Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
4939ee59
Commit
4939ee59
authored
Jul 07, 2023
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
457308e3
87f2bbcf
Changes
139
Hide whitespace changes
Inline
Side-by-side
Showing
19 changed files
with
933 additions
and
5 deletions
+933
-5
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
...ed_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_instance.hpp
...uped_conv2d_fwd/device_grouped_conv2d_fwd_dl_instance.hpp
+1
-1
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_int8_instance.hpp
...uantization/conv2d_fwd/device_conv2d_dl_int8_instance.hpp
+1
-1
profiler/README.md
profiler/README.md
+38
-0
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
...r/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
+257
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_batchnorm_fwd.cpp
profiler/src/profile_batchnorm_fwd.cpp
+1
-1
profiler/src/profile_grouped_conv_bwd_data.cpp
profiler/src/profile_grouped_conv_bwd_data.cpp
+157
-0
script/check_copyright_year.sh
script/check_copyright_year.sh
+17
-0
script/install_precommit.sh
script/install_precommit.sh
+20
-0
script/uninstall_precommit.sh
script/uninstall_precommit.sh
+1
-0
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
+1
-1
test/data_type/CMakeLists.txt
test/data_type/CMakeLists.txt
+3
-0
test/data_type/fp8.cpp
test/data_type/fp8.cpp
+123
-0
test/gemm/instance/gemm_wavelet_f16_tn_instance.cpp
test/gemm/instance/gemm_wavelet_f16_tn_instance.cpp
+1
-1
test/grouped_convnd_bwd_data/CMakeLists.txt
test/grouped_convnd_bwd_data/CMakeLists.txt
+6
-0
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
.../grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
+78
-0
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data_interface.cpp
...onvnd_bwd_data/test_grouped_convnd_bwd_data_interface.cpp
+178
-0
No files found.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/device_grouped_conv2d_fwd_dl_instance.hpp
View file @
4939ee59
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "device_grouped_conv2d_fwd_common.hpp"
#include "device_grouped_conv2d_fwd_common.hpp"
namespace
ck
{
namespace
ck
{
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_int8_instance.hpp
View file @
4939ee59
...
@@ -4,7 +4,7 @@
...
@@ -4,7 +4,7 @@
#pragma once
#pragma once
#include "conv2d_quantization_common.hpp"
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
...
profiler/README.md
View file @
4939ee59
...
@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
...
@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_
{
4096, 4096
}
arg.e_grid_desc_m_n_
{
4096, 4096
}
....
....
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
## Profile grouped convolution backward data kernels
```
bash
# arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data)
# arg2: data type (0: Output fp32, Weight fp32, Input fp32
# 1: Output fp16, Weight fp16, Input fp16
# 2: Output bf16, Weight bf16, Input bf16
# arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
# 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1
```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192}
in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
....
Best configuration parameters:
name: DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
256,
128,
256,
32,
8,
2,
Default
,
32,
32,
2,
4,
8,
4,
1,
1
>
avg_time: 0.768321
tflops: 86.6679
GB/s: 127.947
```
```
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
NDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
>
bool
profile_grouped_conv_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
out_element_op
=
OutElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_element_op
=
InElementOp
{};
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
in_host
.
SetZero
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
out_element_op
,
wei_element_op
,
in_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
in_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
in_device
,
in_host
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
wei
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_host : "
,
in_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_device: "
,
in_device
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
// do GEMM
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
OutElementOp
,
WeiElementOp
,
InElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
out_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
out_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
wei_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
wei_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
in_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
in_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
out_element_op
,
wei_element_op
,
in_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
4939ee59
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp
profile_batched_gemm_multi_d.cpp
profile_grouped_conv_bwd_data.cpp
)
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
...
@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_batchnorm_fwd.cpp
View file @
4939ee59
...
@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
...
@@ -148,7 +148,7 @@ int profile_batchnorm_forward(int argc, char* argv[])
{
{
if
(
arg_parser
.
inLengths
.
size
()
==
4
&&
arg_parser
.
reduceDims
.
size
()
==
3
)
if
(
arg_parser
.
inLengths
.
size
()
==
4
&&
arg_parser
.
reduceDims
.
size
()
==
3
)
{
{
profile_batchnorm_forward_impl
<
F16
,
F16
,
F32
,
F16
,
F16
,
F
16
,
4
,
3
>
(
profile_batchnorm_forward_impl
<
F16
,
F16
,
F32
,
F16
,
F16
,
F
32
,
4
,
3
>
(
arg_parser
.
do_verification
,
arg_parser
.
do_verification
,
arg_parser
.
init_method
,
arg_parser
.
init_method
,
arg_parser
.
do_dumpout
,
arg_parser
.
do_dumpout
,
...
...
profiler/src/profile_grouped_conv_bwd_data.cpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
ConvLayout
{
GNHWC_GKYXC_GNHWK
,
// 0
NHWGC_GKYXC_NHWGK
,
// 1
};
enum
struct
ConvDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Output fp32, Weight fp32, Input fp32
\n
"
<<
" 1: Output fp16, Weight fp16, Input fp16
\n
"
<<
" 2: Output bf16, Weight bf16, Input bf16
\n
"
<<
"arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
\n
"
<<
" 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_grouped_conv_bwd_data
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
out_layout
,
auto
wei_layout
,
auto
in_layout
,
auto
wei_type
,
auto
out_type
,
auto
in_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
OutLayout
=
decltype
(
out_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
InLayout
=
decltype
(
in_layout
);
using
OutDataType
=
decltype
(
out_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
InDataType
=
decltype
(
in_type
);
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_bwd_data_impl
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
InLayout
,
OutDataType
,
WeiDataType
,
InDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
// GNHWC_GKYXC_GNHWK
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
// NHWGC_GKYXC_NHWGK
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_conv_bwd_data
);
script/check_copyright_year.sh
0 → 100755
View file @
4939ee59
#!/bin/bash
current_year
=
$(
date
+%Y
)
exit_code
=
0
for
file
in
$@
;
do
if
grep
-q
"Copyright (c)"
$file
then
if
!
grep
-q
"Copyright (c).*
$current_year
"
$file
then
echo
"ERROR: File
$file
has a copyright notice without the current year (
$current_year
)."
exit_code
=
1
fi
fi
done
exit
$exit_code
script/install_precommit.sh
0 → 100755
View file @
4939ee59
#!/bin/bash
run_and_check
()
{
"
$@
"
status
=
$?
if
[
$status
-ne
0
]
;
then
echo
"Error with
\"
$@
\"
: Exited with status
$status
"
exit
$status
fi
return
$status
}
echo
"I: Installing tools required for pre-commit checks..."
run_and_check apt
install
clang-format-10
echo
"I: Installing pre-commit itself..."
run_and_check pip3
install
pre-commit
run_and_check pre-commit
install
echo
"I: Installation successful."
script/uninstall_precommit.sh
0 → 100755
View file @
4939ee59
pre-commit uninstall
test/CMakeLists.txt
View file @
4939ee59
...
@@ -59,6 +59,7 @@ add_subdirectory(batchnorm)
...
@@ -59,6 +59,7 @@ add_subdirectory(batchnorm)
add_subdirectory
(
contraction
)
add_subdirectory
(
contraction
)
add_subdirectory
(
pool_fwd
)
add_subdirectory
(
pool_fwd
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
)
add_subdirectory
(
wmma_op
)
add_subdirectory
(
wmma_op
)
endif
()
endif
()
test/batched_gemm_multi_d/test_batched_gemm_multi_d.cpp
View file @
4939ee59
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <gtest/gtest.h>
#include <gtest/gtest.h>
...
...
test/data_type/CMakeLists.txt
View file @
4939ee59
...
@@ -2,3 +2,6 @@ if (USE_BITINT_EXTENSION_INT4)
...
@@ -2,3 +2,6 @@ if (USE_BITINT_EXTENSION_INT4)
add_gtest_executable
(
test_int4 int4.cpp
)
add_gtest_executable
(
test_int4 int4.cpp
)
target_link_libraries
(
test_int4 PRIVATE utility
)
target_link_libraries
(
test_int4 PRIVATE utility
)
endif
()
endif
()
add_gtest_executable
(
test_fp8 fp8.cpp
)
target_link_libraries
(
test_fp8 PRIVATE utility
)
test/data_type/fp8.cpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using
ck
::
f8_convert_sr
;
using
ck
::
f8_t
;
using
ck
::
half_t
;
using
ck
::
type_convert
;
TEST
(
FP8
,
NumericLimits
)
{
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Min
(),
0x08
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Max
(),
0x77
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
Lowest
(),
0xF7
);
EXPECT_EQ
(
ck
::
NumericLimits
<
f8_t
>::
QuietNaN
(),
0x80
);
}
TEST
(
FP8
,
ConvertFP32Nearest
)
{
// fix the tolerance value
float
abs_tol
=
1e-6
;
// convert 0 float to fp8 and back, check if holds
ASSERT_NEAR
(
0.0
f
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
0.0
f
)),
abs_tol
);
// convert minimal float to fp8 and back, check if holds
ASSERT_NEAR
(
std
::
numeric_limits
<
float
>::
min
(),
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
min
())),
abs_tol
);
// convert maximal f8_t to float and check if equal to 240.0
ASSERT_NEAR
(
240.0
f
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
240.0
f
)),
abs_tol
);
// convert maximal float to fp8 and back, check if clipped to 240.0
ASSERT_NEAR
(
240.0
f
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR
(
0x80
,
type_convert
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive float value to fp8 and back, check if holds
float
pos_float
=
0.0078125
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative float value to fp8 and back, check if holds
float
neg_float
=
-
0.0156250
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
neg_float
)),
abs_tol
);
}
TEST
(
FP8
,
ConvertFP32Stochastic
)
{
// fix the tolerance value
float
abs_tol
=
1e-6
;
// convert 0 float to fp8 and back, check if holds
ASSERT_NEAR
(
0.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
0.0
f
)),
abs_tol
);
// convert minimal float to fp8 and back, check if holds
ASSERT_NEAR
(
std
::
numeric_limits
<
float
>::
min
(),
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
min
())),
abs_tol
);
// convert maximal f8_t to float and check if equal to 240.0
ASSERT_NEAR
(
240.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
240.0
f
)),
abs_tol
);
// convert maximal float to fp8 and back, check if clipped to 240.0
ASSERT_NEAR
(
240.0
f
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
max
())),
abs_tol
);
// convert inf float to f8_t and check if it is qNan
ASSERT_NEAR
(
0x80
,
f8_convert_sr
<
f8_t
>
(
std
::
numeric_limits
<
float
>::
infinity
()),
abs_tol
);
// positive float value to fp8 and back, check if holds
float
pos_float
=
0.0078125
f
;
ASSERT_NEAR
(
pos_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
pos_float
)),
abs_tol
);
// negative float value to fp8 and back, check if holds
float
neg_float
=
-
0.0156250
f
;
ASSERT_NEAR
(
neg_float
,
type_convert
<
float
>
(
f8_convert_sr
<
f8_t
>
(
neg_float
)),
abs_tol
);
}
TEST
(
FP8
,
ConvertFP16Nearest
)
{
// fix the tolerance value
float
abs_tol
=
1e-3
;
// convert 0 fp16 to fp8 and back, check if holds
ASSERT_NEAR
(
half_t
{
0.0
},
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
half_t
{
0.0
})),
abs_tol
);
// convert minimal fp16 to fp8 and back, check if holds
ASSERT_NEAR
(
ck
::
NumericLimits
<
half_t
>::
Min
(),
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Min
())),
abs_tol
);
// convert maximal f8_t to fp16 and check if equal to 240.0
ASSERT_NEAR
(
half_t
{
240.0
},
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
half_t
{
240.0
})),
abs_tol
);
// convert maximal fp16 to fp8 and back, check if clipped to 240.0
ASSERT_NEAR
(
half_t
{
240.0
},
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR
(
0x80
,
type_convert
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0078125
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0156250
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
type_convert
<
f8_t
>
(
neg_half
)),
abs_tol
);
}
TEST
(
FP8
,
ConvertFP16Stochastic
)
{
// fix the tolerance value
float
abs_tol
=
1e-3
;
// convert 0 fp16 to fp8 and back, check if holds
ASSERT_NEAR
(
half_t
{
0.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
half_t
{
0.0
})),
abs_tol
);
// convert minimal fp16 to fp8 and back, check if holds
ASSERT_NEAR
(
ck
::
NumericLimits
<
half_t
>::
Min
(),
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Min
())),
abs_tol
);
// convert maximal f8_t to fp16 and check if equal to 240.0
ASSERT_NEAR
(
half_t
{
240.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
half_t
{
240.0
})),
abs_tol
);
// convert maximal fp16 to fp8 and back, check if clipped to 240.0
ASSERT_NEAR
(
half_t
{
240.0
},
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
Max
())),
abs_tol
);
// convert QuietNaN fp16 to f8_t and check if it is QuietNaN
ASSERT_NEAR
(
0x80
,
f8_convert_sr
<
f8_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
()),
abs_tol
);
// positive fp16 value to fp8 and back, check if holds
half_t
pos_half
=
half_t
{
0.0078125
};
ASSERT_NEAR
(
pos_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
pos_half
)),
abs_tol
);
// negative fp16 value to fp8 and back, check if holds
half_t
neg_half
=
half_t
{
-
0.0156250
};
ASSERT_NEAR
(
neg_half
,
type_convert
<
half_t
>
(
f8_convert_sr
<
f8_t
>
(
neg_half
)),
abs_tol
);
}
test/gemm/instance/gemm_wavelet_f16_tn_instance.cpp
View file @
4939ee59
...
@@ -5,7 +5,7 @@
...
@@ -5,7 +5,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
test/grouped_convnd_bwd_data/CMakeLists.txt
0 → 100644
View file @
4939ee59
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_gtest_executable
(
test_grouped_convnd_bwd_data test_grouped_convnd_bwd_data.cpp
)
target_link_libraries
(
test_grouped_convnd_bwd_data PRIVATE utility device_grouped_conv2d_bwd_data_instance
)
add_gtest_executable
(
test_grouped_convnd_bwd_data_interface test_grouped_convnd_bwd_data_interface.cpp
)
target_link_libraries
(
test_grouped_convnd_bwd_data_interface PRIVATE utility device_grouped_conv2d_bwd_data_instance
)
endif
()
\ No newline at end of file
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data.cpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
template
<
typename
Tuple
>
class
TestGroupedConvndBwdData
:
public
::
testing
::
Test
{
protected:
using
DataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
WeiLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
InLayout
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
template
<
ck
::
index_t
NDimSpatial
>
void
Run
()
{
EXPECT_FALSE
(
conv_params
.
empty
());
bool
pass
=
true
;
for
(
auto
&
param
:
conv_params
)
{
pass
=
pass
&&
ck
::
profiler
::
profile_grouped_conv_bwd_data_impl
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
InLayout
,
DataType
,
DataType
,
DataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
);
}
EXPECT_TRUE
(
pass
);
}
};
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
ck
::
half_t
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
float
,
NHWGK
,
GKYXC
,
NHWGC
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGK
,
GKYXC
,
NHWGC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGK
,
GKYXC
,
NHWGC
>>
;
TYPED_TEST_SUITE
(
TestGroupedConvndBwdData
,
KernelTypes
);
TYPED_TEST
(
TestGroupedConvndBwdData
,
Test2D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
2
,
4
,
192
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
test/grouped_convnd_bwd_data/test_grouped_convnd_bwd_data_interface.cpp
0 → 100644
View file @
4939ee59
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
using
DataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ConvBackwardDataSpecialization
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
;
static
constexpr
auto
ConvBwdDataDefault
=
ConvBackwardDataSpecialization
::
Default
;
static
constexpr
auto
Filter1x1Stride1Pad0
=
ConvBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
template
<
typename
Tuple
,
ConvBackwardDataSpecialization
ConvSpec
>
class
TestGroupedConvndBwdData
:
public
::
testing
::
Test
{
protected:
static
constexpr
ck
::
index_t
NDimSpatial
=
2
;
using
OutLayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
WeiLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
InLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
// clang-format off
using
GroupedConvBwdDataDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// ######| NDimSpatial| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ######| | | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
DataType
,
DataType
,
AccDataType
,
DataType
,
ck
::
Tuple
<>
,
DataType
,
Pass
,
Pass
,
Pass
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
ck
::
utils
::
conv
::
ConvParam
conv_param
;
template
<
ck
::
index_t
NDimSpatial
>
bool
Run
()
{
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
out_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
out_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
wei_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
wei_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
in_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
in_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
auto
conv
=
GroupedConvBwdDataDeviceInstance
{};
auto
argument
=
conv
.
MakeArgument
(
nullptr
,
nullptr
,
std
::
array
<
const
void
*
,
0
>
{},
nullptr
,
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
Pass
{},
Pass
{},
Pass
{});
return
conv
.
IsSupportedArgument
(
argument
);
}
};
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
NHWGK
,
GKYXC
,
NHWGC
>>
;
template
<
typename
Tuple
>
class
TestGroupedConvndBwdDataDefault
:
public
TestGroupedConvndBwdData
<
Tuple
,
ConvBwdDataDefault
>
{
};
template
<
typename
Tuple
>
class
TestGroupedConvndBwdDataFilter1x1
:
public
TestGroupedConvndBwdData
<
Tuple
,
Filter1x1Stride1Pad0
>
{
};
TYPED_TEST_SUITE
(
TestGroupedConvndBwdDataDefault
,
KernelTypes
);
TYPED_TEST_SUITE
(
TestGroupedConvndBwdDataFilter1x1
,
KernelTypes
);
TYPED_TEST
(
TestGroupedConvndBwdDataFilter1x1
,
SpecializationCheck
)
{
// Check filter 3,3 instead of 1,1
this
->
conv_param
=
{
2
,
2
,
4
,
192
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
bool
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_FALSE
(
is_supported
);
// Check strides 2,2 instead of 1,1
this
->
conv_param
=
{
2
,
2
,
4
,
192
,
192
,
{
1
,
1
},
{
28
,
28
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_FALSE
(
is_supported
);
// Check with pad
this
->
conv_param
=
{
2
,
2
,
4
,
192
,
192
,
{
1
,
1
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_FALSE
(
is_supported
);
// Supported version
this
->
conv_param
=
{
2
,
2
,
4
,
192
,
192
,
{
1
,
1
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_TRUE
(
is_supported
);
}
TYPED_TEST
(
TestGroupedConvndBwdDataDefault
,
VectorLoadCheck
)
{
// vector load for A
this
->
conv_param
=
{
2
,
2
,
128
,
129
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
bool
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_FALSE
(
is_supported
);
// vector load for B, E, Ds
this
->
conv_param
=
{
2
,
2
,
128
,
128
,
257
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}};
is_supported
=
this
->
template
Run
<
2
>();
EXPECT_FALSE
(
is_supported
);
}
Prev
1
…
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment