_tmp.get_window_origin();
auto dbias_dram_block_window =
make_tile_window(dbias_dram_block_window_tmp.get_bottom_tensor_view(),
dbias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, dbias_origin.at(number<1>{})}); // M/N
auto qt_dram_window =
make_tile_window(qt_dram_block_window.get_bottom_tensor_view(),
qt_dram_block_window.get_window_lengths(),
qt_dram_block_window.get_window_origin(),
Policy::template MakeQTDramTileDistribution<Problem>());
auto dot_dram_window =
make_tile_window(dot_dram_block_window.get_bottom_tensor_view(),
dot_dram_block_window.get_window_lengths(),
dot_dram_block_window.get_window_origin(),
Policy::template MakeOGradTDramTileDistribution<Problem>());
auto lse_dram_window = make_tile_window(
lse_dram_block_window.get_bottom_tensor_view(),
lse_dram_block_window.get_window_lengths(),
lse_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto d_dram_window = make_tile_window(
d_dram_block_window.get_bottom_tensor_view(),
d_dram_block_window.get_window_lengths(),
d_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto bias_dram_window =
make_tile_window(bias_dram_block_window.get_bottom_tensor_view(),
bias_dram_block_window.get_window_lengths(),
bias_dram_block_window.get_window_origin(),
Policy::template MakeBiasTileDistribution<Problem>());
auto biast_lds_window =
make_tile_window(biast_lds_shuffle_window.get_bottom_tensor_view(),
biast_lds_shuffle_window.get_window_lengths(),
biast_lds_shuffle_window.get_window_origin(),
Policy::template MakeBiasTTileDistribution<decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0), false>(
randval_dram_block_window_tmp, seqlen_q_start);
index_t i_total_loops = 0;
constexpr index_t k0_loops = kQKHeaddim / kK0;
constexpr index_t k1_loops = kM0 / kK1;
constexpr index_t k2_loops = kVHeaddim / kK2;
constexpr index_t k3_loops = kM0 / kK3;
constexpr index_t k4_loops = kN0 / kK4;
do
{
auto q_dram_window = make_tile_window(
q_dram_block_window.get_bottom_tensor_view(),
q_dram_block_window.get_window_lengths(),
q_dram_block_window.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem>()); // Q DRAM tile window for
// load
auto do_dram_window = make_tile_window(
do_dram_block_window.get_bottom_tensor_view(),
do_dram_block_window.get_window_lengths(),
do_dram_block_window.get_window_origin(),
Policy::template MakeOGradDramTileDistribution<Problem>()); // OGrad DRAM tile
// window for load
// STAGE 1, Q@K Gemm0
auto st_acc = SPTBlockTileType{};
auto q_block_tile = load_tile(q_dram_window);
{
move_tile_window(q_dram_window, {0, kK0});
clear_tile(st_acc); // Initialize S^T
store_tile(q_lds_window, q_block_tile); // LDS write 0
q_block_tile = load_tile(q_dram_window); // global read 1
}
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 2)
{
static_for<0, k0_loops - 2, 1>{}([&](auto i_k0) {
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, i_k0 * kK0>{},
sequence<kN0, (i_k0 + 1) * kK0>{}));
block_sync_lds();
move_tile_window(q_dram_window, {0, kK0});
store_tile(q_lds_window,
q_block_tile); // LDS write i + 1
q_block_tile = load_tile(q_dram_window); // global read i + 2
});
}
const auto dot_prefetch = load_tile(dot_dram_window); // prefetch load OGrad^T tile
{ // tail
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, (k0_loops - 2) * kK0>{},
sequence<kN0, (k0_loops - 1) * kK0>{}));
block_sync_lds();
store_tile(q_lds_window, q_block_tile);
block_sync_lds();
gemm_0(st_acc,
q_lds_window,
get_slice_tile(k_lds_window,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kN0, k0_loops * kK0>{}));
}
// STAGE 2, Scale, Add bias, Mask, Softmax, Dropout
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
block_sync_lds();
auto bias_shuffle_tmp = make_static_distributed_tensor<BiasDataType>(
Policy::template MakeShuffledBiasTileDistribution<Problem>());
shuffle_tile(bias_shuffle_tmp, bias_tile);
store_tile(biast_lds_shuffle_window, bias_shuffle_tmp);
block_sync_lds();
auto biast_tile = load_tile(biast_lds_window);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x = raw_scale * x + type_convert<AccDataType>(y);
#else
x = scale * x + log2e_v<AccDataType> * type_convert<AccDataType>(y);
#endif
},
st_acc,
biast_tile);
move_tile_window(bias_dram_window, {kM0, 0});
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
const auto q_origin = q_dram_block_window.get_window_origin();
constexpr auto st_spans = decltype(st_acc)::get_distributed_spans();
sweep_tile_span(st_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(st_spans[number<1>{}], [&](auto idx1) {
const auto tile_idx = get_x_indices_from_distributed_indices(
st_acc.get_tile_distribution(), make_tuple(idx0, idx1));
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
st_acc(i_j_idx) *= raw_scale;
#else
st_acc(i_j_idx) *= scale;
#endif
position_encoding.update(st_acc(i_j_idx), row, col);
});
});
}
else
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, st_acc);
#endif
}
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto q_origin = q_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(st_acc, -numeric<AccDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto lse = load_tile(lse_dram_window);
static const auto get_validated_lse = [](LSEDataType raw_lse) {
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
FmhaMask::IsMasking)
{
return raw_lse == -numeric<LSEDataType>::infinity()
? type_convert<LSEDataType>(0.f)
: raw_lse;
}
else
{
return raw_lse;
}
};
auto pt = SPTBlockTileType{};
constexpr auto pt_spans = decltype(pt)::get_distributed_spans();
sweep_tile_span(pt_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_lse = log2e_v<LSEDataType> * get_validated_lse(lse[i_idx]);
#endif
sweep_tile_span(pt_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
pt(i_j_idx) = exp2(st_acc[i_j_idx] - row_lse);
}
else
{
pt(i_j_idx) = exp2(scale * st_acc[i_j_idx] - row_lse);
}
#else
pt(i_j_idx) = exp(st_acc[i_j_idx] - get_validated_lse(lse[i_idx]));
#endif
});
});
auto dot_shuffle_tmp = make_static_distributed_tensor<OGradDataType>(
Policy::template MakeShuffledOGradTRegBlockDescriptor<Problem>());
block_sync_lds();
{
shuffle_tile(dot_shuffle_tmp, dot_prefetch);
store_tile(dot_lds_window,
dot_shuffle_tmp); // store the prefetch
}
move_tile_window(dot_dram_window, {0, kK1});
if constexpr(kHasDropout)
{
dropout.Run<decltype(gemm_0), RandValOutputDataType>(
seqlen_q_start + i_total_loops * kM0, pt, randval_dram_window);
}
// STAGE 3, P^T@OGrad^T Gemm1
const auto pt_gemm = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[](const auto& x) { return type_convert<GemmDataType>(x > 0.f ? x : 0.f); },
pt);
}
else
{
return cast_tile<GemmDataType>(pt);
}
}();
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto dot = load_tile(dot_dram_window); // load next OGrad^T
block_sync_lds();
gemm_1(dv_acc,
get_slice_tile(pt_gemm,
sequence<i_k1 * kK1, 0>{},
sequence<(i_k1 + 1) * kK1, kN0>{}),
dot_lds_window);
block_sync_lds();
shuffle_tile(dot_shuffle_tmp, dot);
store_tile(dot_lds_window,
dot_shuffle_tmp); // store the prefetch
move_tile_window(dot_dram_window, {0, kK1});
});
}
auto do_block_tile = load_tile(do_dram_window); // prefetch load OGrad tile
// tail
{
block_sync_lds();
gemm_1(dv_acc,
get_slice_tile(
pt_gemm, sequence<(k1_loops - 1) * kK1, 0>{}, sequence<kM0, kN0>{}),
dot_lds_window);
block_sync_lds();
}
// STAGE 4, OGrad@V Gemm2
auto dpt_acc = SPGradTBlockTileType{};
{
move_tile_window(do_dram_window, {0, kK2});
clear_tile(dpt_acc); // Initialize PGrad^T
store_tile(do_lds_window, do_block_tile); // LDS write 0
do_block_tile = load_tile(do_dram_window); // global read 1
}
if constexpr(k2_loops > 2)
{
static_for<0, k2_loops - 2, 1>{}([&](auto i_k2) {
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(
v, sequence<0, i_k2 * kK2>{}, sequence<kN0, (i_k2 + 1) * kK2>{}));
block_sync_lds();
move_tile_window(do_dram_window, {0, kK2});
store_tile(do_lds_window,
do_block_tile); // LDS write i + 1
do_block_tile = load_tile(do_dram_window); // global read i + 2
});
}
const auto qt_prefetch = load_tile(qt_dram_window); // prefetch load Q^T tile
{ // tail
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(v,
sequence<0, (k2_loops - 2) * kK2>{},
sequence<kN0, (k2_loops - 1) * kK2>{}));
block_sync_lds();
store_tile(do_lds_window, do_block_tile);
block_sync_lds();
gemm_2(dpt_acc,
do_lds_window,
get_slice_tile(v,
sequence<0, (k2_loops - 1) * kK2>{},
sequence<kN0, k2_loops * kK2>{}));
}
// STAGE 5, P^T(PGrad^T - D)
const auto d = load_tile(d_dram_window);
auto dst = SPGradTBlockTileType{};
constexpr auto dst_spans = decltype(dst)::get_distributed_spans();
sweep_tile_span(dst_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(dst_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
bool undrop_flag = pt[i_j_idx] >= 0;
dst(i_j_idx) =
pt[i_j_idx] *
(!kHasDropout || undrop_flag ? (dpt_acc[i_j_idx] - d[i_idx]) : d[i_idx]);
});
});
if constexpr(kHasBiasGrad)
{
const auto dbiast = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[&rp_undrop](const auto& x) {
return type_convert<BiasGradDataType>(x * rp_undrop);
},
dst);
}
else
{
return cast_tile<BiasGradDataType>(dst);
}
}();
store_tile(biast_lds_shuffle_window, dbiast);
block_sync_lds();
auto dbiast_tile = load_tile(dbiast_lds_shuffle_window);
auto dbiast_shuffle_tmp = make_static_distributed_tensor<BiasGradDataType>(
Policy::template MakeBiasTileDistribution<Problem>());
shuffle_tile(dbiast_shuffle_tmp, dbiast_tile);
store_tile(dbias_dram_block_window, dbiast_shuffle_tmp);
move_tile_window(dbias_dram_block_window, {kM0, 0});
}
// STAGE 6, SGrad^T@Q^T Gemm3
auto qt_shuffle_tmp = make_static_distributed_tensor<QDataType>(
Policy::template MakeShuffledQTRegBlockDescriptor<Problem>());
block_sync_lds();
{
shuffle_tile(qt_shuffle_tmp, qt_prefetch);
store_tile(qt_lds_window,
qt_shuffle_tmp); // store the prefetch
}
move_tile_window(qt_dram_window, {0, kK3});
const auto dst_gemm = cast_tile<GemmDataType>(dst);
if constexpr(k3_loops > 1)
{
static_for<0, k3_loops - 1, 1>{}([&](auto i_k3) {
const auto qt = load_tile(qt_dram_window); // load next Q^T
block_sync_lds();
gemm_3(dk_acc,
get_slice_tile(dst_gemm,
sequence<i_k3 * kK3, 0>{},
sequence<(i_k3 + 1) * kK3, kN0>{}),
qt_lds_window);
block_sync_lds();
shuffle_tile(qt_shuffle_tmp, qt);
store_tile(qt_lds_window,
qt_shuffle_tmp); // store the prefetch
move_tile_window(qt_dram_window, {0, kK3});
});
}
// tail
{
block_sync_lds();
gemm_3(dk_acc,
get_slice_tile(
dst_gemm, sequence<(k3_loops - 1) * kK3, 0>{}, sequence<kM0, kN0>{}),
qt_lds_window);
block_sync_lds();
}
// STAGE 7, SGrad@K^T Gemm4
store_tile(ds_lds_window, dst_gemm);
auto dq_acc = QGradBlockTileType{};
clear_tile(dq_acc); // Initialize QGrad
block_sync_lds();
static_for<0, k4_loops, 1>{}([&](auto i_k4) {
gemm_4(dq_acc,
get_slice_tile(ds_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kM0, (i_k4 + 1) * kK4>{}),
get_slice_tile(kt_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kQKHeaddim, (i_k4 + 1) * kK4>{}));
});
// QGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dq_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dq_acc);
}
const auto dq = cast_tile<QGradDataType>(dq_acc);
update_tile(dq_dram_block_window, dq);
// move tile windows
move_tile_window(q_dram_block_window, {kM0, 0});
move_tile_window(dq_dram_block_window, {kM0, 0});
move_tile_window(do_dram_block_window, {kM0, 0});
move_tile_window(lse_dram_window, {kM0});
move_tile_window(d_dram_window, {kM0});
} while(++i_total_loops < num_total_loop);
// KGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dk_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dk_acc);
}
// VGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&rp_undrop](auto& x) { x = x * rp_undrop; }, dv_acc);
}
return ck_tile::make_tuple(dk_acc, dv_acc);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
namespace ck_tile {
// This pipeline is v located in regs, k located in lds.
using BlockFmhaBwdDQDKDVPipelineKSVRDefaultPolicy =
BlockFmhaBwdPipelineDefaultPolicy</* QLoadOnce_ = */ false,
/* QTLoadOnce_ = */ false,
/* KLoadOnce_ = */ true,
/* KTLoadOnce_ = */ false,
/* VLoadOnce_ = */ true,
/* OGradLoadOnce_ = */ false,
/* OGradTLoadOnce_ = */ false>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_qs_ks_vr_dos_default_policy.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
template <typename Problem, typename Policy = BlockFmhaBwdDQDKDVPipelineQSKSVROGradSDefaultPolicy>
struct BlockFmhaBwdDQDKDVPipelineQSKSVROGradS
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using GemmDataType = remove_cvref_t<typename Problem::GemmDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using AccDataType = remove_cvref_t<typename Problem::AccDataType>;
using DDataType = remove_cvref_t<typename Problem::DDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
using QGradDataType = remove_cvref_t<typename Problem::QGradDataType>;
using KGradDataType = remove_cvref_t<typename Problem::KGradDataType>;
using VGradDataType = remove_cvref_t<typename Problem::VGradDataType>;
using BiasGradDataType = remove_cvref_t<typename Problem::BiasGradDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
static constexpr index_t kBlockPerCu = Problem::kBlockPerCu;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK2 = BlockFmhaShape::kK2;
static constexpr index_t kK3 = BlockFmhaShape::kK3;
static constexpr index_t kK4 = BlockFmhaShape::kK4;
static constexpr index_t kQKHeaddim = BlockFmhaShape::kQKHeaddim;
static constexpr index_t kVHeaddim = BlockFmhaShape::kVHeaddim;
static constexpr bool kQLoadOnce = true;
static constexpr bool kQTLoadOnce = false;
static constexpr bool kKLoadOnce = true;
static constexpr bool kKTLoadOnce = false;
static constexpr bool kVLoadOnce = true;
static constexpr bool kOGradLoadOnce = true;
static constexpr bool kOGradTLoadOnce = false;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kHasBiasGrad = Problem::kHasBiasGrad;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV =
kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentOGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentOGrad<Problem>();
static constexpr index_t kAlignmentQGrad =
kPadHeadDimQ ? 2 : Policy::template GetAlignmentQGrad<Problem>();
static constexpr index_t kAlignmentKGrad =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentKGrad<Problem>();
static constexpr index_t kAlignmentVGrad =
kPadHeadDimV ? 1 : Policy::template GetAlignmentVGrad<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetTransposedAlignmentBias<Problem>();
static constexpr const char* name = "qs_ks_vr_dos";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename QTDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename KTDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename OGradDramBlockWindowTmp,
typename OGradTDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename DDramBlockWindowTmp,
typename QGradDramBlockWindowTmp,
typename BiasGradDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp,
const QTDramBlockWindowTmp& /*qt_dram_block_window_tmp*/,
const KDramBlockWindowTmp& k_dram_block_window_tmp,
const KTDramBlockWindowTmp& /*kt_dram_block_window_tmp*/,
const VDramBlockWindowTmp& v_dram_block_window_tmp,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp,
const RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
const OGradDramBlockWindowTmp& do_dram_block_window_tmp,
const OGradTDramBlockWindowTmp& /*dot_dram_block_window_tmp*/,
const LSEDramBlockWindowTmp& lse_dram_block_window_tmp,
const DDramBlockWindowTmp& d_dram_block_window_tmp,
const QGradDramBlockWindowTmp& dq_dram_block_window_tmp,
const BiasGradDramBlockWindowTmp& dbias_dram_block_window_tmp,
FmhaMask mask,
PositionEncoding position_encoding,
float raw_scale,
#if CK_TILE_FMHA_FWD_FAST_EXP2
float scale,
#endif
float rp_undrop,
float scale_rp_undrop,
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>> &&
std::is_same_v<OGradDataType,
remove_cvref_t<typename OGradDramBlockWindowTmp::DataType>> &&
std::is_same_v<LSEDataType,
remove_cvref_t<typename LSEDramBlockWindowTmp::DataType>> &&
std::is_same_v<DDataType, remove_cvref_t<typename DDramBlockWindowTmp::DataType>> &&
std::is_same_v<QGradDataType,
remove_cvref_t<typename QGradDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == OGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == LSEDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == DDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == QGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kM0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasGradDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
// Q tile in LDS
QDataType* q_lds_ptr = static_cast<QDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>()));
auto q_lds = make_tensor_view<address_space_enum::lds>(
q_lds_ptr, Policy::template MakeQLdsBlockDescriptor<Problem>());
auto q_lds_window =
make_tile_window(q_lds, make_tuple(number<kM0>{}, number<kQKHeaddim>{}), {0, 0});
// QT tile in LDS
auto qt_lds = make_tensor_view<address_space_enum::lds>(
q_lds_ptr, Policy::template MakeQLdsBlockDescriptorAsQT<Problem>());
auto qt_lds_window =
make_tile_window(qt_lds, make_tuple(number<kQKHeaddim>{}, number<kM0>{}), {0, 0});
// K tile in LDS
auto k_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<KDataType*>(smem_ptr),
Policy::template MakeKLdsBlockDescriptor<Problem>());
auto k_lds_window =
make_tile_window(k_lds, make_tuple(number<kN0>{}, number<kQKHeaddim>{}), {0, 0});
// KT tile in LDS
auto kt_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<KDataType*>(smem_ptr),
Policy::template MakeKLdsBlockDescriptorAsKT<Problem>());
auto kt_lds_window =
make_tile_window(kt_lds, make_tuple(number<kQKHeaddim>{}, number<kN0>{}), {0, 0});
// OGrad tile in LDS
OGradDataType* do_lds_ptr = static_cast<OGradDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeQ<Problem>()));
auto do_lds = make_tensor_view<address_space_enum::lds>(
do_lds_ptr, Policy::template MakeOGradLdsBlockDescriptor<Problem>());
auto do_lds_window =
make_tile_window(do_lds, make_tuple(number<kM0>{}, number<kVHeaddim>{}), {0, 0});
// OGradT tile in LDS
auto dot_lds = make_tensor_view<address_space_enum::lds>(
do_lds_ptr, Policy::template MakeOGradLdsBlockDescriptorAsOGradT<Problem>());
auto dot_lds_window =
make_tile_window(dot_lds, make_tuple(number<kVHeaddim>{}, number<kM0>{}), {0, 0});
// SGrad tile in LDS
GemmDataType* ds_lds_ptr = static_cast<GemmDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeQ<Problem>() +
Policy::template GetSmemSizeOGrad<Problem>()));
auto ds_lds = make_tensor_view<address_space_enum::lds>(
ds_lds_ptr, Policy::template MakeSGradLdsBlockDescriptor<Problem>());
auto ds_lds_window =
make_tile_window(ds_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
// BiasT/BiasGradT tile in LDS, use the same size and layout
BiasDataType* biast_lds_ptr = static_cast<BiasDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeK<Problem>() +
Policy::template GetSmemSizeQ<Problem>() +
Policy::template GetSmemSizeOGrad<Problem>()));
auto biast_lds = make_tensor_view<address_space_enum::lds>(
biast_lds_ptr, Policy::template MakeBiasTLdsBlockDescriptor<Problem>());
auto biast_lds_shuffle_window =
make_tile_window(biast_lds, make_tuple(number<kM0>{}, number<kN0>{}), {0, 0});
auto dbiast_lds_shuffle_window =
make_tile_window(biast_lds,
make_tuple(number<kM0>{}, number<kN0>{}),
{0, 0},
Policy::template MakeShuffledBiasTileDistribution<Problem>());
static_assert(std::is_same_v<BiasDataType, BiasGradDataType>,
"BiasDataType and BiasGradDataType should be the same!");
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetPTOGradTBlockGemm<Problem>();
constexpr auto gemm_2 = Policy::template GetOGradVBlockGemm<Problem>();
constexpr auto gemm_3 = Policy::template GetSGradTQTBlockGemm<Problem>();
constexpr auto gemm_4 = Policy::template GetSGradKTBlockGemm<Problem>();
auto v_dram_window = make_tile_window(
v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
v_dram_block_window_tmp.get_window_origin(),
Policy::template MakeVInRegDramTileDistribution<Problem, decltype(gemm_2)>());
auto v = load_tile(v_dram_window); // persistent V register tile
using SPTBlockTileType = decltype(gemm_0.MakeCBlockTile());
using SPGradTBlockTileType = decltype(gemm_2.MakeCBlockTile());
using QGradBlockTileType = decltype(gemm_4.MakeCBlockTile());
// init VGrad & KGrad
auto dv_acc = decltype(gemm_1.MakeCBlockTile()){};
auto dk_acc = decltype(gemm_3.MakeCBlockTile()){};
clear_tile(dv_acc);
clear_tile(dk_acc);
auto k_dram_window = make_tile_window(
k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
k_dram_block_window_tmp.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
__builtin_amdgcn_sched_barrier(0);
const auto k_origin = k_dram_window.get_window_origin();
const auto [seqlen_q_start, seqlen_q_end] =
mask.GetTileRangeAlongY(k_origin.at(number<0>{}), number<kM0>{}, number<kN0>{});
const auto num_total_loop = integer_divide_ceil(seqlen_q_end - seqlen_q_start, kM0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking)
{
if(num_total_loop <= 0)
{
// Note: here dk_acc&dv_acc are all cleard, return it
// Note: v loaded but no fence, ignore it.
return ck_tile::make_tuple(dk_acc, dv_acc);
}
}
auto k_block_tile = load_tile(k_dram_window);
store_tile(k_lds_window, k_block_tile); // // persistent K in LDS
auto q_dram_block_window =
make_tile_window(q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto do_dram_block_window =
make_tile_window(do_dram_block_window_tmp.get_bottom_tensor_view(),
do_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto dq_dram_block_window =
make_tile_window(dq_dram_block_window_tmp.get_bottom_tensor_view(),
dq_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, 0});
auto lse_dram_block_window =
make_tile_window(lse_dram_block_window_tmp.get_bottom_tensor_view(),
lse_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
auto d_dram_block_window =
make_tile_window(d_dram_block_window_tmp.get_bottom_tensor_view(),
d_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_block_window =
make_tile_window(bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, bias_origin.at(number<1>{})}); // M/N
const auto dbias_origin = dbias_dram_block_window_tmp.get_window_origin();
auto dbias_dram_block_window =
make_tile_window(dbias_dram_block_window_tmp.get_bottom_tensor_view(),
dbias_dram_block_window_tmp.get_window_lengths(),
{seqlen_q_start, dbias_origin.at(number<1>{})}); // M/N
auto lse_dram_window = make_tile_window(
lse_dram_block_window.get_bottom_tensor_view(),
lse_dram_block_window.get_window_lengths(),
lse_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto d_dram_window = make_tile_window(
d_dram_block_window.get_bottom_tensor_view(),
d_dram_block_window.get_window_lengths(),
d_dram_block_window.get_window_origin(),
Policy::template MakeLSEDDramTileDistribution<Problem, decltype(gemm_0)>());
auto bias_dram_window =
make_tile_window(bias_dram_block_window.get_bottom_tensor_view(),
bias_dram_block_window.get_window_lengths(),
bias_dram_block_window.get_window_origin(),
Policy::template MakeBiasTileDistribution<Problem>());
auto biast_lds_window =
make_tile_window(biast_lds_shuffle_window.get_bottom_tensor_view(),
biast_lds_shuffle_window.get_window_lengths(),
biast_lds_shuffle_window.get_window_origin(),
Policy::template MakeBiasTTileDistribution<decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0), false>(
randval_dram_block_window_tmp, seqlen_q_start);
index_t i_total_loops = 0;
constexpr index_t k0_loops = kQKHeaddim / kK0;
constexpr index_t k1_loops = kM0 / kK1;
constexpr index_t k2_loops = kVHeaddim / kK2;
constexpr index_t k3_loops = kM0 / kK3;
constexpr index_t k4_loops = kN0 / kK4;
do
{
auto q_dram_window = make_tile_window(
q_dram_block_window.get_bottom_tensor_view(),
q_dram_block_window.get_window_lengths(),
q_dram_block_window.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem>()); // Q DRAM tile window for
// load
auto do_dram_window = make_tile_window(
do_dram_block_window.get_bottom_tensor_view(),
do_dram_block_window.get_window_lengths(),
do_dram_block_window.get_window_origin(),
Policy::template MakeOGradDramTileDistribution<Problem>()); // OGrad DRAM tile
// window for load
// STAGE 1, Q@K Gemm0
auto st_acc = SPTBlockTileType{};
auto q_block_tile = load_tile(q_dram_window);
clear_tile(st_acc); // Initialize S^T
store_tile(q_lds_window, q_block_tile); // LDS write
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
__builtin_amdgcn_sched_barrier(
0); // prevent from messing up the order of global loads
}
if constexpr(k0_loops > 1)
{
static_for<0, k0_loops - 1, 1>{}([&](auto i_k0) {
block_sync_lds();
gemm_0(st_acc,
get_slice_tile(q_lds_window,
sequence<0, i_k0 * kK0>{},
sequence<kM0, (i_k0 + 1) * kK0>{}),
get_slice_tile(k_lds_window,
sequence<0, i_k0 * kK0>{},
sequence<kN0, (i_k0 + 1) * kK0>{}));
block_sync_lds();
});
}
auto do_block_tile = load_tile(do_dram_window); // prefetch load OGrad tile
{ // tail
block_sync_lds();
gemm_0(st_acc,
get_slice_tile(q_lds_window,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kM0, k0_loops * kK0>{}),
get_slice_tile(k_lds_window,
sequence<0, (k0_loops - 1) * kK0>{},
sequence<kN0, k0_loops * kK0>{}));
block_sync_lds();
}
// STAGE 2, Scale, Add bias, Mask, Softmax, Dropout
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
block_sync_lds();
auto bias_shuffle_tmp = make_static_distributed_tensor<BiasDataType>(
Policy::template MakeShuffledBiasTileDistribution<Problem>());
shuffle_tile(bias_shuffle_tmp, bias_tile);
store_tile(biast_lds_shuffle_window, bias_shuffle_tmp);
block_sync_lds();
auto biast_tile = load_tile(biast_lds_window);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x = raw_scale * x + type_convert<AccDataType>(y);
#else
x = scale * x + log2e_v<AccDataType> * type_convert<AccDataType>(y);
#endif
},
st_acc,
biast_tile);
move_tile_window(bias_dram_window, {kM0, 0});
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
const auto q_origin = q_dram_block_window.get_window_origin();
constexpr auto st_spans = decltype(st_acc)::get_distributed_spans();
sweep_tile_span(st_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(st_spans[number<1>{}], [&](auto idx1) {
const auto tile_idx = get_x_indices_from_distributed_indices(
st_acc.get_tile_distribution(), make_tuple(idx0, idx1));
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
st_acc(i_j_idx) *= raw_scale;
#else
st_acc(i_j_idx) *= scale;
#endif
position_encoding.update(st_acc(i_j_idx), row, col);
});
});
}
else
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, st_acc);
#endif
}
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto q_origin = q_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(st_acc, -numeric<AccDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto lse = load_tile(lse_dram_window);
static const auto get_validated_lse = [](LSEDataType raw_lse) {
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
FmhaMask::IsMasking)
{
return raw_lse == -numeric<LSEDataType>::infinity()
? type_convert<LSEDataType>(0.f)
: raw_lse;
}
else
{
return raw_lse;
}
};
auto pt = SPTBlockTileType{};
constexpr auto pt_spans = decltype(pt)::get_distributed_spans();
sweep_tile_span(pt_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_lse = log2e_v<LSEDataType> * get_validated_lse(lse[i_idx]);
#endif
sweep_tile_span(pt_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
pt(i_j_idx) = exp2(st_acc[i_j_idx] - row_lse);
}
else
{
pt(i_j_idx) = exp2(scale * st_acc[i_j_idx] - row_lse);
}
#else
pt(i_j_idx) = exp(st_acc[i_j_idx] - get_validated_lse(lse[i_idx]));
#endif
});
});
if constexpr(kHasDropout)
{
dropout.Run<decltype(gemm_0), RandValOutputDataType>(
seqlen_q_start + i_total_loops * kM0, pt, randval_dram_window);
}
// STAGE 3, P^T@OGrad^T Gemm1
block_sync_lds();
store_tile(do_lds_window, do_block_tile); // store the prefetch
const auto pt_gemm = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[](const auto& x) { return type_convert<GemmDataType>(x > 0.f ? x : 0.f); },
pt);
}
else
{
return cast_tile<GemmDataType>(pt);
}
}();
static_for<0, k1_loops, 1>{}([&](auto i_k1) {
block_sync_lds();
gemm_1(dv_acc,
get_slice_tile(
pt_gemm, sequence<i_k1 * kK1, 0>{}, sequence<(i_k1 + 1) * kK1, kN0>{}),
get_slice_tile(dot_lds_window,
sequence<0, i_k1 * kK1>{},
sequence<kVHeaddim, (i_k1 + 1) * kK1>{}));
block_sync_lds();
});
// STAGE 4, OGrad@V Gemm2
auto dpt_acc = SPGradTBlockTileType{};
clear_tile(dpt_acc); // Initialize PGrad^T
static_for<0, k2_loops, 1>{}([&](auto i_k2) {
block_sync_lds();
gemm_2(dpt_acc,
get_slice_tile(do_lds_window,
sequence<0, i_k2 * kK2>{},
sequence<kM0, (i_k2 + 1) * kK2>{}),
get_slice_tile(
v, sequence<0, i_k2 * kK2>{}, sequence<kN0, (i_k2 + 1) * kK2>{}));
block_sync_lds();
});
// STAGE 5, P^T(PGrad^T - D)
const auto d = load_tile(d_dram_window);
auto dst = SPGradTBlockTileType{};
constexpr auto dst_spans = decltype(dst)::get_distributed_spans();
sweep_tile_span(dst_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(dst_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
bool undrop_flag = pt[i_j_idx] >= 0;
dst(i_j_idx) =
pt[i_j_idx] *
(!kHasDropout || undrop_flag ? (dpt_acc[i_j_idx] - d[i_idx]) : d[i_idx]);
});
});
if constexpr(kHasBiasGrad)
{
const auto dbiast = [&]() {
if constexpr(kHasDropout)
{
return tile_elementwise_in(
[&rp_undrop](const auto& x) {
return type_convert<BiasGradDataType>(x * rp_undrop);
},
dst);
}
else
{
return cast_tile<BiasGradDataType>(dst);
}
}();
store_tile(biast_lds_shuffle_window, dbiast);
block_sync_lds();
auto dbiast_tile = load_tile(dbiast_lds_shuffle_window);
auto dbiast_shuffle_tmp = make_static_distributed_tensor<BiasGradDataType>(
Policy::template MakeBiasTileDistribution<Problem>());
shuffle_tile(dbiast_shuffle_tmp, dbiast_tile);
store_tile(dbias_dram_block_window, dbiast_shuffle_tmp);
move_tile_window(dbias_dram_block_window, {kM0, 0});
}
// STAGE 6, SGrad^T@Q^T Gemm3
block_sync_lds();
const auto dst_gemm = cast_tile<GemmDataType>(dst);
static_for<0, k3_loops, 1>{}([&](auto i_k3) {
block_sync_lds();
gemm_3(dk_acc,
get_slice_tile(
dst_gemm, sequence<i_k3 * kK3, 0>{}, sequence<(i_k3 + 1) * kK3, kN0>{}),
get_slice_tile(qt_lds_window,
sequence<0, i_k3 * kK3>{},
sequence<kQKHeaddim, (i_k3 + 1) * kK3>{}));
block_sync_lds();
});
// STAGE 7, SGrad@K^T Gemm4
store_tile(ds_lds_window, dst_gemm);
auto dq_acc = QGradBlockTileType{};
clear_tile(dq_acc); // Initialize QGrad
block_sync_lds();
static_for<0, k4_loops, 1>{}([&](auto i_k4) {
gemm_4(dq_acc,
get_slice_tile(ds_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kM0, (i_k4 + 1) * kK4>{}),
get_slice_tile(kt_lds_window,
sequence<0, i_k4 * kK4>{},
sequence<kQKHeaddim, (i_k4 + 1) * kK4>{}));
});
// QGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dq_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dq_acc);
}
const auto dq = cast_tile<QGradDataType>(dq_acc);
update_tile(dq_dram_block_window, dq);
// move tile windows
move_tile_window(q_dram_block_window, {kM0, 0});
move_tile_window(dq_dram_block_window, {kM0, 0});
move_tile_window(do_dram_block_window, {kM0, 0});
move_tile_window(lse_dram_window, {kM0});
move_tile_window(d_dram_window, {kM0});
} while(++i_total_loops < num_total_loop);
// KGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&scale_rp_undrop](auto& x) { x = x * scale_rp_undrop; },
dk_acc);
}
else
{
tile_elementwise_inout([&raw_scale](auto& x) { x = x * raw_scale; }, dk_acc);
}
// VGrad Scale
if constexpr(kHasDropout)
{
tile_elementwise_inout([&rp_undrop](auto& x) { x = x * rp_undrop; }, dv_acc);
}
return ck_tile::make_tuple(dk_acc, dv_acc);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
namespace ck_tile {
// This pipeline is v located in regs, q & k & do located in lds.
using BlockFmhaBwdDQDKDVPipelineQSKSVROGradSDefaultPolicy =
BlockFmhaBwdPipelineDefaultPolicy</* QLoadOnce_ = */ true,
/* QTLoadOnce_ = */ false,
/* KLoadOnce_ = */ true,
/* KTLoadOnce_ = */ false,
/* VLoadOnce_ = */ true,
/* OGradLoadOnce_ = */ true,
/* OGradTLoadOnce_ = */ false>;
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/gemm/pipeline/block_gemm_pipeline_problem.hpp"
#include "ck_tile/ops/gemm/pipeline/tile_gemm_shape.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_dispatcher.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_areg_bsmem_creg_v1.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_breg_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_breg_creg_v1.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1.hpp"
namespace ck_tile {
template <bool QLoadOnce_,
bool QTLoadOnce_,
bool KLoadOnce_,
bool KTLoadOnce_,
bool VLoadOnce_,
bool OGradLoadOnce_,
bool OGradTLoadOnce_>
struct BlockFmhaBwdPipelineDefaultPolicy
{
static constexpr bool QLoadOnce =
QLoadOnce_; // if q load whole block length (qkhdim) to LDS at once
static constexpr bool QTLoadOnce =
QTLoadOnce_; // if q^t load whole block length (qkhdim) to LDS at once
static constexpr bool KLoadOnce =
KLoadOnce_; // if k load whole block length (qkhdim) to LDS at once
static constexpr bool KTLoadOnce =
KTLoadOnce_; // if k^t load whole block length (qkhdim) to LDS at once
static constexpr bool VLoadOnce =
VLoadOnce_; // if v load whole block length (vhdim) to Vgprs at once
static constexpr bool OGradLoadOnce =
OGradLoadOnce_; // if do load whole block length (vhdim) to LDS at once
static constexpr bool OGradTLoadOnce =
OGradTLoadOnce_; // if do^t load whole block length (vhdim) to LDS at once
// these are for global load
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return 16 / sizeof(QDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentK()
{
using KDataType = remove_cvref_t<typename Problem::KDataType>;
return 16 / sizeof(KDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentV()
{
if constexpr(VLoadOnce)
{
using BlockGemm = remove_cvref_t<decltype(GetOGradVBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
return WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
}
else
{
using VDataType = remove_cvref_t<typename Problem::VDataType>;
return 16 / sizeof(VDataType);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentO()
{
using ODataType = remove_cvref_t<typename Problem::ODataType>;
return 16 / sizeof(ODataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentOGrad()
{
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
return 16 / sizeof(OGradDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQGrad()
{
using BlockGemm = remove_cvref_t<decltype(GetSGradKTBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
using CWarpDstr = typename WG::CWarpDstr;
constexpr auto vec =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths().at(number<CWarpDstr::NDimY - 1>{});
return vec;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentKGrad()
{
using BlockGemm = remove_cvref_t<decltype(GetSGradTQTBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
using CWarpDstr = typename WG::CWarpDstr;
constexpr auto vec =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths().at(number<CWarpDstr::NDimY - 1>{});
return vec;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentVGrad()
{
using BlockGemm = remove_cvref_t<decltype(GetPTOGradTBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
using CWarpDstr = typename WG::CWarpDstr;
constexpr auto vec =
CWarpDstr{}.get_ys_to_d_descriptor().get_lengths().at(number<CWarpDstr::NDimY - 1>{});
return vec;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetTransposedAlignmentQ()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK3;
}();
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 4)
return 4;
else
return 2;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetTransposedAlignmentK()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KTLoadOnce)
return Problem::BlockFmhaShape::kN0;
else
return Problem::BlockFmhaShape::kK4;
}();
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 4)
return 4;
else
return 2;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetTransposedAlignmentOGrad()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kVHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK1;
}();
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 4)
return 4;
else
return 2;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetTransposedAlignmentBias()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t total_pixels = kMPerBlock * kNPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 32)
return 8;
else
return 4;
}
// these are for lds
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackQ()
{
// TODO: this is for 3d layout
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return 16 / sizeof(QDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackK()
{
// TODO: this is for 3d layout
using KDataType = remove_cvref_t<typename Problem::KDataType>;
return 16 / sizeof(KDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackV()
{
// TODO: this is for 3d layout
using VDataType = remove_cvref_t<typename Problem::VDataType>;
return 16 / sizeof(VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackBias()
{
// TODO: this is for 3d layout
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
return 16 / sizeof(BiasDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackOGrad()
{
// TODO: this is for 3d layout
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
return 16 / sizeof(OGradDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackSGrad()
{
// TODO: this is for 3d layout
using GemmDataType = remove_cvref_t<typename Problem::GemmDataType>;
return 16 / sizeof(GemmDataType);
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeVInRegDramTileDistribution()
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kVHeaddim;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t NIterPerWarp = kNPerBlock / (NWarp * WG::kN);
constexpr index_t KIterPerWarp = kKPerBlock / WG::kK;
constexpr auto v_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<MWarp>,
tuple<sequence<NIterPerWarp, NWarp>, sequence<KIterPerWarp>>,
tuple<sequence<0, 1>>,
tuple<sequence<0, 1>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto v_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
v_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{});
constexpr auto v_block_dstr = make_static_tile_distribution(v_block_dstr_encode);
return v_block_dstr;
}
// 3d + padding
template <index_t MNPerBlock, index_t KPerBlock, index_t KPack>
CK_TILE_HOST_DEVICE static constexpr auto MakeXLdsBlockDescriptor()
{
constexpr auto x_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<KPerBlock / KPack>{}, number<MNPerBlock>{}, number<KPack>{}),
make_tuple(number<(MNPerBlock + 1) * KPack>{}, number<KPack>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto x_lds_block_desc = transform_tensor_descriptor(
x_lds_block_desc_0,
make_tuple(make_pass_through_transform(MNPerBlock),
make_merge_transform(make_tuple(KPerBlock / KPack, KPack))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return x_lds_block_desc;
}
// 3d + padding
template <index_t MNPerBlock, index_t KPerBlock, index_t KPack>
CK_TILE_HOST_DEVICE static constexpr auto MakeXLdsBlockDescriptorAsXT()
{
constexpr auto x_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<KPerBlock / KPack>{}, number<MNPerBlock>{}, number<KPack>{}),
make_tuple(number<(MNPerBlock + 1) * KPack>{}, number<KPack>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto xt_lds_block_desc = transform_tensor_descriptor(
x_lds_block_desc_0,
make_tuple(make_pass_through_transform(MNPerBlock),
make_merge_transform(make_tuple(KPerBlock / KPack, KPack))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<1>{}, sequence<0>{}));
return xt_lds_block_desc;
}
template <index_t MNPerBlock, index_t KPerBlock, index_t KPack, index_t PixelsPerRow>
CK_TILE_HOST_DEVICE static constexpr auto MakeXTLdsBlockDescriptor()
{
static_assert(PixelsPerRow % KPack == 0);
constexpr index_t NPerRow = PixelsPerRow / KPack;
static_assert(MNPerBlock % NPerRow == 0);
static_assert(KPerBlock % KPack == 0);
constexpr auto xt_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<KPerBlock / KPack>{},
number<MNPerBlock / NPerRow>{},
number<NPerRow>{},
number<KPack>{}),
make_tuple(number<(MNPerBlock / NPerRow) * (PixelsPerRow + KPack)>{},
number<PixelsPerRow + KPack>{},
number<KPack>{},
number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto xt_lds_block_desc = transform_tensor_descriptor(
xt_lds_block_desc_0,
make_tuple(
make_merge_transform(make_tuple(number<MNPerBlock / NPerRow>{}, number<NPerRow>{})),
make_merge_transform(make_tuple(number<KPerBlock / KPack>{}, number<KPack>{}))),
make_tuple(sequence<1, 2>{}, sequence<0, 3>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return xt_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQLdsBlockDescriptor()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t kKPack = GetSmemKPackQ<Problem>();
return MakeXLdsBlockDescriptor<kMPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQLdsBlockDescriptorAsQT()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t kKPack = GetSmemKPackQ<Problem>();
return MakeXLdsBlockDescriptorAsXT<kMPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKLdsBlockDescriptor()
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t kKPack = GetSmemKPackK<Problem>();
return MakeXLdsBlockDescriptor<kNPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKLdsBlockDescriptorAsKT()
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t kKPack = GetSmemKPackK<Problem>();
return MakeXLdsBlockDescriptorAsXT<kNPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeVLdsBlockDescriptor()
{
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK2;
constexpr index_t kKPack = GetSmemKPackV<Problem>();
return MakeXLdsBlockDescriptor<kNPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOGradLdsBlockDescriptor()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradLoadOnce)
return Problem::BlockFmhaShape::kVHeaddim;
else
return Problem::BlockFmhaShape::kK2;
}();
constexpr index_t kKPack = GetSmemKPackOGrad<Problem>();
return MakeXLdsBlockDescriptor<kMPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOGradLdsBlockDescriptorAsOGradT()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradLoadOnce)
return Problem::BlockFmhaShape::kVHeaddim;
else
return Problem::BlockFmhaShape::kK2;
}();
constexpr index_t kKPack = GetSmemKPackOGrad<Problem>();
return MakeXLdsBlockDescriptorAsXT<kMPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeSGradLdsBlockDescriptor()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPack = GetSmemKPackSGrad<Problem>();
return MakeXLdsBlockDescriptor<kMPerBlock, kKPerBlock, kKPack>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQTLdsBlockDescriptor()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(QDataType);
constexpr index_t kKPack = GetSmemKPackQ<Problem>();
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK3;
}();
return MakeXTLdsBlockDescriptor<kNPerBlock, kKPerBlock, kKPack, PixelsPerRow>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKTLdsBlockDescriptor()
{
using KDataType = remove_cvref_t<typename Problem::KDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(KDataType);
constexpr index_t kKPack = GetSmemKPackK<Problem>();
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KTLoadOnce)
return Problem::BlockFmhaShape::kN0;
else
return Problem::BlockFmhaShape::kK4;
}();
return MakeXTLdsBlockDescriptor<kNPerBlock, kKPerBlock, kKPack, PixelsPerRow>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOGradTLdsBlockDescriptor()
{
using QGradDataType = remove_cvref_t<typename Problem::QGradDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(QGradDataType);
constexpr index_t kKPack = GetSmemKPackOGrad<Problem>();
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kVHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK1;
}();
return MakeXTLdsBlockDescriptor<kNPerBlock, kKPerBlock, kKPack, PixelsPerRow>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBiasTLdsBlockDescriptor()
{
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
constexpr index_t Banks = 32; // TODO: need change based on arch
constexpr index_t PixelsPerRow = Banks * 4 / sizeof(BiasDataType);
constexpr index_t kKPack = GetSmemKPackBias<Problem>();
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
static_assert(PixelsPerRow % kKPack == 0);
constexpr index_t NPerRow = PixelsPerRow / kKPack;
static_assert(kNPerBlock % NPerRow == 0);
static_assert(kMPerBlock % kKPack == 0);
constexpr auto biast_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kMPerBlock / kKPack>{},
number<kNPerBlock / NPerRow>{},
number<NPerRow>{},
number<kKPack>{}),
make_tuple(number<(kNPerBlock / NPerRow) * (PixelsPerRow + kKPack)>{},
number<PixelsPerRow + kKPack>{},
number<kKPack>{},
number<1>{}),
number<kKPack>{},
number<1>{});
constexpr auto biast_lds_block_desc = transform_tensor_descriptor(
biast_lds_block_desc_0,
make_tuple(
make_merge_transform(make_tuple(number<kNPerBlock / NPerRow>{}, number<NPerRow>{})),
make_merge_transform(make_tuple(number<kMPerBlock / kKPack>{}, number<kKPack>{}))),
make_tuple(sequence<1, 2>{}, sequence<0, 3>{}),
make_tuple(sequence<1>{}, sequence<0>{}));
return biast_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQ()
{
constexpr index_t smem_size_q = sizeof(typename Problem::QDataType) *
MakeQLdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_q;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQT()
{
constexpr index_t smem_size_qt = [&]() {
if constexpr(QLoadOnce && !QTLoadOnce)
return 0;
else
return sizeof(typename Problem::QDataType) *
MakeQTLdsBlockDescriptor<Problem>().get_element_space_size();
}();
return smem_size_qt;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeK()
{
constexpr index_t smem_size_k = sizeof(typename Problem::KDataType) *
MakeKLdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_k;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeKT()
{
constexpr index_t smem_size_kt = [&]() {
if constexpr(KLoadOnce && !KTLoadOnce)
return 0;
else
return sizeof(typename Problem::KDataType) *
MakeKTLdsBlockDescriptor<Problem>().get_element_space_size();
}();
return smem_size_kt;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeV()
{
constexpr index_t smem_size_v = [&]() {
if constexpr(VLoadOnce)
return 0;
else
return sizeof(typename Problem::VDataType) *
MakeVLdsBlockDescriptor<Problem>().get_element_space_size();
}();
return smem_size_v;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeOGrad()
{
constexpr index_t smem_size_do =
sizeof(typename Problem::OGradDataType) *
MakeOGradLdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_do;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeOGradT()
{
constexpr index_t smem_size_dot = [&]() {
if constexpr(OGradLoadOnce && !OGradTLoadOnce)
return 0;
else
return sizeof(typename Problem::OGradDataType) *
MakeOGradTLdsBlockDescriptor<Problem>().get_element_space_size();
}();
return smem_size_dot;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeSGrad()
{
constexpr index_t smem_size_ds =
sizeof(typename Problem::GemmDataType) *
MakeSGradLdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_ds;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeBias()
{
constexpr index_t smem_size_bias = [&]() {
if constexpr(Problem::BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
return sizeof(typename Problem::BiasDataType) *
MakeBiasTLdsBlockDescriptor<Problem>().get_element_space_size();
else
return 0;
}();
return smem_size_bias;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
constexpr index_t smem_size_q = GetSmemSizeQ<Problem>();
constexpr index_t smem_size_qt = GetSmemSizeQT<Problem>();
constexpr index_t smem_size_k = GetSmemSizeK<Problem>();
constexpr index_t smem_size_kt = GetSmemSizeKT<Problem>();
constexpr index_t smem_size_v = GetSmemSizeV<Problem>();
constexpr index_t smem_size_do = GetSmemSizeOGrad<Problem>();
constexpr index_t smem_size_dot = GetSmemSizeOGradT<Problem>();
constexpr index_t smem_size_ds = GetSmemSizeSGrad<Problem>();
constexpr index_t smem_size_bias = GetSmemSizeBias<Problem>();
constexpr index_t smem_size_transpose = max(smem_size_ds, smem_size_bias);
index_t smem_size = 0;
if constexpr(QLoadOnce && OGradLoadOnce)
smem_size += smem_size_q + smem_size_qt + smem_size_do + smem_size_dot +
smem_size_transpose; // 1~4 & 10
else if(QLoadOnce && !OGradLoadOnce && !OGradTLoadOnce)
smem_size += smem_size_q + smem_size_qt +
max(smem_size_do,
smem_size_dot,
smem_size_transpose); // 5/7/11 TODO: Multiple buffers strategy
else if(!QLoadOnce && !QTLoadOnce && OGradLoadOnce)
smem_size += smem_size_do + smem_size_dot +
max(smem_size_q,
smem_size_qt,
smem_size_transpose); // 6/8/12 TODO: Multiple buffers strategy
else if(!QLoadOnce && !QTLoadOnce && !OGradLoadOnce && !OGradTLoadOnce)
smem_size += max(smem_size_q,
smem_size_qt,
smem_size_do,
smem_size_dot,
smem_size_transpose); // 9/13 TODO: Multiple buffers strategy
// 14/15 needs to be adjusted
if constexpr(KLoadOnce)
smem_size += (smem_size_k + smem_size_kt); // 1~13
else
smem_size =
max(smem_size_k, smem_size_kt, smem_size); // 14/15 TODO: Multiple buffers strategy
return max(smem_size, smem_size_v); // 15
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeLSEDDramTileDistribution()
{
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t N1 = WG::WarpGemmAttribute::Impl::kCNLane;
constexpr index_t N0 = NWarp;
constexpr index_t M4 = WG::WarpGemmAttribute::Impl::kCM1PerLane * 2;
constexpr index_t M3 = WG::WarpGemmAttribute::Impl::kCMLane;
constexpr index_t M2 = WG::WarpGemmAttribute::Impl::kCM0PerLane / 2;
constexpr index_t M1 = MWarp;
constexpr index_t M0 = kMPerBlock / (M1 * WG::WarpGemmAttribute::Impl::kM);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<N0, N1>,
tuple<sequence<M0, M1, M2, M3, M4>>,
tuple<sequence<1, 0>, sequence<1, 0>>,
tuple<sequence<1, 0>, sequence<3, 1>>,
sequence<1, 1, 1>,
sequence<0, 2, 4>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeVDramTileDistribution()
{
using VDataType = remove_cvref_t<typename Problem::VDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK2;
constexpr index_t K1 = 16 / sizeof(VDataType);
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
// coalesce reading for each blocks
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N0 = kNPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t K1 = GetAlignmentQ<Problem>();
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
// coalesce reading for each blocks
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KLoadOnce)
return Problem::BlockFmhaShape::kQKHeaddim;
else
return Problem::BlockFmhaShape::kK0;
}();
constexpr index_t K1 = GetAlignmentK<Problem>();
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
// coalesce reading for each blocks
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N0 = kNPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOGradDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradLoadOnce)
return Problem::BlockFmhaShape::kVHeaddim;
else
return Problem::BlockFmhaShape::kK2;
}();
constexpr index_t K1 = GetAlignmentOGrad<Problem>();
constexpr index_t K0 = kKPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
// coalesce reading for each blocks
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename DataType, index_t MPerBlock, index_t KPerBlock>
CK_TILE_HOST_DEVICE static constexpr auto MakePreXDramTileDistribution()
{
constexpr index_t K1 = 16 / sizeof(DataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t M2 = 1;
constexpr index_t M1 = get_warp_size();
constexpr index_t M0 = MPerBlock / M1;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1>>,
tuple<sequence<0>, sequence<1>>,
sequence<1, 2, 2>,
sequence<2, 0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakePreODramTileDistribution()
{
using ODataType = remove_cvref_t<typename Problem::ODataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kKPerBlock = Problem::kVHeaddim;
return MakePreXDramTileDistribution<ODataType, kBlockSize, kKPerBlock>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakePreOGradDramTileDistribution()
{
using OGradDataType = remove_cvref_t<typename Problem::OGradDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kKPerBlock = Problem::kVHeaddim;
return MakePreXDramTileDistribution<OGradDataType, kBlockSize, kKPerBlock>();
}
template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeQTDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK3;
}();
constexpr index_t N1 = GetTransposedAlignmentQ<Problem>();
constexpr index_t N0 = kNPerBlock / N1; // P
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackQ<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
static_assert(kKPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledQTRegBlockDescriptor()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(QTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK3;
}();
constexpr index_t N1 = GetTransposedAlignmentQ<Problem>();
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackQ<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeKTDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KTLoadOnce)
return Problem::BlockFmhaShape::kN0;
else
return Problem::BlockFmhaShape::kK4;
}();
constexpr index_t N1 = GetTransposedAlignmentK<Problem>();
constexpr index_t N0 = kNPerBlock / N1; // P
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackK<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
static_assert(kKPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledKTRegBlockDescriptor()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kQKHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(KTLoadOnce)
return Problem::BlockFmhaShape::kN0;
else
return Problem::BlockFmhaShape::kK4;
}();
constexpr index_t N1 = GetTransposedAlignmentK<Problem>();
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackK<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeOGradTDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kVHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK1;
}();
constexpr index_t N1 = GetTransposedAlignmentOGrad<Problem>();
constexpr index_t N0 = kNPerBlock / N1; // P
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackOGrad<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
static_assert(kKPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledOGradTRegBlockDescriptor()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kVHeaddim;
constexpr index_t kKPerBlock = [&]() {
if constexpr(OGradTLoadOnce)
return Problem::BlockFmhaShape::kM0;
else
return Problem::BlockFmhaShape::kK1;
}();
constexpr index_t N1 = GetTransposedAlignmentOGrad<Problem>();
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t K3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackOGrad<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = kBlockSize / get_warp_size();
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
template <typename Problem>
CK_TILE_DEVICE static constexpr auto MakeBiasTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t N1 = GetTransposedAlignmentBias<Problem>();
constexpr index_t N0 = kNPerBlock / N1; // P
constexpr index_t total_pixels = kMPerBlock * kNPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t M3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackBias<Problem>();
static_assert(kKPack % M3 == 0);
constexpr index_t M2 = kKPack / M3; // TODO: this dimention could be outside single wave
constexpr index_t M1 = get_warp_size() / (M2 * N0);
constexpr index_t M0 = kBlockSize / get_warp_size();
static_assert(kMPerBlock == M0 * M1 * M2 * M3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<M0, M1, M2, M3>, sequence<N0, N1>>,
tuple<sequence<1>, sequence<1, 2, 1>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<3, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBiasTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t N1 = GetTransposedAlignmentBias<Problem>();
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t total_pixels = kMPerBlock * kNPerBlock / kBlockSize;
static_assert(total_pixels % N1 == 0); // TODO: this is not always true?
constexpr index_t M3 = total_pixels / N1;
constexpr index_t kKPack = GetSmemKPackBias<Problem>();
static_assert(kKPack % M3 == 0);
constexpr index_t M2 = kKPack / M3; // TODO: this dimention could be outside single wave
constexpr index_t M1 = get_warp_size() / (M2 * N0);
constexpr index_t M0 = kBlockSize / get_warp_size();
return make_static_tile_distribution(
tile_distribution_encoding<sequence<>,
tuple<sequence<M0, M1, M2, M3>, sequence<N0, N1>>,
tuple<sequence<1>, sequence<1, 2, 1>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<1, 3>>{});
}
template <typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeBiasTTileDistribution()
{
using c_block_tensor_type = decltype(BlockGemm{}.MakeCBlockTile());
return c_block_tensor_type::get_tile_distribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetQKBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::AccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kK0>>;
constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::AccDataType, float>)
{
return WarpGemmMfmaF16F16F32M32N32K16SwizzleA{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::AccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA{};
}
}();
using BlockGemmPolicy =
BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::QDataType,
typename Problem::KDataType,
typename Problem::AccDataType,
typename Problem::BlockFmhaShape::Gemm0BlockWarps,
decltype(warp_gemm)>;
return BlockGemmASmemBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetPTOGradTBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::GemmDataType,
typename Problem::OGradDataType,
typename Problem::AccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kVHeaddim,
Problem::BlockFmhaShape::kK1>>;
using WarpGemm =
WarpGemmMfmaDispatcher<typename Problem::GemmDataType,
typename Problem::OGradDataType,
typename Problem::AccDataType,
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<0>{}),
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<1>{}),
Problem::BlockFmhaShape::Gemm1WarpTile::at(number<2>{}),
true>;
using BlockGemmPolicy =
BlockGemmARegBSmemCRegV1CustomPolicy<typename Problem::GemmDataType,
typename Problem::OGradDataType,
typename Problem::AccDataType,
typename Problem::BlockFmhaShape::Gemm1BlockWarps,
WarpGemm>;
return BlockGemmARegBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetOGradVBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::OGradDataType,
typename Problem::VDataType,
typename Problem::AccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kK2>>;
constexpr auto warp_gemm = []() {
if constexpr(std::is_same_v<typename Problem::OGradDataType, half_t> &&
std::is_same_v<typename Problem::VDataType, half_t> &&
std::is_same_v<typename Problem::AccDataType, float>)
{
return WarpGemmMfmaF16F16F32M32N32K16SwizzleA{};
}
else if constexpr(std::is_same_v<typename Problem::OGradDataType, bf16_t> &&
std::is_same_v<typename Problem::VDataType, bf16_t> &&
std::is_same_v<typename Problem::AccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA{};
}
}();
using BlockGemmPolicy =
BlockGemmASmemBRegCRegV1CustomPolicy<typename Problem::OGradDataType,
typename Problem::VDataType,
typename Problem::AccDataType,
typename Problem::BlockFmhaShape::Gemm2BlockWarps,
decltype(warp_gemm)>;
return BlockGemmASmemBRegCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
// template <typename Problem>
// CK_TILE_HOST_DEVICE static constexpr auto GetOGradVBlockGemm()
// {
// using BlockGemmProblem =
// BlockGemmPipelineProblem<typename Problem::OGradDataType,
// typename Problem::VDataType,
// typename Problem::AccDataType,
// Problem::kBlockSize,
// TileGemmShape<Problem::BlockFmhaShape::kM0,
// Problem::BlockFmhaShape::kN0,
// Problem::BlockFmhaShape::kK2>>;
// constexpr auto warp_gemm = []() {
// if constexpr(std::is_same_v<typename Problem::OGradDataType, half_t> &&
// std::is_same_v<typename Problem::VDataType, half_t> &&
// std::is_same_v<typename Problem::AccDataType, float>)
// {
// return WarpGemmMfmaF16F16F32M32N32K16SwizzleA{};
// }
// else if constexpr(std::is_same_v<typename Problem::OGradDataType, bf16_t> &&
// std::is_same_v<typename Problem::VDataType, bf16_t> &&
// std::is_same_v<typename Problem::AccDataType, float>)
// {
// return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleA{};
// }
// }();
// using BlockGemmPolicy =
// BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::OGradDataType,
// typename Problem::VDataType,
// typename Problem::AccDataType,
// typename
// Problem::BlockFmhaShape::Gemm2BlockWarps,
// decltype(warp_gemm)>;
// return BlockGemmASmemBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
// }
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSGradTQTBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::GemmDataType,
typename Problem::QDataType,
typename Problem::AccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kN0,
Problem::BlockFmhaShape::kQKHeaddim,
Problem::BlockFmhaShape::kK3>>;
using WarpGemm =
WarpGemmMfmaDispatcher<typename Problem::GemmDataType,
typename Problem::QDataType,
typename Problem::AccDataType,
Problem::BlockFmhaShape::Gemm3WarpTile::at(number<0>{}),
Problem::BlockFmhaShape::Gemm3WarpTile::at(number<1>{}),
Problem::BlockFmhaShape::Gemm3WarpTile::at(number<2>{}),
true>;
using BlockGemmPolicy =
BlockGemmARegBSmemCRegV1CustomPolicy<typename Problem::GemmDataType,
typename Problem::QDataType,
typename Problem::AccDataType,
typename Problem::BlockFmhaShape::Gemm3BlockWarps,
WarpGemm>;
return BlockGemmARegBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSGradKTBlockGemm()
{
using BlockGemmProblem =
BlockGemmPipelineProblem<typename Problem::GemmDataType,
typename Problem::KDataType,
typename Problem::AccDataType,
Problem::kBlockSize,
TileGemmShape<Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kQKHeaddim,
Problem::BlockFmhaShape::kK4>>;
using WarpGemm =
WarpGemmMfmaDispatcher<typename Problem::GemmDataType,
typename Problem::KDataType,
typename Problem::AccDataType,
Problem::BlockFmhaShape::Gemm4WarpTile::at(number<0>{}),
Problem::BlockFmhaShape::Gemm4WarpTile::at(number<1>{}),
Problem::BlockFmhaShape::Gemm4WarpTile::at(number<2>{}),
true>;
using BlockGemmPolicy =
BlockGemmASmemBSmemCRegV1CustomPolicy<typename Problem::GemmDataType,
typename Problem::KDataType,
typename Problem::AccDataType,
typename Problem::BlockFmhaShape::Gemm4BlockWarps,
WarpGemm>;
return BlockGemmASmemBSmemCRegV1<BlockGemmProblem, BlockGemmPolicy>{};
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck_tile {
// This class is used for codegen pattern matching
enum class BlockFmhaBwdPipelineEnum
{
KSKTSVR = 0,
QSKSVROGradS,
KSVR,
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <typename QDataType_,
typename KDataType_,
typename VDataType_,
typename GemmDataType_,
typename LSEDataType_,
typename AccDataType_,
typename DDataType_,
typename BiasDataType_,
typename RandValOutputDataType_,
typename ODataType_,
typename OGradDataType_,
typename QGradDataType_,
typename KGradDataType_,
typename VGradDataType_,
typename BiasGradDataType_,
typename BlockFmhaShape_,
bool kIsGroupMode_,
typename FmhaMask_,
typename Traits_>
struct BlockFmhaBwdPipelineProblem
{
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using GemmDataType = remove_cvref_t<GemmDataType_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using AccDataType = remove_cvref_t<AccDataType_>;
using DDataType = remove_cvref_t<DDataType_>;
using BiasDataType = remove_cvref_t<BiasDataType_>;
using RandValOutputDataType = remove_cvref_t<RandValOutputDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using OGradDataType = remove_cvref_t<OGradDataType_>;
using QGradDataType = remove_cvref_t<QGradDataType_>;
using KGradDataType = remove_cvref_t<KGradDataType_>;
using VGradDataType = remove_cvref_t<VGradDataType_>;
using BiasGradDataType = remove_cvref_t<BiasGradDataType_>;
using BlockFmhaShape = remove_cvref_t<BlockFmhaShape_>;
using FmhaMask = remove_cvref_t<FmhaMask_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kBlockSize = BlockFmhaShape::NumWarps * get_warp_size();
static constexpr bool kIsGroupMode = kIsGroupMode_;
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Traits::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Traits::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr auto BiasEnum = Traits::BiasEnum;
static constexpr bool kHasBiasGrad = Traits::kHasBiasGrad;
static constexpr bool kHasDropout = Traits::kHasDropout;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
template <typename ODataType_,
typename OGradDataType_,
typename DDataType_,
index_t kBlockSize_,
index_t kVHeaddim_,
bool kIsGroupMode_,
typename Traits_>
struct BlockFmhaBwdOGradDotOPipelineProblem
{
using ODataType = remove_cvref_t<ODataType_>;
using OGradDataType = remove_cvref_t<OGradDataType_>;
using DDataType = remove_cvref_t<DDataType_>;
using Traits = remove_cvref_t<Traits_>;
static_assert(0 < kBlockSize_ && kBlockSize_ % get_warp_size() == 0,
"kBlockSize should be divisible by get_warp_size()");
static constexpr index_t kBlockSize = kBlockSize_;
static constexpr index_t kVHeaddim = kVHeaddim_;
static constexpr bool kIsGroupMode = kIsGroupMode_;
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
} // namespace ck_tile
......@@ -13,6 +13,7 @@ template <typename QDataType_,
typename SaccDataType_,
typename SMPLComputeDataType_,
typename BiasDataType_,
typename RandValOutputDataType_,
typename LSEDataType_,
typename PDataType_,
typename OaccDataType_,
......@@ -23,19 +24,20 @@ template <typename QDataType_,
typename Traits_>
struct BlockFmhaPipelineProblem
{
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using SaccDataType = remove_cvref_t<SaccDataType_>;
using SMPLComputeDataType = remove_cvref_t<SMPLComputeDataType_>;
using BiasDataType = remove_cvref_t<BiasDataType_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using PDataType = remove_cvref_t<PDataType_>;
using OaccDataType = remove_cvref_t<OaccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using BlockFmhaShape = remove_cvref_t<BlockFmhaShape_>;
using FmhaMask = remove_cvref_t<FmhaMask_>;
using Traits = remove_cvref_t<Traits_>;
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using SaccDataType = remove_cvref_t<SaccDataType_>;
using SMPLComputeDataType = remove_cvref_t<SMPLComputeDataType_>;
using BiasDataType = remove_cvref_t<BiasDataType_>;
using RandValOutputDataType = remove_cvref_t<RandValOutputDataType_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using PDataType = remove_cvref_t<PDataType_>;
using OaccDataType = remove_cvref_t<OaccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using BlockFmhaShape = remove_cvref_t<BlockFmhaShape_>;
using FmhaMask = remove_cvref_t<FmhaMask_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kBlockSize = BlockFmhaShape::NumWarps * get_warp_size();
static constexpr bool kIsGroupMode = kIsGroupMode_;
......@@ -47,6 +49,7 @@ struct BlockFmhaPipelineProblem
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr auto BiasEnum = Traits::BiasEnum;
static constexpr bool kStoreLSE = Traits::kStoreLSE;
static constexpr bool kHasDropout = Traits::kHasDropout;
static constexpr bool kDoFp8StaticQuant = Traits::kDoFp8StaticQuant;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
......@@ -14,19 +15,20 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSDefaultPolicy>
struct BlockFmhaPipelineQRKSVS
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
......@@ -49,6 +51,7 @@ struct BlockFmhaPipelineQRKSVS
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
......@@ -106,6 +109,7 @@ struct BlockFmhaPipelineQRKSVS
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
......@@ -125,6 +129,7 @@ struct BlockFmhaPipelineQRKSVS
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
LSEDramBlockWindowTmp& lse_dram_window_tmp, // M0*1 tile
const LSEElementFunction& lse_element_func,
const SAccElementFunction& s_acc_element_func,
......@@ -133,7 +138,8 @@ struct BlockFmhaPipelineQRKSVS
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr) const
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
......@@ -240,6 +246,9 @@ struct BlockFmhaPipelineQRKSVS
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0)>(
randval_dram_block_window_tmp, seqlen_k_start);
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
......@@ -475,6 +484,12 @@ struct BlockFmhaPipelineQRKSVS
});
});
if constexpr(kHasDropout)
{
dropout.Run<decltype(gemm_0), SMPLComputeDataType, RandValOutputDataType>(
smem_ptr, seqlen_k_start + i_total_loops * kN0, p_compute, randval_dram_window);
}
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
......@@ -589,6 +604,7 @@ struct BlockFmhaPipelineQRKSVS
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
......@@ -596,11 +612,13 @@ struct BlockFmhaPipelineQRKSVS
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
RandValDramBlockWindowTmp& randval_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& lse_dram_block_window_tmp, // M0*1 tile
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr) const
void* smem_ptr,
BlockDropout& dropout) const
{
return operator()(q_dram_block_window_tmp,
identity{},
......@@ -610,6 +628,7 @@ struct BlockFmhaPipelineQRKSVS
identity{},
bias_dram_block_window_tmp,
identity{},
randval_dram_block_window_tmp,
lse_dram_block_window_tmp,
identity{},
identity{},
......@@ -618,7 +637,8 @@ struct BlockFmhaPipelineQRKSVS
mask,
position_encoding,
scale_s,
smem_ptr);
smem_ptr,
dropout);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -7,6 +7,7 @@
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
......@@ -15,19 +16,20 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSAsyncDefaultPolicy>
struct BlockFmhaPipelineQRKSVSAsync
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
......@@ -54,6 +56,7 @@ struct BlockFmhaPipelineQRKSVSAsync
static constexpr bool kPadHeadDimV = true; // support multiple of vector(like 8x)
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
......@@ -118,6 +121,7 @@ struct BlockFmhaPipelineQRKSVSAsync
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
......@@ -137,6 +141,7 @@ struct BlockFmhaPipelineQRKSVSAsync
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
LSEDramBlockWindowTmp& lse_dram_window_tmp, // M0*1 tile
const LSEElementFunction& lse_element_func,
const SAccElementFunction& s_acc_element_func,
......@@ -145,7 +150,8 @@ struct BlockFmhaPipelineQRKSVSAsync
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr) const
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
......@@ -292,6 +298,9 @@ struct BlockFmhaPipelineQRKSVSAsync
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0)>(
randval_dram_block_window_tmp, seqlen_k_start);
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
......@@ -558,6 +567,17 @@ struct BlockFmhaPipelineQRKSVSAsync
});
});
if constexpr(kHasDropout)
{
auto randval_ptr =
reinterpret_cast<char*>(smem_ptr) + Policy::template GetSmemSizeKV<Problem>();
dropout.Run<decltype(gemm_0), SMPLComputeDataType, RandValOutputDataType>(
randval_ptr,
seqlen_k_start + i_total_loops * kN0,
p_compute,
randval_dram_window);
}
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
......@@ -688,6 +708,7 @@ struct BlockFmhaPipelineQRKSVSAsync
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
......@@ -695,11 +716,13 @@ struct BlockFmhaPipelineQRKSVSAsync
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
RandValDramBlockWindowTmp& randval_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& lse_dram_block_window_tmp, // M0*1 tile
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr) const
void* smem_ptr,
BlockDropout& dropout) const
{
return operator()(q_dram_block_window_tmp,
identity{},
......@@ -709,6 +732,7 @@ struct BlockFmhaPipelineQRKSVSAsync
identity{},
bias_dram_block_window_tmp,
identity{},
randval_dram_block_window_tmp,
lse_dram_block_window_tmp,
identity{},
identity{},
......@@ -717,7 +741,8 @@ struct BlockFmhaPipelineQRKSVSAsync
mask,
position_encoding,
scale_s,
smem_ptr);
smem_ptr,
dropout);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -14,19 +14,20 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQRKSVSDefaultPolicy>
struct [[deprecated]] BlockFmhaPipelineQRKSVSFp8
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
......@@ -49,6 +50,7 @@ struct [[deprecated]] BlockFmhaPipelineQRKSVSFp8
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kStoreLSE = Problem::kStoreLSE;
static constexpr bool kHasDropout = Problem::kHasDropout;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
......@@ -106,20 +108,23 @@ struct [[deprecated]] BlockFmhaPipelineQRKSVSFp8
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
LSEDramBlockWindowTmp& /*lse_dram_window_tmp*/, // not supported
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
RandValDramBlockWindowTmp& /*randval_dram_block_window_tmp*/, // not supported
LSEDramBlockWindowTmp& /*lse_dram_window_tmp*/, // not supported
FmhaMask mask,
PositionEncoding /*position_encoding*/,
float scale_s,
float descale_qk,
float descale_sv,
void* smem_ptr) const
void* smem_ptr,
BlockDropout& /*dropout*/) const // not supported
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -13,19 +13,20 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaPipelineQSKSVSDefaultPolicy>
struct BlockFmhaPipelineQSKSVS
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -89,13 +89,13 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaF16F16F32M16N16K32SwizzleBTransposedCDistribution{};
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M16N16K32SwizzleBTransposedCDistribution{};
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> &&
......@@ -212,13 +212,13 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ false>
std::is_same_v<typename Problem::KDataType, half_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaF16F16F32M16N16K32SwizzleBTransposedCDistribution{};
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
std::is_same_v<typename Problem::SaccDataType, float>)
{
return WarpGemmMfmaBf16Bf16F32M16N16K32SwizzleBTransposedCDistribution{};
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> &&
......@@ -691,7 +691,7 @@ struct BlockFmhaPipelineQXKSVSCustomPolicy : BlockFmhaPipelineQXCustomPolicy<QLo
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeKV()
{
// TODO: assume Q is in register
// TODO: assume K/V has same data type
......@@ -702,6 +702,40 @@ struct BlockFmhaPipelineQXKSVSCustomPolicy : BlockFmhaPipelineQXCustomPolicy<QLo
single_smem_size * max(NumPrefetchK, NumPrefetchV);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
if constexpr(AsyncCopyK)
{
return GetSmemSizeKV<Problem>() + GetSmemSizeDropout<Problem>();
}
else
{
return ck_tile::max(GetSmemSizeKV<Problem>(), GetSmemSizeDropout<Problem>());
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeDropout()
{
if constexpr(Problem::kHasDropout)
{
constexpr auto gemm_0 = QXPolicy::template GetQKBlockGemm<Problem>();
constexpr auto config =
decltype(gemm_0)::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t kMPerStep = MWarp * WG::kM;
constexpr index_t kNPerStep = WG::kN;
return (kMPerStep + 1) * kNPerStep * sizeof(uint8_t);
}
else
{
return 0;
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKDramTileDistribution()
{
......
......@@ -43,4 +43,53 @@ struct TileFmhaShape
ck_tile::tensor_layout::gemm::ColumnMajor>;
};
template <typename BlockTile_, // sequence<...
typename Gemm0BlockWarps_,
typename Gemm0WarpTile_,
typename Gemm1BlockWarps_,
typename Gemm1WarpTile_,
typename Gemm2BlockWarps_,
typename Gemm2WarpTile_,
typename Gemm3BlockWarps_,
typename Gemm3WarpTile_,
typename Gemm4BlockWarps_,
typename Gemm4WarpTile_>
struct TileFmhaBwdShape
{
using BlockTile = remove_cvref_t<BlockTile_>;
using Gemm0BlockWarps = remove_cvref_t<Gemm0BlockWarps_>;
using Gemm0WarpTile = remove_cvref_t<Gemm0WarpTile_>;
using Gemm1BlockWarps = remove_cvref_t<Gemm1BlockWarps_>;
using Gemm1WarpTile = remove_cvref_t<Gemm1WarpTile_>;
using Gemm2BlockWarps = remove_cvref_t<Gemm2BlockWarps_>;
using Gemm2WarpTile = remove_cvref_t<Gemm2WarpTile_>;
using Gemm3BlockWarps = remove_cvref_t<Gemm3BlockWarps_>;
using Gemm3WarpTile = remove_cvref_t<Gemm3WarpTile_>;
using Gemm4BlockWarps = remove_cvref_t<Gemm4BlockWarps_>;
using Gemm4WarpTile = remove_cvref_t<Gemm4WarpTile_>;
static constexpr index_t NumWarps =
reduce_on_sequence(Gemm0BlockWarps{}, multiplies{}, number<1>{});
static_assert(NumWarps == reduce_on_sequence(Gemm1BlockWarps{}, multiplies{}, number<1>{}) &&
NumWarps == reduce_on_sequence(Gemm4BlockWarps{}, multiplies{}, number<1>{}));
static constexpr index_t kM0 = BlockTile::at(number<0>{}); // tile size along q seqlen
static constexpr index_t kN0 = BlockTile::at(number<1>{}); // tile size along k seqlen
static constexpr index_t kK0 =
BlockTile::at(number<2>{}); // tile size along gemm0(Q@K^T) unroll
static constexpr index_t kK1 =
BlockTile::at(number<3>{}); // tile size along gemm1(P^T@dO) unroll
static constexpr index_t kK2 =
BlockTile::at(number<4>{}); // tile size along gemm2(dO@V^T) unroll
static constexpr index_t kK3 =
BlockTile::at(number<5>{}); // tile size along gemm3(dS^T@Q) unroll
static constexpr index_t kK4 = BlockTile::at(number<6>{}); // tile size along gemm4(dS@K) unroll
static constexpr index_t kQKHeaddim =
BlockTile::at(number<7>{}); // Q & K headdim, used for pipeline that need load Q/Q^T or
// K/K^T at once
static constexpr index_t kVHeaddim = BlockTile::at(number<8>{}); // V headdim, used for pipeline
// that need load V at once
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment